aboutsummaryrefslogtreecommitdiffstats
path: root/contrib
diff options
context:
space:
mode:
authorVsevolod Stakhov <vsevolod@rspamd.com>2024-05-18 13:16:06 +0100
committerVsevolod Stakhov <vsevolod@rspamd.com>2024-05-18 13:16:06 +0100
commitbbf7b19566f7f0b879b26f517d92b041ed14a3af (patch)
tree92bb39e875ca4be1b2a6fa3d571546d5334fc430 /contrib
parent95215c625aa3d720165780f836d01227d1d3fbc8 (diff)
downloadrspamd-bbf7b19566f7f0b879b26f517d92b041ed14a3af.tar.gz
rspamd-bbf7b19566f7f0b879b26f517d92b041ed14a3af.zip
[Minor] Use proper typing and allocation logic in kann
Diffstat (limited to 'contrib')
-rw-r--r--contrib/kann/kautodiff.c1112
1 files changed, 660 insertions, 452 deletions
diff --git a/contrib/kann/kautodiff.c b/contrib/kann/kautodiff.c
index d05cc00a4..34645ab66 100644
--- a/contrib/kann/kautodiff.c
+++ b/contrib/kann/kautodiff.c
@@ -1,3 +1,19 @@
+/*
+ * Copyright 2024 Vsevolod Stakhov
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
#include "config.h"
#include <stdlib.h>
@@ -24,9 +40,9 @@ static inline kad_node_t *kad_new_core(int n_d, int op, int n_child)
{
kad_node_t *s;
if (n_d >= KAD_MAX_DIM) return 0;
- s = (kad_node_t*)calloc(1, sizeof(kad_node_t));
+ s = (kad_node_t *) g_malloc0_n(1, sizeof(kad_node_t));
s->n_d = n_d, s->op = op, s->n_child = n_child;
- if (s->n_child) s->child = (kad_node_t**)calloc(s->n_child, sizeof(kad_node_t*));
+ if (s->n_child) s->child = (kad_node_t **) g_malloc0_n(s->n_child, sizeof(kad_node_t *));
return s;
}
@@ -35,7 +51,7 @@ static inline kad_node_t *kad_vleaf(uint8_t flag, float *x, float *g, int n_d, v
int i;
kad_node_t *p;
if (n_d > KAD_MAX_DIM) return 0;
- p = (kad_node_t*)calloc(1, sizeof(kad_node_t));
+ p = (kad_node_t *) g_malloc0_n(1, sizeof(kad_node_t));
p->n_d = n_d;
for (i = 0; i < n_d; ++i)
p->d[i] = va_arg(ap, int32_t);
@@ -47,7 +63,9 @@ kad_node_t *kad_const(float *x, int n_d, ...)
{
kad_node_t *p;
va_list ap;
- va_start(ap, n_d); p = kad_vleaf(KAD_CONST, x, 0, n_d, ap); va_end(ap);
+ va_start(ap, n_d);
+ p = kad_vleaf(KAD_CONST, x, 0, n_d, ap);
+ va_end(ap);
return p;
}
@@ -55,7 +73,9 @@ kad_node_t *kad_feed(int n_d, ...)
{
kad_node_t *p;
va_list ap;
- va_start(ap, n_d); p = kad_vleaf(0, 0, 0, n_d, ap); va_end(ap);
+ va_start(ap, n_d);
+ p = kad_vleaf(0, 0, 0, n_d, ap);
+ va_end(ap);
return p;
}
@@ -63,7 +83,9 @@ kad_node_t *kad_var(float *x, float *g, int n_d, ...)
{
kad_node_t *p;
va_list ap;
- va_start(ap, n_d); p = kad_vleaf(KAD_VAR, x, g, n_d, ap); va_end(ap);
+ va_start(ap, n_d);
+ p = kad_vleaf(KAD_VAR, x, g, n_d, ap);
+ va_end(ap);
return p;
}
@@ -71,8 +93,9 @@ static inline kad_node_t *kad_finalize_node(kad_node_t *s) /* a helper function
{
int i;
if (kad_op_list[s->op](s, KAD_SYNC_DIM) < 0) { /* check dimension */
- if (s->ptr) free(s->ptr);
- free(s->child); free(s);
+ if (s->ptr) g_free(s->ptr);
+ g_free(s->child);
+ g_free(s);
return 0;
}
for (i = 0; i < s->n_child; ++i)
@@ -100,7 +123,11 @@ static inline kad_node_t *kad_op1_core(int op, kad_node_t *x)
return kad_finalize_node(s);
}
-#define KAD_FUNC_OP2(fname, op) kad_node_t *fname(kad_node_t *x, kad_node_t *y) { return kad_op2_core((op), x, y); }
+#define KAD_FUNC_OP2(fname, op) \
+ kad_node_t *fname(kad_node_t *x, kad_node_t *y) \
+ { \
+ return kad_op2_core((op), x, y); \
+ }
KAD_FUNC_OP2(kad_add, 1)
KAD_FUNC_OP2(kad_sub, 23)
@@ -112,7 +139,11 @@ KAD_FUNC_OP2(kad_ce_bin, 22)
KAD_FUNC_OP2(kad_ce_bin_neg, 4)
KAD_FUNC_OP2(kad_mse, 29)
-#define KAD_FUNC_OP1(fname, op) kad_node_t *fname(kad_node_t *x) { return kad_op1_core((op), x); }
+#define KAD_FUNC_OP1(fname, op) \
+ kad_node_t *fname(kad_node_t *x) \
+ { \
+ return kad_op1_core((op), x); \
+ }
KAD_FUNC_OP1(kad_log, 27)
KAD_FUNC_OP1(kad_exp, 33)
@@ -141,7 +172,8 @@ static inline int conv_find_par(int in_size, int kernel_size, int stride, int pa
int out_size, pad_both;
/* key equation: out_size = (in_size - kernel_size + pad_both) / stride + 1 */
if (pad0 == KAD_PAD_SAME && stride == 1) out_size = in_size;
- else out_size = (in_size - kernel_size + (pad0 > 0? pad0 : 0) + stride - 1) / stride + 1;
+ else
+ out_size = (in_size - kernel_size + (pad0 > 0 ? pad0 : 0) + stride - 1) / stride + 1;
pad_both = (out_size - 1) * stride + kernel_size - in_size;
*new_pad0 = pad_both / 2;
*new_pad1 = pad_both - *new_pad0;
@@ -155,10 +187,10 @@ typedef struct {
static inline conv_conf_t *conv2d_gen_aux(int in_row, int in_col, int kernel_r, int kernel_c, int stride_r, int stride_c, int top_pad, int left_pad)
{
conv_conf_t *cnn;
- cnn = (conv_conf_t*)calloc(2, sizeof(conv_conf_t));
+ cnn = (conv_conf_t *) g_malloc0_n(2, sizeof(conv_conf_t));
cnn[0].kernel_size = kernel_r, cnn[0].stride = stride_r;
cnn[1].kernel_size = kernel_c, cnn[1].stride = stride_c;
- conv_find_par(in_row, kernel_r, stride_r, top_pad, &cnn[0].pad[0], &cnn[0].pad[1]);
+ conv_find_par(in_row, kernel_r, stride_r, top_pad, &cnn[0].pad[0], &cnn[0].pad[1]);
conv_find_par(in_col, kernel_c, stride_c, left_pad, &cnn[1].pad[0], &cnn[1].pad[1]);
return cnn;
}
@@ -188,7 +220,7 @@ kad_node_t *kad_max2d(kad_node_t *x, int kernel_r, int kernel_c, int stride_r, i
static inline conv_conf_t *conv1d_gen_aux(int in_col, int kernel_c, int stride_c, int left_pad)
{
conv_conf_t *cnn;
- cnn = (conv_conf_t*)calloc(1, sizeof(conv_conf_t));
+ cnn = (conv_conf_t *) g_malloc0_n(1, sizeof(conv_conf_t));
cnn->kernel_size = kernel_c, cnn->stride = stride_c;
conv_find_par(in_col, kernel_c, stride_c, left_pad, &cnn->pad[0], &cnn->pad[1]);
return cnn;
@@ -240,15 +272,24 @@ static kad_node_t *kad_pooling_general(int op, int n, kad_node_t **x)
return kad_finalize_node(s);
}
-kad_node_t *kad_avg(int n, kad_node_t **x) { return kad_pooling_general(10, n, x); }
-kad_node_t *kad_max(int n, kad_node_t **x) { return kad_pooling_general(21, n, x); }
-kad_node_t *kad_stack(int n, kad_node_t **x) { return kad_pooling_general(35, n, x); }
+kad_node_t *kad_avg(int n, kad_node_t **x)
+{
+ return kad_pooling_general(10, n, x);
+}
+kad_node_t *kad_max(int n, kad_node_t **x)
+{
+ return kad_pooling_general(21, n, x);
+}
+kad_node_t *kad_stack(int n, kad_node_t **x)
+{
+ return kad_pooling_general(35, n, x);
+}
kad_node_t *kad_select(int n, kad_node_t **x, int which)
{
kad_node_t *s;
int32_t i, *aux;
- aux = (int32_t*)calloc(1, 4);
+ aux = (int32_t *) g_malloc0_n(1, 4);
*aux = which;
s = kad_new_core(0, 12, n);
for (i = 0; i < n; ++i) s->child[i] = x[i];
@@ -262,7 +303,7 @@ static kad_node_t *kad_reduce_general(int op, kad_node_t *x, int axis)
{
kad_node_t *s;
int32_t *aux;
- aux = (int32_t*)malloc(4);
+ aux = (int32_t *) g_malloc(4);
aux[0] = axis;
s = kad_new_core(0, op, 1);
s->child[0] = x;
@@ -270,8 +311,14 @@ static kad_node_t *kad_reduce_general(int op, kad_node_t *x, int axis)
return kad_finalize_node(s);
}
-kad_node_t *kad_reduce_sum(kad_node_t *x, int axis) { return kad_reduce_general(25, x, axis); }
-kad_node_t *kad_reduce_mean(kad_node_t *x, int axis) { return kad_reduce_general(26, x, axis); }
+kad_node_t *kad_reduce_sum(kad_node_t *x, int axis)
+{
+ return kad_reduce_general(25, x, axis);
+}
+kad_node_t *kad_reduce_mean(kad_node_t *x, int axis)
+{
+ return kad_reduce_general(26, x, axis);
+}
/********** Sampling related **********/
@@ -298,7 +345,7 @@ kad_node_t *kad_slice(kad_node_t *x, int axis, int start, int end)
kad_node_t *s;
int32_t *aux;
if (end < start || start < 0) return 0;
- aux = (int32_t*)malloc(3 * 4);
+ aux = (int32_t *) g_malloc(3 * 4);
aux[0] = axis, aux[1] = start, aux[2] = end;
s = kad_new_core(0, 20, 1);
s->child[0] = x;
@@ -310,7 +357,7 @@ kad_node_t *kad_concat_array(int axis, int n, kad_node_t **p)
{
kad_node_t *s;
int32_t i, *aux;
- aux = (int32_t*)malloc(4);
+ aux = (int32_t *) g_malloc(4);
aux[0] = axis;
s = kad_new_core(0, 31, n);
for (i = 0; i < n; ++i)
@@ -324,12 +371,12 @@ kad_node_t *kad_concat(int axis, int n, ...)
int i;
kad_node_t **p, *s;
va_list ap;
- p = (kad_node_t**)malloc(n * sizeof(kad_node_t*));
+ p = (kad_node_t **) g_malloc(n * sizeof(kad_node_t *));
va_start(ap, n);
for (i = 0; i < n; ++i) p[i] = va_arg(ap, kad_node_p);
va_end(ap);
s = kad_concat_array(axis, n, p);
- free(p);
+ g_free(p);
return s;
}
@@ -338,8 +385,8 @@ kad_node_t *kad_reshape(kad_node_t *x, int n_d, int *d)
kad_node_t *s;
int32_t i, *aux = 0;
if (n_d > 0) {
- aux = (int32_t*)malloc(n_d * 4);
- for (i = 0; i < n_d; ++i) aux[i] = d? d[i] : -1;
+ aux = (int32_t *) g_malloc(n_d * 4);
+ for (i = 0; i < n_d; ++i) aux[i] = d ? d[i] : -1;
}
s = kad_new_core(0, 30, 1);
s->child[0] = x, s->ptr = aux, s->ptr_size = n_d * 4;
@@ -350,7 +397,7 @@ kad_node_t *kad_reverse(kad_node_t *x, int axis)
{
kad_node_t *s;
int32_t *aux;
- aux = (int32_t*)malloc(4);
+ aux = (int32_t *) g_malloc(4);
*aux = axis;
s = kad_new_core(0, 36, 1);
s->child[0] = x, s->ptr = aux, s->ptr_size = 4;
@@ -361,7 +408,7 @@ kad_node_t *kad_switch(int n, kad_node_t **p)
{
kad_node_t *s;
int32_t i, *aux;
- aux = (int32_t*)calloc(1, 4);
+ aux = (int32_t *) g_malloc0_n(1, 4);
s = kad_new_core(0, 12, n);
for (i = 0; i < n; ++i)
s->child[i] = p[i];
@@ -382,7 +429,8 @@ static void kad_mark_back(int n, kad_node_t **v)
if (kad_is_back(v[i]->child[j]))
break;
if (j < v[i]->n_child) v[i]->flag |= KAD_VAR;
- else v[i]->flag &= ~KAD_VAR;
+ else
+ v[i]->flag &= ~KAD_VAR;
}
}
@@ -393,9 +441,9 @@ static void kad_allocate_internal(int n, kad_node_t **v)
for (i = 0; i < n; ++i) {
kad_node_t *p = v[i];
if (p->n_child == 0) continue;
- p->x = (float*)realloc(p->x, kad_len(p) * sizeof(float));
+ p->x = (float *) g_realloc(p->x, kad_len(p) * sizeof(float));
if (kad_is_back(p)) {
- p->g = (float*)realloc(p->g, kad_len(p) * sizeof(float));
+ p->g = (float *) g_realloc(p->g, kad_len(p) * sizeof(float));
kad_op_list[p->op](p, KAD_ALLOC);
}
}
@@ -409,33 +457,39 @@ int kad_sync_dim(int n, kad_node_t **v, int batch_size)
old_size = v[i]->d[0]; /* TODO: check if all feeds have the same batch size */
if (batch_size > 0 && v[i]->d[0] != batch_size)
v[i]->d[0] = batch_size, req_sync = 1;
- } else if (v[i]->n_child > 0 && req_sync)
+ }
+ else if (v[i]->n_child > 0 && req_sync)
kad_op_list[v[i]->op](v[i], KAD_SYNC_DIM);
}
if (old_size < batch_size) req_alloc = 1;
for (i = 0; i < n; ++i)
if (v[i]->n_child > 0 && v[i]->x == 0) req_alloc = 1;
if (req_alloc) kad_allocate_internal(n, v);
- return batch_size > 0? batch_size : old_size;
+ return batch_size > 0 ? batch_size : old_size;
}
-#define kvec_t(type) struct { size_t n, m; type *a; }
+#define kvec_t(type) \
+ struct { \
+ size_t n, m; \
+ type *a; \
+ }
#define kv_pop(v) ((v).a[--(v).n])
-#define kv_push(type, v, x) do { \
- if ((v).n == (v).m) { \
- (v).m = (v).m? (v).m<<1 : 2; \
- (v).a = (type*)realloc((v).a, sizeof(type) * (v).m); \
- } \
- (v).a[(v).n++] = (x); \
+#define kv_push(type, v, x) \
+ do { \
+ if ((v).n == (v).m) { \
+ (v).m = (v).m ? (v).m << 1 : 2; \
+ (v).a = (type *) g_realloc((v).a, sizeof(type) * (v).m); \
+ } \
+ (v).a[(v).n++] = (x); \
} while (0)
/* IMPORTANT: kad_node_t::tmp MUST BE set to zero before calling this function */
kad_node_t **kad_compile_array(int *n_node, int n_roots, kad_node_t **roots)
{
int i;
- kvec_t(kad_node_p) stack = {0,0,0}, a = {0,0,0};
+ kvec_t(kad_node_p) stack = {0, 0, 0}, a = {0, 0, 0};
/* generate kad_node_t::tmp, the count of the parent nodes; shifted by 1; lowest bit to detect fake roots */
for (i = 0; i < n_roots; ++i) {
@@ -447,33 +501,33 @@ kad_node_t **kad_compile_array(int *n_node, int n_roots, kad_node_t **roots)
for (i = 0; i < p->n_child; ++i) {
kad_node_t *q = p->child[i];
if (q->tmp == 0) kv_push(kad_node_p, stack, q);
- q->tmp += 1<<1;
+ q->tmp += 1 << 1;
}
}
/* topological sorting (Kahn's algorithm) */
for (i = 0; i < n_roots; ++i)
- if (roots[i]->tmp>>1 == 0) /* if roots[i]->tmp>>1 != 0, it is not a real root */
+ if (roots[i]->tmp >> 1 == 0) /* if roots[i]->tmp>>1 != 0, it is not a real root */
kv_push(kad_node_p, stack, roots[i]);
while (stack.n) {
kad_node_t *p = kv_pop(stack);
kv_push(kad_node_p, a, p);
for (i = 0; i < p->n_child; ++i) {
- p->child[i]->tmp -= 1<<1;
- if (p->child[i]->tmp>>1 == 0)
+ p->child[i]->tmp -= 1 << 1;
+ if (p->child[i]->tmp >> 1 == 0)
kv_push(kad_node_p, stack, p->child[i]);
}
}
- free(stack.a);
- for (i = 0; i < (int)a.n; ++i) { /* check cycles; no cycles if constructed with kad_add() etc */
- assert(a.a[i]->tmp>>1 == 0);
+ g_free(stack.a);
+ for (i = 0; i < (int) a.n; ++i) { /* check cycles; no cycles if constructed with kad_add() etc */
+ assert(a.a[i]->tmp >> 1 == 0);
a.a[i]->tmp = 0;
}
/* reverse */
- for (i = 0; i < (int)a.n>>1; ++i) { /* reverse a.a[] */
+ for (i = 0; i < (int) a.n >> 1; ++i) { /* reverse a.a[] */
kad_node_p t;
- t = a.a[i], a.a[i] = a.a[a.n-1-i], a.a[a.n-1-i] = t;
+ t = a.a[i], a.a[i] = a.a[a.n - 1 - i], a.a[a.n - 1 - i] = t;
}
kad_allocate_internal(a.n, a.a);
@@ -487,12 +541,12 @@ kad_node_t **kad_compile(int *n_node, int n_roots, ...)
kad_node_t **roots, **ret;
va_list ap;
- roots = (kad_node_t**)malloc(n_roots * sizeof(kad_node_t*));
+ roots = (kad_node_t **) g_malloc(n_roots * sizeof(kad_node_t *));
va_start(ap, n_roots);
for (i = 0; i < n_roots; ++i) roots[i] = va_arg(ap, kad_node_p);
va_end(ap);
ret = kad_compile_array(n_node, n_roots, roots);
- free(roots);
+ g_free(roots);
return ret;
}
@@ -506,14 +560,18 @@ void kad_delete(int n, kad_node_t **a)
for (i = 0; i < n; ++i) {
kad_node_t *p = a[i];
if (p->n_child) {
- free(p->x); free(p->g);
+ g_free(p->x);
+ g_free(p->g);
}
- free(p->child); free(p->ptr); free(p->gtmp); free(p);
+ g_free(p->child);
+ g_free(p->ptr);
+ g_free(p->gtmp);
+ g_free(p);
}
- free(a);
+ g_free(a);
}
-int kad_size_var(int n, kad_node_t *const* v)
+int kad_size_var(int n, kad_node_t *const *v)
{
int c, i;
for (i = c = 0; i < n; ++i)
@@ -522,7 +580,7 @@ int kad_size_var(int n, kad_node_t *const* v)
return c;
}
-int kad_size_const(int n, kad_node_t *const* v)
+int kad_size_const(int n, kad_node_t *const *v)
{
int c, i;
for (i = c = 0; i < n; ++i)
@@ -542,10 +600,11 @@ static void kad_propagate_marks(int n, kad_node_t **a)
kad_node_t *p = a[i];
if (p->tmp > 0) {
if (kad_is_switch(p)) {
- int32_t *aux = (int32_t*)p->ptr;
+ int32_t *aux = (int32_t *) p->ptr;
if (p->child[*aux]->tmp == 0)
p->child[*aux]->tmp = 1;
- } else {
+ }
+ else {
for (j = 0; j < p->n_child; ++j)
if (p->child[j]->tmp == 0)
p->child[j]->tmp = 1;
@@ -600,7 +659,7 @@ static void kad_save1(FILE *fp, const kad_node_t *p)
fwrite(&p->flag, 1, 1, fp);
fwrite(&p->n_child, 4, 1, fp);
if (p->n_child) {
- int32_t j, pre = p->pre? p->pre->tmp : -1;
+ int32_t j, pre = p->pre ? p->pre->tmp : -1;
fwrite(&p->op, 2, 1, fp);
for (j = 0; j < p->n_child; ++j)
fwrite(&p->child[j]->tmp, 4, 1, fp);
@@ -608,7 +667,8 @@ static void kad_save1(FILE *fp, const kad_node_t *p)
fwrite(&p->ptr_size, 4, 1, fp);
if (p->ptr_size > 0 && p->ptr)
fwrite(p->ptr, p->ptr_size, 1, fp);
- } else {
+ }
+ else {
fwrite(&p->n_d, 1, 1, fp);
if (p->n_d) fwrite(p->d, 4, p->n_d, fp);
}
@@ -617,27 +677,28 @@ static void kad_save1(FILE *fp, const kad_node_t *p)
static kad_node_t *kad_load1(FILE *fp, kad_node_t **node)
{
kad_node_t *p;
- p = (kad_node_t*)calloc(1, sizeof(kad_node_t));
+ p = (kad_node_t *) g_new0(kad_node_t, 1);
(void) !fread(&p->ext_label, 4, 1, fp);
(void) !fread(&p->ext_flag, 4, 1, fp);
(void) !fread(&p->flag, 1, 1, fp);
(void) !fread(&p->n_child, 4, 1, fp);
if (p->n_child) {
int32_t j, k;
- p->child = (kad_node_t**)calloc(p->n_child, sizeof(kad_node_t*));
+ p->child = (kad_node_t **) g_new0(kad_node_t *, p->n_child);
(void) !fread(&p->op, 2, 1, fp);
for (j = 0; j < p->n_child; ++j) {
(void) !fread(&k, 4, 1, fp);
- p->child[j] = node? node[k] : 0;
+ p->child[j] = node ? node[k] : 0;
}
(void) !fread(&k, 4, 1, fp);
if (k >= 0) p->pre = node[k];
(void) !fread(&p->ptr_size, 4, 1, fp);
if (p->ptr_size > 0) {
- p->ptr = malloc(p->ptr_size);
+ p->ptr = g_malloc(p->ptr_size);
(void) !fread(p->ptr, p->ptr_size, 1, fp);
}
- } else {
+ }
+ else {
(void) !fread(&p->n_d, 1, 1, fp);
if (p->n_d) (void) !fread(p->d, 4, p->n_d, fp);
}
@@ -659,7 +720,7 @@ kad_node_t **kad_load(FILE *fp, int *_n_node)
int32_t i, n_node;
kad_node_t **node;
(void) !fread(&n_node, 4, 1, fp);
- node = (kad_node_t**)malloc(n_node * sizeof(kad_node_t*));
+ node = (kad_node_t **) g_malloc(n_node * sizeof(kad_node_t *));
for (i = 0; i < n_node; ++i) {
kad_node_t *p;
p = node[i] = kad_load1(fp, node);
@@ -680,20 +741,21 @@ kad_node_t **kad_load(FILE *fp, int *_n_node)
static inline kad_node_t *kad_dup1(const kad_node_t *p)
{
kad_node_t *q;
- q = (kad_node_t*)malloc(sizeof(kad_node_t));
+ q = (kad_node_t *) g_malloc(sizeof(kad_node_t));
memcpy(q, p, sizeof(kad_node_t));
q->pre = 0, q->tmp = 0, q->gtmp = 0;
if (p->ptr && p->ptr_size > 0) {
if (kad_use_rng(p) && !(p->flag & KAD_SHARE_RNG) && p->ptr_size == sizeof(kad_rng_t)) {
q->ptr = kad_rng(); /* each time step uses a different RNG */
- } else {
- q->ptr = malloc(p->ptr_size);
+ }
+ else {
+ q->ptr = g_malloc(p->ptr_size);
memcpy(q->ptr, p->ptr, p->ptr_size);
}
}
if (q->n_child) {
q->x = q->g = 0;
- q->child = (kad_node_t**)calloc(q->n_child, sizeof(kad_node_t*));
+ q->child = (kad_node_t **) g_new0(kad_node_t *, q->n_child);
}
return q;
}
@@ -702,7 +764,7 @@ kad_node_t **kad_clone(int n, kad_node_t **v, int batch_size)
{
int i, j;
kad_node_t **u;
- u = (kad_node_t**)calloc(n, sizeof(kad_node_t*));
+ u = (kad_node_t **) g_new0(kad_node_t *, n);
for (i = 0; i < n; ++i) v[i]->tmp = i;
for (i = 0; i < n; ++i) {
kad_node_t *p = v[i], *q;
@@ -711,8 +773,9 @@ kad_node_t **kad_clone(int n, kad_node_t **v, int batch_size)
if (p->n_child) {
for (j = 0; j < p->n_child; ++j)
q->child[j] = u[p->child[j]->tmp];
- } else if (!kad_is_feed(p)) {
- q->x = (float*)malloc(kad_len(p) * sizeof(float));
+ }
+ else if (!kad_is_feed(p)) {
+ q->x = (float *) g_malloc(kad_len(p) * sizeof(float));
memcpy(q->x, p->x, kad_len(p) * sizeof(float));
q->g = 0;
}
@@ -734,8 +797,8 @@ typedef struct {
static inline void push_nodes(nodes_t *w, kad_node_t *p)
{
if (w->n == w->m) {
- w->m = w->m? w->m<<1 : 16;
- w->v = (kad_node_t**)realloc(w->v, w->m * sizeof(kad_node_t*));
+ w->m = w->m ? w->m << 1 : 16;
+ w->v = (kad_node_t **) g_realloc(w->v, w->m * sizeof(kad_node_t *));
}
w->v[w->n++] = p;
}
@@ -749,31 +812,31 @@ static void kad_unroll_helper(int n_v, kad_node_t **v, int i_pivot, kad_node_t *
assert(kad_is_pivot(v[i_pivot]) && t[i_pivot] == 0);
t[i_pivot] = kad_dup1(v[i_pivot]);
t[i_pivot]->n_child = len;
- t[i_pivot]->child = (kad_node_t**)realloc(t[i_pivot]->child, len * sizeof(kad_node_t*));
+ t[i_pivot]->child = (kad_node_t **) g_realloc(t[i_pivot]->child, len * sizeof(kad_node_t *));
- flag = (uint8_t*)calloc(n_v, 1);
+ flag = (uint8_t *) g_malloc0_n(n_v, 1);
for (i = i_pivot, flag[i] = 16; i >= 0; --i) {
if (i < i_pivot && kad_is_pivot(v[i])) continue; /* don't trespass other pivots */
- if (flag[i]&16) /* flag 16: nodes to unroll */
+ if (flag[i] & 16) /* flag 16: nodes to unroll */
for (j = 0; j < v[i]->n_child; ++j)
flag[v[i]->child[j]->tmp] = 16;
}
for (i = 0; i < i_pivot; ++i) {
- if (!(flag[i]&16)) continue;
+ if (!(flag[i] & 16)) continue;
if (kad_is_var(v[i]) || kad_is_const(v[i]) || kad_is_pivot(v[i])) flag[i] |= 1; /* external nodes that should not be duplicated */
if (v[i]->pre) flag[v[i]->pre->tmp] |= 2;
}
flag[v[i_pivot]->child[0]->tmp] |= 4;
- aux = (kad_node_t**)calloc(n_v, sizeof(kad_node_t*));
+ aux = (kad_node_t **) g_malloc0_n(n_v, sizeof(kad_node_t *));
for (l = 0; l < len; ++l) {
for (i = 0; i < i_pivot; ++i) {
- if (!(flag[i]&16) || ((flag[i]&3) && t[i])) continue;
+ if (!(flag[i] & 16) || ((flag[i] & 3) && t[i])) continue;
t[i] = kad_dup1(v[i]);
if (v[i]->n_child)
for (j = 0; j < v[i]->n_child; ++j)
t[i]->child[j] = t[v[i]->child[j]->tmp];
- if (flag[i]&4) t[i_pivot]->child[l] = t[i];
- if (l == 0 && (flag[i]&2)) aux[i] = t[i];
+ if (flag[i] & 4) t[i_pivot]->child[l] = t[i];
+ if (l == 0 && (flag[i] & 2)) aux[i] = t[i];
if (v[i]->pre) {
t[v[i]->pre->tmp] = t[i];
if (l == len - 1) t[i]->pre = aux[v[i]->pre->tmp]; /* this forms a cycle! */
@@ -782,7 +845,8 @@ static void kad_unroll_helper(int n_v, kad_node_t **v, int i_pivot, kad_node_t *
}
}
push_nodes(w, t[i_pivot]);
- free(aux); free(flag);
+ g_free(aux);
+ g_free(flag);
}
int kad_n_pivots(int n_v, kad_node_t **v)
@@ -797,19 +861,19 @@ kad_node_t **kad_unroll(int n_v, kad_node_t **v, int *new_n, int *len)
{
int i, j, n_pivots = 0;
kad_node_t **t;
- nodes_t w = {0,0,0};
+ nodes_t w = {0, 0, 0};
- t = (kad_node_t**)calloc(n_v, sizeof(kad_node_t*));
+ t = (kad_node_t **) g_new0(kad_node_t *, n_v);
n_pivots = kad_n_pivots(n_v, v);
for (i = 0; i < n_v; ++i) v[i]->tmp = i;
if (n_pivots) {
int k, *i_pivots;
- i_pivots = (int*)calloc(n_pivots, sizeof(int));
+ i_pivots = (int *) g_malloc0_n(n_pivots, sizeof(int));
for (i = k = 0; i < n_v; ++i) /* collect pivots */
if (kad_is_pivot(v[i])) i_pivots[k++] = i;
for (i = 0; i < n_pivots; ++i) /* unroll each pivot, from the lowest to the highest */
kad_unroll_helper(n_v, v, i_pivots[i], t, len[i], &w);
- free(i_pivots);
+ g_free(i_pivots);
}
for (i = 0; i < n_v; ++i) { /* copy over the rest of nodes */
if (t[i]) continue;
@@ -819,7 +883,7 @@ kad_node_t **kad_unroll(int n_v, kad_node_t **v, int *new_n, int *len)
t[i]->child[j] = t[v[i]->child[j]->tmp];
push_nodes(&w, t[i]);
}
- free(t);
+ g_free(t);
for (i = 0; i < n_v; ++i) v[i]->tmp = 0;
for (i = 0; i < w.n; ++i) /* stack may change the output dimension */
if (w.v[i]->n_child > 0)
@@ -838,7 +902,7 @@ kad_node_t **kad_unroll(int n_v, kad_node_t **v, int *new_n, int *len)
static inline float kad_sdot(int n, const float *x, const float *y) /* BLAS sdot using SSE */
{
- int i, n8 = n>>3<<3;
+ int i, n8 = n >> 3 << 3;
__m128 vs1, vs2;
float s, t[4];
vs1 = _mm_setzero_ps();
@@ -846,9 +910,9 @@ static inline float kad_sdot(int n, const float *x, const float *y) /* BLAS sdot
for (i = 0; i < n8; i += 8) {
__m128 vx1, vx2, vy1, vy2;
vx1 = _mm_loadu_ps(&x[i]);
- vx2 = _mm_loadu_ps(&x[i+4]);
+ vx2 = _mm_loadu_ps(&x[i + 4]);
vy1 = _mm_loadu_ps(&y[i]);
- vy2 = _mm_loadu_ps(&y[i+4]);
+ vy2 = _mm_loadu_ps(&y[i + 4]);
vs1 = _mm_add_ps(vs1, _mm_mul_ps(vx1, vy1));
vs2 = _mm_add_ps(vs2, _mm_mul_ps(vx2, vy2));
}
@@ -861,19 +925,19 @@ static inline float kad_sdot(int n, const float *x, const float *y) /* BLAS sdot
}
static inline void kad_saxpy_inlined(int n, float a, const float *x, float *y) /* BLAS saxpy using SSE */
{
- int i, n8 = n>>3<<3;
+ int i, n8 = n >> 3 << 3;
__m128 va;
va = _mm_set1_ps(a);
for (i = 0; i < n8; i += 8) {
__m128 vx1, vx2, vy1, vy2, vt1, vt2;
vx1 = _mm_loadu_ps(&x[i]);
- vx2 = _mm_loadu_ps(&x[i+4]);
+ vx2 = _mm_loadu_ps(&x[i + 4]);
vy1 = _mm_loadu_ps(&y[i]);
- vy2 = _mm_loadu_ps(&y[i+4]);
+ vy2 = _mm_loadu_ps(&y[i + 4]);
vt1 = _mm_add_ps(_mm_mul_ps(va, vx1), vy1);
vt2 = _mm_add_ps(_mm_mul_ps(va, vx2), vy2);
_mm_storeu_ps(&y[i], vt1);
- _mm_storeu_ps(&y[i+4], vt2);
+ _mm_storeu_ps(&y[i + 4], vt2);
}
for (; i < n; ++i) y[i] += a * x[i];
}
@@ -885,7 +949,7 @@ static inline float kad_sdot(int n, const float *x, const float *y) /* BLAS sdot
for (i = 0; i < n; ++i) s += x[i] * y[i];
return s;
}
-static inline void kad_saxpy_inlined(int n, float a, const float *x, float *y) // BLAS saxpy
+static inline void kad_saxpy_inlined(int n, float a, const float *x, float *y)// BLAS saxpy
{
int i;
for (i = 0; i < n; ++i) y[i] += a * x[i];
@@ -904,7 +968,7 @@ void kad_vec_mul_sum(int n, float *a, const float *b, const float *c)
/* As gfortran mangles names */
#define ssyev ssyev_
#endif
-extern void ssyev(const char* jobz, const char* uplo, int* n, float* a, int* lda, float* w, float* work, int* lwork, int* info);
+extern void ssyev(const char *jobz, const char *uplo, int *n, float *a, int *lda, float *w, float *work, int *lwork, int *info);
#endif
#ifdef HAVE_CBLAS_SGEMM
@@ -913,20 +977,22 @@ extern void ssyev(const char* jobz, const char* uplo, int* n, float* a, int* lda
#include "cblas.h"
#else
/* Poor man approach, thanks for that Apple */
-enum CBLAS_ORDER {CblasRowMajor=101, CblasColMajor=102 };
-enum CBLAS_TRANSPOSE {CblasNoTrans=111, CblasTrans=112 };
+enum CBLAS_ORDER { CblasRowMajor = 101,
+ CblasColMajor = 102 };
+enum CBLAS_TRANSPOSE { CblasNoTrans = 111,
+ CblasTrans = 112 };
extern void cblas_sgemm(const enum CBLAS_ORDER Order,
- const enum CBLAS_TRANSPOSE TA,
- const enum CBLAS_TRANSPOSE TB,
- const int M, const int N, const int K,
- const float alpha, const float *A, const int lda,
- const float *B, const int ldb, const float beta,
- float *C, const int ldc);
+ const enum CBLAS_TRANSPOSE TA,
+ const enum CBLAS_TRANSPOSE TB,
+ const int M, const int N, const int K,
+ const float alpha, const float *A, const int lda,
+ const float *B, const int ldb, const float beta,
+ float *C, const int ldc);
#endif
void kad_sgemm_simple(int trans_A, int trans_B, int M, int N, int K, const float *A, const float *B, float *C)
{
- cblas_sgemm(CblasRowMajor, trans_A? CblasTrans : CblasNoTrans, trans_B? CblasTrans : CblasNoTrans, M, N, K, 1.0f, A, trans_A? M : K, B, trans_B? K : N, 1.0f, C, N);
+ cblas_sgemm(CblasRowMajor, trans_A ? CblasTrans : CblasNoTrans, trans_B ? CblasTrans : CblasNoTrans, M, N, K, 1.0f, A, trans_A ? M : K, B, trans_B ? K : N, 1.0f, C, N);
}
#else
void kad_sgemm_simple(int trans_A, int trans_B, int M, int N, int K, const float *A, const float *B, float *C) /* simplified BLAS sgemm */
@@ -936,8 +1002,8 @@ void kad_sgemm_simple(int trans_A, int trans_B, int M, int N, int K, const float
if (!trans_A && trans_B) {
for (i = 0; i < M; i += x)
for (j = 0; j < N; j += x) {
- int ii, ie = M < i + x? M : i + x;
- int jj, je = N < j + x? N : j + x;
+ int ii, ie = M < i + x ? M : i + x;
+ int jj, je = N < j + x ? N : j + x;
for (ii = i; ii < ie; ++ii) { /* loop tiling */
const float *aii = A + ii * K, *bjj;
float *cii = C + ii * N;
@@ -945,27 +1011,37 @@ void kad_sgemm_simple(int trans_A, int trans_B, int M, int N, int K, const float
cii[jj] += kad_sdot(K, aii, bjj);
}
}
- } else if (!trans_A && !trans_B) {
+ }
+ else if (!trans_A && !trans_B) {
for (i = 0; i < M; ++i)
for (k = 0; k < K; ++k)
- kad_saxpy_inlined(N, A[i*K+k], &B[k*N], &C[i*N]);
- } else if (trans_A && !trans_B) {
+ kad_saxpy_inlined(N, A[i * K + k], &B[k * N], &C[i * N]);
+ }
+ else if (trans_A && !trans_B) {
for (k = 0; k < K; ++k)
for (i = 0; i < M; ++i)
- kad_saxpy_inlined(N, A[k*M+i], &B[k*N], &C[i*N]);
- } else abort(); /* not implemented for (trans_A && trans_B) */
+ kad_saxpy_inlined(N, A[k * M + i], &B[k * N], &C[i * N]);
+ }
+ else
+ abort(); /* not implemented for (trans_A && trans_B) */
}
#endif
#ifdef HAVE_CBLAS_SAXPY
#ifndef HAVE_CBLAS_H
extern void cblas_saxpy(const int __N,
- const float __alpha, const float *__X, const int __incX, float *__Y, const int __incY);
+ const float __alpha, const float *__X, const int __incX, float *__Y, const int __incY);
#endif
-void kad_saxpy(int n, float a, const float *x, float *y) { cblas_saxpy(n, a, x, 1, y, 1); }
+void kad_saxpy(int n, float a, const float *x, float *y)
+{
+ cblas_saxpy(n, a, x, 1, y, 1);
+}
#else
-void kad_saxpy(int n, float a, const float *x, float *y) { kad_saxpy_inlined(n, a, x, y); }
+void kad_saxpy(int n, float a, const float *x, float *y)
+{
+ kad_saxpy_inlined(n, a, x, y);
+}
#endif
bool kad_ssyev_simple(int N, float *A, float *eigenvals)
@@ -979,18 +1055,18 @@ bool kad_ssyev_simple(int N, float *A, float *eigenvals)
/* Query and allocate the optimal workspace */
lwork = -1;
- ssyev ("Vectors", "Upper", &n, A, &lda, eigenvals, &wkopt, &lwork, &info);
+ ssyev("Vectors", "Upper", &n, A, &lda, eigenvals, &wkopt, &lwork, &info);
lwork = wkopt;
- work = (float*) g_malloc(lwork * sizeof(double));
- ssyev ("Vectors", "Upper", &n, A, &lda, eigenvals, work, &lwork, &info);
+ work = (float *) g_malloc(lwork * sizeof(double));
+ ssyev("Vectors", "Upper", &n, A, &lda, eigenvals, work, &lwork, &info);
/* Check for convergence */
if (info > 0) {
- g_free (work);
+ g_g_free(work);
return false;
}
- g_free (work);
+ g_g_free(work);
return true;
#endif
@@ -1000,7 +1076,7 @@ bool kad_ssyev_simple(int N, float *A, float *eigenvals)
* Random number generator *
***************************/
-static kad_rng_t kad_rng_dat = { {0x50f5647d2380309dULL, 0x91ffa96fc4c62cceULL}, 0.0, 0, 0 };
+static kad_rng_t kad_rng_dat = {{0x50f5647d2380309dULL, 0x91ffa96fc4c62cceULL}, 0.0, 0, 0};
static inline uint64_t kad_splitmix64(uint64_t x)
{
@@ -1023,7 +1099,7 @@ static inline uint64_t kad_xoroshiro128plus_next(kad_rng_t *r)
static inline void kad_xoroshiro128plus_jump(kad_rng_t *r)
{
- static const uint64_t JUMP[] = { 0xbeac0467eba5facbULL, 0xd86b048b86aa9922ULL };
+ static const uint64_t JUMP[] = {0xbeac0467eba5facbULL, 0xd86b048b86aa9922ULL};
uint64_t s0 = 0, s1 = 0;
int i, b;
for (i = 0; i < 2; ++i)
@@ -1037,7 +1113,7 @@ static inline void kad_xoroshiro128plus_jump(kad_rng_t *r)
void kad_srand(void *d, uint64_t seed)
{
- kad_rng_t *r = d? (kad_rng_t*)d : &kad_rng_dat;
+ kad_rng_t *r = d ? (kad_rng_t *) d : &kad_rng_dat;
r->n_gset = 0.0, r->n_iset = 0;
r->s[0] = kad_splitmix64(seed);
r->s[1] = kad_splitmix64(r->s[0]);
@@ -1046,24 +1122,30 @@ void kad_srand(void *d, uint64_t seed)
void *kad_rng(void)
{
kad_rng_t *r;
- r = (kad_rng_t*)calloc(1, sizeof(kad_rng_t));
+ r = (kad_rng_t *) g_malloc0_n(1, sizeof(kad_rng_t));
kad_xoroshiro128plus_jump(&kad_rng_dat);
r->s[0] = kad_rng_dat.s[0], r->s[1] = kad_rng_dat.s[1];
return r;
}
-uint64_t kad_rand(void *d) { return kad_xoroshiro128plus_next(d? (kad_rng_t*)d : &kad_rng_dat); }
+uint64_t kad_rand(void *d)
+{
+ return kad_xoroshiro128plus_next(d ? (kad_rng_t *) d : &kad_rng_dat);
+}
double kad_drand(void *d)
{
- union { uint64_t i; double d; } u;
- u.i = 0x3FFULL << 52 | kad_xoroshiro128plus_next(d? (kad_rng_t*)d : &kad_rng_dat) >> 12;
+ union {
+ uint64_t i;
+ double d;
+ } u;
+ u.i = 0x3FFULL << 52 | kad_xoroshiro128plus_next(d ? (kad_rng_t *) d : &kad_rng_dat) >> 12;
return u.d - 1.0;
}
double kad_drand_normal(void *d)
{
- kad_rng_t *r = d? (kad_rng_t*)d : &kad_rng_dat;
+ kad_rng_t *r = d ? (kad_rng_t *) d : &kad_rng_dat;
if (r->n_iset == 0) {
double fac, rsq, v1, v2;
do {
@@ -1075,7 +1157,8 @@ double kad_drand_normal(void *d)
r->n_gset = v1 * fac;
r->n_iset = 1;
return v2 * fac;
- } else {
+ }
+ else {
r->n_iset = 0;
return r->n_gset;
}
@@ -1103,12 +1186,14 @@ int kad_op_add(kad_node_t *p, int action)
if (action == KAD_SYNC_DIM) {
if (n0 % n1 != 0) return -1;
kad_copy_dim1(p, q[0]);
- } else if (action == KAD_FORWARD) {
+ }
+ else if (action == KAD_FORWARD) {
assert(n0 >= n1);
memcpy(p->x, q[0]->x, n0 * sizeof(float));
for (i = 0; i < n0; i += n1)
kad_saxpy(n1, 1.0f, q[1]->x, p->x + i);
- } else if (action == KAD_BACKWARD) {
+ }
+ else if (action == KAD_BACKWARD) {
if (kad_is_back(q[0])) kad_saxpy(n0, 1.0f, p->g, q[0]->g);
if (kad_is_back(q[1]))
for (i = 0; i < n0; i += n1)
@@ -1127,12 +1212,14 @@ int kad_op_sub(kad_node_t *p, int action)
if (action == KAD_SYNC_DIM) {
if (n0 % n1 != 0) return -1;
kad_copy_dim1(p, q[0]);
- } else if (action == KAD_FORWARD) {
+ }
+ else if (action == KAD_FORWARD) {
assert(n0 >= n1);
memcpy(p->x, q[0]->x, n0 * sizeof(float));
for (i = 0; i < n0; i += n1)
kad_saxpy(n1, -1.0f, q[1]->x, p->x + i);
- } else if (action == KAD_BACKWARD) {
+ }
+ else if (action == KAD_BACKWARD) {
if (kad_is_back(q[0])) kad_saxpy(n0, 1.0f, p->g, q[0]->g);
if (kad_is_back(q[1]))
for (i = 0; i < n0; i += n1)
@@ -1151,13 +1238,15 @@ int kad_op_mul(kad_node_t *p, int action)
if (action == KAD_SYNC_DIM) {
if (n0 % n1 != 0) return -1;
kad_copy_dim1(p, q[0]);
- } else if (action == KAD_FORWARD) {
+ }
+ else if (action == KAD_FORWARD) {
assert(n0 >= n1);
memset(p->x, 0, n0 * sizeof(float));
if (q[0]->x != 0 && q[1]->x != 0)
for (i = 0; i < n0; i += n1) /* TODO: optimize when n1==1 */
kad_vec_mul_sum(n1, p->x + i, q[0]->x + i, q[1]->x);
- } else if (action == KAD_BACKWARD) {
+ }
+ else if (action == KAD_BACKWARD) {
if (kad_is_back(q[0]) && q[1]->x)
for (i = 0; i < n0; i += n1)
kad_vec_mul_sum(n1, q[0]->g + i, p->g + i, q[1]->x);
@@ -1174,18 +1263,22 @@ int kad_op_cmul(kad_node_t *p, int action)
kad_node_t *q[2];
q[0] = p->child[0], q[1] = p->child[1];
- n_col = q[0]->d[q[0]->n_d - 1] > q[1]->d[q[1]->n_d - 1]? q[0]->d[q[0]->n_d - 1] : q[1]->d[q[1]->n_d - 1];
- for (i = q[0]->n_d - 1; i >= 0; --i) if (n_a_col < n_col) n_a_col *= q[0]->d[i];
- for (i = q[1]->n_d - 1; i >= 0; --i) if (n_b_col < n_col) n_b_col *= q[1]->d[i];
+ n_col = q[0]->d[q[0]->n_d - 1] > q[1]->d[q[1]->n_d - 1] ? q[0]->d[q[0]->n_d - 1] : q[1]->d[q[1]->n_d - 1];
+ for (i = q[0]->n_d - 1; i >= 0; --i)
+ if (n_a_col < n_col) n_a_col *= q[0]->d[i];
+ for (i = q[1]->n_d - 1; i >= 0; --i)
+ if (n_b_col < n_col) n_b_col *= q[1]->d[i];
n_a_row = kad_len(q[0]) / n_a_col, n_b_row = kad_len(q[1]) / n_b_col;
if (action == KAD_SYNC_DIM) {
if (n_a_col != n_b_col) return -1;
p->n_d = 2, p->d[0] = n_a_row, p->d[1] = n_b_row;
- } else if (action == KAD_FORWARD) {
+ }
+ else if (action == KAD_FORWARD) {
memset(p->x, 0, n_a_row * n_b_row * sizeof(float));
if (q[0]->x && q[1]->x)
kad_sgemm_simple(0, 1, n_a_row, n_b_row, n_col, q[0]->x, q[1]->x, p->x); /* Y = X * trans(W) */
- } else if (action == KAD_BACKWARD) {
+ }
+ else if (action == KAD_BACKWARD) {
if (kad_is_back(q[0]) && q[1]->x)
kad_sgemm_simple(0, 0, n_a_row, n_col, n_b_row, p->g, q[1]->x, q[0]->g); /* G_x <- G_y * W */
if (kad_is_back(q[1]) && q[0]->x)
@@ -1201,18 +1294,20 @@ int kad_op_matmul(kad_node_t *p, int action) /* TODO: matmul and cmul have diffe
q[0] = p->child[0];
q[1] = p->child[1];
- n_a_row = q[0]->n_d == 1? 1 : q[0]->d[0];
- n_b_row = q[1]->n_d == 1? 1 : q[1]->d[0];
+ n_a_row = q[0]->n_d == 1 ? 1 : q[0]->d[0];
+ n_b_row = q[1]->n_d == 1 ? 1 : q[1]->d[0];
n_a_col = kad_len(q[0]) / n_a_row;
n_b_col = kad_len(q[1]) / n_b_row;
if (action == KAD_SYNC_DIM) {
if (n_a_col != n_b_row) return -1;
p->n_d = 2, p->d[0] = n_a_row, p->d[1] = n_b_col;
- } else if (action == KAD_FORWARD) {
+ }
+ else if (action == KAD_FORWARD) {
memset(p->x, 0, n_a_row * n_b_col * sizeof(float));
if (q[0]->x && q[1]->x)
kad_sgemm_simple(0, 0, n_a_row, n_b_col, n_a_col, q[0]->x, q[1]->x, p->x); /* Y = X * W */
- } else if (action == KAD_BACKWARD) {
+ }
+ else if (action == KAD_BACKWARD) {
if (kad_is_back(q[0]) && q[1]->x)
kad_sgemm_simple(0, 1, n_a_row, n_a_col, n_b_col, p->g, q[1]->x, q[0]->g); /* G_x <- G_y * trans(W) */
if (kad_is_back(q[1]) && q[0]->x)
@@ -1228,10 +1323,12 @@ int kad_op_square(kad_node_t *p, int action)
n = kad_len(q);
if (action == KAD_SYNC_DIM) {
kad_copy_dim1(p, q);
- } else if (action == KAD_FORWARD) {
+ }
+ else if (action == KAD_FORWARD) {
for (i = 0; i < n; ++i)
p->x[i] = q->x[i] * q->x[i];
- } else if (action == KAD_BACKWARD && kad_is_back(q)) {
+ }
+ else if (action == KAD_BACKWARD && kad_is_back(q)) {
for (i = 0; i < n; ++i)
q->g[i] += p->g[i] * (q->x[i] + q->x[i]);
}
@@ -1245,9 +1342,11 @@ int kad_op_1minus(kad_node_t *p, int action)
n = kad_len(q);
if (action == KAD_SYNC_DIM) {
kad_copy_dim1(p, q);
- } else if (action == KAD_FORWARD) {
+ }
+ else if (action == KAD_FORWARD) {
for (i = 0; i < n; ++i) p->x[i] = 1.0f - q->x[i];
- } else if (action == KAD_BACKWARD && kad_is_back(q)) {
+ }
+ else if (action == KAD_BACKWARD && kad_is_back(q)) {
kad_saxpy(n, -1.0f, p->g, q->g);
}
return 0;
@@ -1260,9 +1359,11 @@ int kad_op_exp(kad_node_t *p, int action)
n = kad_len(q);
if (action == KAD_SYNC_DIM) {
kad_copy_dim1(p, q);
- } else if (action == KAD_FORWARD) {
+ }
+ else if (action == KAD_FORWARD) {
for (i = 0; i < n; ++i) p->x[i] = expf(q->x[i]);
- } else if (action == KAD_BACKWARD && kad_is_back(q)) {
+ }
+ else if (action == KAD_BACKWARD && kad_is_back(q)) {
for (i = 0; i < n; ++i)
q->g[i] += p->g[i] * p->x[i];
}
@@ -1276,9 +1377,11 @@ int kad_op_log(kad_node_t *p, int action)
n = kad_len(q);
if (action == KAD_SYNC_DIM) {
kad_copy_dim1(p, q);
- } else if (action == KAD_FORWARD) {
+ }
+ else if (action == KAD_FORWARD) {
for (i = 0; i < n; ++i) p->x[i] = logf(q->x[i]);
- } else if (action == KAD_BACKWARD && kad_is_back(q)) {
+ }
+ else if (action == KAD_BACKWARD && kad_is_back(q)) {
for (i = 0; i < n; ++i)
q->g[i] += p->g[i] / q->x[i];
}
@@ -1291,7 +1394,7 @@ int kad_op_reduce_sum(kad_node_t *p, int action)
int i, j, k, axis, d0, d1;
assert(p->ptr);
- axis = *(int32_t*)p->ptr;
+ axis = *(int32_t *) p->ptr;
if (axis < 0 || axis >= q->n_d) return -1;
for (i = 0, d0 = 1; i < axis; ++i) d0 *= q->d[i];
for (i = axis + 1, d1 = 1; i < q->n_d; ++i) d1 *= q->d[i];
@@ -1299,13 +1402,15 @@ int kad_op_reduce_sum(kad_node_t *p, int action)
p->n_d = q->n_d - 1;
for (i = j = 0; i < q->n_d; ++i)
if (i != axis) p->d[j++] = q->d[i];
- } else if (action == KAD_FORWARD) {
+ }
+ else if (action == KAD_FORWARD) {
memset(p->x, 0, kad_len(p) * sizeof(float));
for (i = 0; i < d0; ++i)
for (j = 0; j < q->d[axis]; ++j)
for (k = 0; k < d1; ++k)
p->x[i * d1 + k] += q->x[(i * q->d[axis] + j) * d1 + k];
- } else if (action == KAD_BACKWARD && kad_is_back(q)) {
+ }
+ else if (action == KAD_BACKWARD && kad_is_back(q)) {
for (i = 0; i < d0; ++i)
for (j = 0; j < q->d[axis]; ++j)
for (k = 0; k < d1; ++k)
@@ -1320,7 +1425,7 @@ int kad_op_reduce_mean(kad_node_t *p, int action)
int i, j, k, axis, d0, d1;
assert(p->ptr);
- axis = *(int32_t*)p->ptr;
+ axis = *(int32_t *) p->ptr;
if (axis < 0 || axis >= q->n_d) return -1;
for (i = 0, d0 = 1; i < axis; ++i) d0 *= q->d[i];
for (i = axis + 1, d1 = 1; i < q->n_d; ++i) d1 *= q->d[i];
@@ -1328,15 +1433,17 @@ int kad_op_reduce_mean(kad_node_t *p, int action)
p->n_d = q->n_d - 1;
for (i = j = 0; i < q->n_d; ++i)
if (i != axis) p->d[j++] = q->d[i];
- } else if (action == KAD_FORWARD) {
- float t = 1.0f / q->d[axis];
+ }
+ else if (action == KAD_FORWARD) {
+ float t = 1.0f / (float) q->d[axis];
memset(p->x, 0, kad_len(p) * sizeof(float));
for (i = 0; i < d0; ++i)
for (j = 0; j < q->d[axis]; ++j)
for (k = 0; k < d1; ++k)
p->x[i * d1 + k] += t * q->x[(i * q->d[axis] + j) * d1 + k];
- } else if (action == KAD_BACKWARD && kad_is_back(q)) {
- float t = 1.0f / q->d[axis];
+ }
+ else if (action == KAD_BACKWARD && kad_is_back(q)) {
+ float t = 1.0f / (float) q->d[axis];
for (i = 0; i < d0; ++i)
for (j = 0; j < q->d[axis]; ++j)
for (k = 0; k < d1; ++k)
@@ -1355,20 +1462,23 @@ int kad_op_dropout(kad_node_t *p, int action)
n = kad_len(q);
if (action == KAD_SYNC_DIM) {
kad_copy_dim1(p, q);
- } else if (action == KAD_ALLOC) {
+ }
+ else if (action == KAD_ALLOC) {
if (kad_is_back(p->child[0]))
- p->gtmp = realloc(p->gtmp, n);
- } else if (action == KAD_FORWARD) {
- float r = kad_is_const(q) || kad_is_var(q)? 0.0f : *p->child[1]->x, z = 1.0f / (1.0f - r);
- uint8_t *flag = (uint8_t*)p->gtmp;
+ p->gtmp = g_realloc(p->gtmp, n);
+ }
+ else if (action == KAD_FORWARD) {
+ float r = kad_is_const(q) || kad_is_var(q) ? 0.0f : *p->child[1]->x, z = 1.0f / (1.0f - r);
+ uint8_t *flag = (uint8_t *) p->gtmp;
for (i = 0; i < n; ++i) {
int kept = (kad_drand(p->ptr) >= r);
- p->x[i] = kept? q->x[i] * z : 0.0f;
+ p->x[i] = kept ? q->x[i] * z : 0.0f;
if (flag) flag[i] = kept;
}
- } else if (action == KAD_BACKWARD && kad_is_back(p->child[0])) {
- float r = kad_is_const(q) || kad_is_var(q)? 0.0f : *p->child[1]->x, z = 1.0f / (1.0f - r);
- uint8_t *flag = (uint8_t*)p->gtmp;
+ }
+ else if (action == KAD_BACKWARD && kad_is_back(p->child[0])) {
+ float r = kad_is_const(q) || kad_is_var(q) ? 0.0f : *p->child[1]->x, z = 1.0f / (1.0f - r);
+ uint8_t *flag = (uint8_t *) p->gtmp;
for (i = 0; i < n; ++i)
if (flag[i]) q->g[i] += z * p->g[i];
}
@@ -1382,19 +1492,22 @@ int kad_op_sample_normal(kad_node_t *p, int action) /* not tested */
n = kad_len(q);
if (action == KAD_SYNC_DIM) {
kad_copy_dim1(p, q);
- } else if (action == KAD_ALLOC) {
+ }
+ else if (action == KAD_ALLOC) {
if (kad_is_back(p->child[0]))
- p->gtmp = realloc(p->gtmp, n * sizeof(float));
- } else if (action == KAD_FORWARD) {
- float *r = (float*)p->gtmp;
+ p->gtmp = g_realloc(p->gtmp, n * sizeof(float));
+ }
+ else if (action == KAD_FORWARD) {
+ float *r = (float *) p->gtmp;
for (i = 0; i < n; ++i) {
float z;
- z = (float)kad_drand_normal(p->ptr);
+ z = (float) kad_drand_normal(p->ptr);
p->x[i] = q->x[i] * z;
if (r) r[i] = z;
}
- } else if (action == KAD_BACKWARD && kad_is_back(p->child[0])) {
- float *r = (float*)p->gtmp;
+ }
+ else if (action == KAD_BACKWARD && kad_is_back(p->child[0])) {
+ float *r = (float *) p->gtmp;
for (i = 0; i < n; ++i)
q->g[i] += p->g[i] * r[i];
}
@@ -1408,7 +1521,7 @@ int kad_op_slice(kad_node_t *p, int action)
int i, axis, d0, d1;
assert(p->ptr);
- aux = (int32_t*)p->ptr, axis = aux[0], range = aux + 1;
+ aux = (int32_t *) p->ptr, axis = aux[0], range = aux + 1;
if (axis < 0 || axis >= q->n_d) return -1;
for (i = 0, d0 = 1; i < axis; ++i) d0 *= q->d[i];
for (i = axis + 1, d1 = 1; i < q->n_d; ++i) d1 *= q->d[i];
@@ -1416,10 +1529,12 @@ int kad_op_slice(kad_node_t *p, int action)
if (range[0] >= range[1] || range[0] < 0 || range[1] > q->d[axis]) return -1;
kad_copy_dim1(p, q);
p->d[axis] = range[1] - range[0];
- } else if (action == KAD_FORWARD) {
+ }
+ else if (action == KAD_FORWARD) {
for (i = 0; i < d0; ++i)
memcpy(&p->x[i * p->d[axis] * d1], &q->x[(i * q->d[axis] + range[0]) * d1], (range[1] - range[0]) * d1 * sizeof(float));
- } else if (action == KAD_BACKWARD && kad_is_back(q)) {
+ }
+ else if (action == KAD_BACKWARD && kad_is_back(q)) {
for (i = 0; i < d0; ++i)
kad_saxpy((range[1] - range[0]) * d1, 1.0f, &p->g[i * p->d[axis] * d1], &q->g[(i * q->d[axis] + range[0]) * d1]);
}
@@ -1433,7 +1548,7 @@ int kad_op_concat(kad_node_t *p, int action)
int i, j, k, axis, d0, d1;
assert(p->ptr);
- aux = (int32_t*)p->ptr, axis = aux[0];
+ aux = (int32_t *) p->ptr, axis = aux[0];
for (i = 0, d0 = 1; i < axis; ++i) d0 *= q->d[i];
for (i = axis + 1, d1 = 1; i < q->n_d; ++i) d1 *= q->d[i];
if (action == KAD_SYNC_DIM) {
@@ -1445,14 +1560,16 @@ int kad_op_concat(kad_node_t *p, int action)
kad_copy_dim1(p, q);
for (i = 1; i < p->n_child; ++i)
p->d[axis] += p->child[i]->d[axis];
- } else if (action == KAD_FORWARD) {
+ }
+ else if (action == KAD_FORWARD) {
for (i = 0; i < d0; ++i)
for (j = k = 0; j < p->n_child; ++j) {
q = p->child[j];
memcpy(&p->x[(i * p->d[axis] + k) * d1], &q->x[i * q->d[axis] * d1], q->d[axis] * d1 * sizeof(float));
k += q->d[axis];
}
- } else if (action == KAD_BACKWARD) {
+ }
+ else if (action == KAD_BACKWARD) {
for (i = 0; i < d0; ++i)
for (j = k = 0; j < p->n_child; ++j) {
q = p->child[j];
@@ -1470,13 +1587,14 @@ int kad_op_reshape(kad_node_t *p, int action)
if (action == KAD_SYNC_DIM) {
if (p->ptr) {
- int32_t *aux = (int32_t*)p->ptr;
+ int32_t *aux = (int32_t *) p->ptr;
int i, len = 1, n_missing = 0;
p->n_d = p->ptr_size / 4;
for (i = 0; i < p->n_d; ++i) p->d[i] = aux[i];
for (i = 0; i < p->n_d; ++i)
if (p->d[i] <= 0) ++n_missing;
- else len *= p->d[i];
+ else
+ len *= p->d[i];
if (n_missing == 0 && len != kad_len(q)) return -1;
if (n_missing > 1) { /* attempt to infer missing dimensions except the last one */
for (i = 0; i < p->n_d; ++i)
@@ -1491,10 +1609,14 @@ int kad_op_reshape(kad_node_t *p, int action)
for (i = 0; i < p->n_d; ++i)
if (p->d[i] <= 0) p->d[i] = kad_len(q) / len;
}
- } else kad_copy_dim1(p, q);
- } else if (action == KAD_FORWARD) {
+ }
+ else
+ kad_copy_dim1(p, q);
+ }
+ else if (action == KAD_FORWARD) {
memcpy(p->x, q->x, kad_len(p) * sizeof(float));
- } else if (action == KAD_BACKWARD && kad_is_back(q)) {
+ }
+ else if (action == KAD_BACKWARD && kad_is_back(q)) {
kad_saxpy(kad_len(p), 1.0f, p->g, q->g);
}
return 0;
@@ -1505,7 +1627,7 @@ int kad_op_reverse(kad_node_t *p, int action)
kad_node_t *q = p->child[0];
int axis, i, j, n, d0, d1;
- axis = p->ptr? *(int32_t*)p->ptr : 0;
+ axis = p->ptr ? *(int32_t *) p->ptr : 0;
if (axis < 0) axis += q->n_d;
assert(axis >= 0 && axis < q->n_d);
for (i = 0, d0 = 1; i < axis; ++i) d0 *= q->d[i];
@@ -1513,11 +1635,13 @@ int kad_op_reverse(kad_node_t *p, int action)
for (i = axis + 1, d1 = 1; i < q->n_d; ++i) d1 *= q->d[i];
if (action == KAD_SYNC_DIM) {
kad_copy_dim1(p, q);
- } else if (action == KAD_FORWARD) {
+ }
+ else if (action == KAD_FORWARD) {
for (i = 0; i < d0; ++i)
for (j = 0; j < n; ++j)
memcpy(&p->x[(i * n + n - 1 - j) * d1], &q->x[(i * n + j) * d1], d1 * sizeof(float));
- } else if (action == KAD_BACKWARD && kad_is_back(q)) {
+ }
+ else if (action == KAD_BACKWARD && kad_is_back(q)) {
for (i = 0; i < d0; ++i)
for (j = 0; j < n; ++j)
kad_saxpy(d1, 1.0f, &p->g[(i * n + n - 1 - j) * d1], &q->g[(i * n + j) * d1]);
@@ -1537,12 +1661,14 @@ int kad_op_mse(kad_node_t *p, int action)
if (action == KAD_SYNC_DIM) {
if (n != kad_len(y1)) return -1;
p->n_d = 0;
- } else if (action == KAD_FORWARD) {
+ }
+ else if (action == KAD_FORWARD) {
double cost = 0.0;
for (i = 0; i < n; ++i)
cost += (y1->x[i] - y0->x[i]) * (y1->x[i] - y0->x[i]);
- p->x[0] = (float)(cost / n);
- } else if (action == KAD_BACKWARD && kad_is_back(y1)) {
+ p->x[0] = (float) (cost / n);
+ }
+ else if (action == KAD_BACKWARD && kad_is_back(y1)) {
float t = 2.0f * p->g[0] / n;
for (i = 0; i < n; ++i)
y1->g[i] += t * (y1->x[i] - y0->x[i]);
@@ -1561,22 +1687,24 @@ int kad_op_ce_bin(kad_node_t *p, int action)
if (action == KAD_SYNC_DIM) {
if (n != kad_len(y1)) return -1;
p->n_d = 0;
- } else if (action == KAD_FORWARD) {
- double cost = 0.0;
+ }
+ else if (action == KAD_FORWARD) {
+ float cost = 0.0f;
for (i = 0; i < n; ++i) {
if (y0->x[i] > 0.0f)
- cost += y0->x[i] * log(y0->x[i] / (y1->x[i] > tiny? y1->x[i] : tiny));
+ cost += y0->x[i] * logf(y0->x[i] / (y1->x[i] > tiny ? y1->x[i] : tiny));
if (1.0f - y0->x[i] > 0.0f)
- cost += (1.0f - y0->x[i]) * log((1.0f - y0->x[i]) / (1.0f - y1->x[i] > tiny? 1.0f - y1->x[i] : tiny));
+ cost += (1.0f - y0->x[i]) * logf((1.0f - y0->x[i]) / (1.0f - y1->x[i] > tiny ? 1.0f - y1->x[i] : tiny));
}
- p->x[0] = (float)(cost / n);
- } else if (action == KAD_BACKWARD && kad_is_back(y1)) {
- float t = p->g[0] / n;
+ p->x[0] = cost / (float) n;
+ }
+ else if (action == KAD_BACKWARD && kad_is_back(y1)) {
+ float t = p->g[0] / (float) n;
for (i = 0; i < n; ++i) {
if (y0->x[i] > 0.0f)
- y1->g[i] -= t * y0->x[i] / (y1->x[i] > tiny? y1->x[i] : tiny);
+ y1->g[i] -= t * y0->x[i] / (y1->x[i] > tiny ? y1->x[i] : tiny);
if (1.0f - y0->x[i] > 0.0f)
- y1->g[i] += t * (1.0f - y0->x[i]) / (1.0f - y1->x[i] > tiny? 1.0f - y1->x[i] : tiny);
+ y1->g[i] += t * (1.0f - y0->x[i]) / (1.0f - y1->x[i] > tiny ? 1.0f - y1->x[i] : tiny);
}
}
return 0;
@@ -1593,22 +1721,24 @@ int kad_op_ce_bin_neg(kad_node_t *p, int action)
if (action == KAD_SYNC_DIM) {
if (n != kad_len(y1)) return -1;
p->n_d = 0;
- } else if (action == KAD_FORWARD) {
- double cost = 0.0;
+ }
+ else if (action == KAD_FORWARD) {
+ float cost = 0.0f;
for (i = 0; i < n; ++i) {
if (1.0f + y0->x[i] > 0.0f)
- cost += .5f * (1.0f + y0->x[i]) * log((1.0f + y0->x[i]) / (1.0f + y1->x[i] > tiny? 1.0f + y1->x[i] : tiny));
+ cost += .5f * (1.0f + y0->x[i]) * logf((1.0f + y0->x[i]) / (1.0f + y1->x[i] > tiny ? 1.0f + y1->x[i] : tiny));
if (1.0f - y0->x[i] > 0.0f)
- cost += .5f * (1.0f - y0->x[i]) * log((1.0f - y0->x[i]) / (1.0f - y1->x[i] > tiny? 1.0f - y1->x[i] : tiny));
+ cost += .5f * (1.0f - y0->x[i]) * logf((1.0f - y0->x[i]) / (1.0f - y1->x[i] > tiny ? 1.0f - y1->x[i] : tiny));
}
- p->x[0] = (float)(cost / n);
- } else if (action == KAD_BACKWARD && kad_is_back(y1)) {
- float t = p->g[0] / n;
+ p->x[0] = cost / (float) n;
+ }
+ else if (action == KAD_BACKWARD && kad_is_back(y1)) {
+ float t = p->g[0] / (float) n;
for (i = 0; i < n; ++i) {
if (1.0f + y0->x[i] > 0.0f)
- y1->g[i] -= .5f * t * (1.0f + y0->x[i]) / (1.0f + y1->x[i] > tiny? 1.0f + y1->x[i] : tiny);
+ y1->g[i] -= .5f * t * (1.0f + y0->x[i]) / (1.0f + y1->x[i] > tiny ? 1.0f + y1->x[i] : tiny);
if (1.0f - y0->x[i] > 0.0f)
- y1->g[i] += .5f * t * (1.0f - y0->x[i]) / (1.0f - y1->x[i] > tiny? 1.0f - y1->x[i] : tiny);
+ y1->g[i] += .5f * t * (1.0f - y0->x[i]) / (1.0f - y1->x[i] > tiny ? 1.0f - y1->x[i] : tiny);
}
}
return 0;
@@ -1631,37 +1761,41 @@ int kad_op_ce_multi(kad_node_t *p, int action)
if (action == KAD_SYNC_DIM) {
if (kad_len(y0) != kad_len(y1) || y0->d[y0->n_d - 1] != y1->d[y1->n_d - 1]) return -1;
p->n_d = 0;
- } else if (action == KAD_FORWARD) {
- double cost = 0.0;
+ }
+ else if (action == KAD_FORWARD) {
+ float cost = 0.0f;
if (c == 0) {
for (j = 0; j < d0; ++j) {
float *x1 = &y1->x[j * n1], *x0 = &y0->x[j * n1];
for (i = 0; i < n1; ++i)
if (x0[i] > 0.0f)
- cost += x0[i] * log(x0[i] / (x1[i] > tiny? x1[i] : tiny));
+ cost += x0[i] * logf(x0[i] / (x1[i] > tiny ? x1[i] : tiny));
}
- } else {
+ }
+ else {
for (j = 0; j < d0; ++j) {
float *x1 = &y1->x[j * n1], *x0 = &y0->x[j * n1];
for (i = 0; i < n1; ++i)
if (x0[i] > 0.0f)
- cost += c->x[i] * x0[i] * log(x0[i] / (x1[i] > tiny? x1[i] : tiny));
+ cost += c->x[i] * x0[i] * logf(x0[i] / (x1[i] > tiny ? x1[i] : tiny));
}
}
- p->x[0] = (float)(cost / d0);
- } else if (action == KAD_BACKWARD && kad_is_back(y1)) {
- float t = p->g[0] / d0;
+ p->x[0] = cost / (float) d0;
+ }
+ else if (action == KAD_BACKWARD && kad_is_back(y1)) {
+ float t = p->g[0] / (float) d0;
if (c == 0) {
for (j = 0; j < d0; ++j) {
float *g = &y1->g[j * n1], *x1 = &y1->x[j * n1], *x0 = &y0->x[j * n1];
for (i = 0; i < n1; ++i)
- g[i] -= t * x0[i] / (x1[i] > tiny? x1[i] : tiny);
+ g[i] -= t * x0[i] / (x1[i] > tiny ? x1[i] : tiny);
}
- } else {
+ }
+ else {
for (j = 0; j < d0; ++j) {
float *g = &y1->g[j * n1], *x1 = &y1->x[j * n1], *x0 = &y0->x[j * n1];
for (i = 0; i < n1; ++i)
- g[i] -= t * c->x[i] * x0[i] / (x1[i] > tiny? x1[i] : tiny);
+ g[i] -= t * c->x[i] * x0[i] / (x1[i] > tiny ? x1[i] : tiny);
}
}
}
@@ -1679,30 +1813,38 @@ int kad_op_stdnorm(kad_node_t *p, int action)
m = kad_len(q) / n;
if (action == KAD_SYNC_DIM) {
kad_copy_dim1(p, q);
- } else if (action == KAD_ALLOC) {
- p->gtmp = realloc(p->gtmp, m * sizeof(float));
- } else if (action == KAD_FORWARD) {
- float *si = (float*)p->gtmp;
+ }
+ else if (action == KAD_ALLOC) {
+ p->gtmp = g_realloc(p->gtmp, m * sizeof(float));
+ }
+ else if (action == KAD_FORWARD) {
+ float *si = (float *) p->gtmp;
for (j = 0; j < m; ++j) {
float *px = &p->x[j * n], *qx = &q->x[j * n];
float avg, std_inv;
double s;
for (i = 0, s = 0.0; i < n; ++i) s += qx[i];
- avg = (float)(s / n);
+
+ avg = (float) (s / n);
+
for (i = 0; i < n; ++i) px[i] = qx[i] - avg;
for (i = 0, s = 0.0; i < n; ++i) s += px[i] * px[i];
- std_inv = s == 0.0? 1.0f : (float)(1.0 / sqrt(s / n));
+ std_inv = s == 0.0 ? 1.0f : (float) (1.0 / sqrt(s / n));
for (i = 0; i < n; ++i) px[i] *= std_inv;
si[j] = std_inv;
}
- } else if (action == KAD_BACKWARD && kad_is_back(q)) {
- float *si = (float*)p->gtmp;
+ }
+ else if (action == KAD_BACKWARD && kad_is_back(q)) {
+ float *si = (float *) p->gtmp;
for (j = 0; j < m; ++j) {
float *pg = &p->g[j * n], *qg = &q->g[j * n], *px = &p->x[j * n], std_inv = si[j];
- double s, t;
- for (i = 0, s = t = 0.0; i < n; ++i)
+ float s, t;
+ for (i = 0, s = t = 0.0f; i < n; ++i)
s += pg[i], t += px[i] * pg[i];
- s /= n, t /= n;
+
+ s /= (float) n;
+ t /= (float) n;
+
for (i = 0; i < n; ++i)
qg[i] += std_inv * (pg[i] - s - px[i] * t);
}
@@ -1719,10 +1861,12 @@ int kad_op_sigm(kad_node_t *p, int action)
n = kad_len(q);
if (action == KAD_SYNC_DIM) {
kad_copy_dim1(p, q);
- } else if (action == KAD_FORWARD) {
+ }
+ else if (action == KAD_FORWARD) {
for (i = 0; i < n; ++i)
p->x[i] = 1.0f / (1.0f + expf(-q->x[i]));
- } else if (action == KAD_BACKWARD && kad_is_back(q)) {
+ }
+ else if (action == KAD_BACKWARD && kad_is_back(q)) {
for (i = 0; i < n; ++i)
q->g[i] += p->g[i] * (p->x[i] * (1.0f - p->x[i]));
}
@@ -1736,7 +1880,8 @@ int kad_op_tanh(kad_node_t *p, int action)
n = kad_len(q);
if (action == KAD_SYNC_DIM) {
kad_copy_dim1(p, q);
- } else if (action == KAD_FORWARD) {
+ }
+ else if (action == KAD_FORWARD) {
for (i = 0; i < n; ++i) {
if (q->x[i] < -20.0f) p->x[i] = -1.0f;
else {
@@ -1745,7 +1890,8 @@ int kad_op_tanh(kad_node_t *p, int action)
p->x[i] = (1.0f - y) / (1.0f + y);
}
}
- } else if (action == KAD_BACKWARD && kad_is_back(q)) {
+ }
+ else if (action == KAD_BACKWARD && kad_is_back(q)) {
for (i = 0; i < n; ++i)
q->g[i] += p->g[i] * (1.0f - p->x[i] * p->x[i]);
}
@@ -1759,10 +1905,12 @@ int kad_op_relu(kad_node_t *p, int action)
n = kad_len(q);
if (action == KAD_SYNC_DIM) {
kad_copy_dim1(p, q);
- } else if (action == KAD_FORWARD) {
+ }
+ else if (action == KAD_FORWARD) {
for (i = 0; i < n; ++i)
- p->x[i] = q->x[i] > 0.0f? q->x[i] : 0.0f;
- } else if (action == KAD_BACKWARD && kad_is_back(q)) {
+ p->x[i] = q->x[i] > 0.0f ? q->x[i] : 0.0f;
+ }
+ else if (action == KAD_BACKWARD && kad_is_back(q)) {
for (i = 0; i < n; ++i)
if (q->x[i] > 0.0f)
q->g[i] += p->g[i];
@@ -1777,9 +1925,11 @@ int kad_op_sin(kad_node_t *p, int action)
n = kad_len(q);
if (action == KAD_SYNC_DIM) {
kad_copy_dim1(p, q);
- } else if (action == KAD_FORWARD) {
+ }
+ else if (action == KAD_FORWARD) {
for (i = 0; i < n; ++i) p->x[i] = sinf(q->x[i]);
- } else if (action == KAD_BACKWARD && kad_is_back(q)) {
+ }
+ else if (action == KAD_BACKWARD && kad_is_back(q)) {
for (i = 0; i < n; ++i)
q->g[i] += p->g[i] * cosf(q->x[i]);
}
@@ -1795,18 +1945,20 @@ int kad_op_softmax(kad_node_t *p, int action)
d0 = kad_len(q) / n1;
if (action == KAD_SYNC_DIM) {
kad_copy_dim1(p, q);
- } else if (action == KAD_FORWARD) {
+ }
+ else if (action == KAD_FORWARD) {
for (j = 0; j < d0; ++j) {
float s, max, *x = &q->x[j * n1], *y = &p->x[j * n1];
for (i = 0, max = -FLT_MAX; i < n1; ++i)
- max = max > x[i]? max : x[i];
+ max = max > x[i] ? max : x[i];
for (i = 0, s = 0.0f; i < n1; ++i) {
y[i] = expf(x[i] - max);
s += y[i];
}
for (i = 0, s = 1.0f / s; i < n1; ++i) y[i] *= s;
}
- } else if (action == KAD_BACKWARD && kad_is_back(q)) {
+ }
+ else if (action == KAD_BACKWARD && kad_is_back(q)) {
for (j = 0; j < d0; ++j) {
float s, *g = &p->g[j * n1], *y = &p->x[j * n1], *h = &q->g[j * n1];
for (i = 0, s = 0.0f; i < n1; ++i)
@@ -1834,12 +1986,14 @@ int kad_op_avg(kad_node_t *p, int action)
for (i = 1; i < p->n_child; ++i)
if (kad_len(p->child[i]) != n) return -1;
kad_copy_dim1(p, q);
- } else if (action == KAD_FORWARD) {
+ }
+ else if (action == KAD_FORWARD) {
memcpy(p->x, q->x, n * sizeof(float));
for (i = 1; i < p->n_child; ++i)
kad_saxpy(n, 1.0f, p->child[i]->x, p->x);
for (i = 0; i < n; ++i) p->x[i] *= tmp;
- } else if (action == KAD_BACKWARD) {
+ }
+ else if (action == KAD_BACKWARD) {
for (i = 0; i < p->n_child; ++i)
if (kad_is_back(p->child[i]))
kad_saxpy(n, tmp, p->g, p->child[i]->g);
@@ -1857,17 +2011,19 @@ int kad_op_max(kad_node_t *p, int action)
for (i = 1; i < p->n_child; ++i)
if (kad_len(p->child[i]) != n) return -1;
kad_copy_dim1(p, q);
- max_j = (int*)calloc(n, sizeof(int));
+ max_j = (int *) g_malloc0_n(n, sizeof(int));
p->gtmp = max_j;
- } else if (action == KAD_FORWARD) {
- int j, *max_j = (int*)p->gtmp;
+ }
+ else if (action == KAD_FORWARD) {
+ int j, *max_j = (int *) p->gtmp;
memset(max_j, 0, n * sizeof(int));
memcpy(p->x, q->x, n * sizeof(float));
for (j = 1; j < p->n_child; ++j)
for (i = 0, q = p->child[j]; i < n; ++i)
if (q->x[i] > p->x[i]) p->x[i] = q->x[i], max_j[i] = j;
- } else if (action == KAD_BACKWARD) {
- int *max_j = (int*)p->gtmp;
+ }
+ else if (action == KAD_BACKWARD) {
+ int *max_j = (int *) p->gtmp;
for (i = 0; i < n; ++i)
p->child[max_j[i]]->g[i] += p->g[i];
}
@@ -1888,11 +2044,13 @@ int kad_op_stack(kad_node_t *p, int action) /* TODO: allow axis, as in TensorFlo
p->n_d = q->n_d + 1;
for (i = 0; i < axis; ++i) p->d[i] = q->d[i];
p->d[axis] = p->n_child;
- for (; i < q->n_d; ++i) p->d[i+1] = q->d[i];
- } else if (action == KAD_FORWARD) { /* TODO: doesn't work when axis != 0 */
+ for (; i < q->n_d; ++i) p->d[i + 1] = q->d[i];
+ }
+ else if (action == KAD_FORWARD) { /* TODO: doesn't work when axis != 0 */
for (i = 0; i < p->n_child; ++i)
memcpy(&p->x[i * n], p->child[i]->x, n * sizeof(float));
- } else if (action == KAD_BACKWARD) {
+ }
+ else if (action == KAD_BACKWARD) {
for (i = 0; i < p->n_child; ++i)
if (kad_is_back(p->child[i]))
kad_saxpy(n, 1.0f, &p->g[i * n], p->child[i]->g);
@@ -1905,7 +2063,7 @@ int kad_op_select(kad_node_t *p, int action)
kad_node_t *q;
int i, n, which;
- which = *(int32_t*)p->ptr;
+ which = *(int32_t *) p->ptr;
if (which < 0) which += p->n_child;
assert(which >= 0 && which < p->n_child);
q = p->child[which];
@@ -1916,9 +2074,11 @@ int kad_op_select(kad_node_t *p, int action)
break;
if (i < p->n_child) return -1;
kad_copy_dim1(p, q);
- } else if (action == KAD_FORWARD) {
+ }
+ else if (action == KAD_FORWARD) {
memcpy(p->x, q->x, n * sizeof(float));
- } else if (action == KAD_BACKWARD && kad_is_back(q)) {
+ }
+ else if (action == KAD_BACKWARD && kad_is_back(q)) {
kad_saxpy(n, 1.0f, p->g, q->g);
}
return 0;
@@ -1931,8 +2091,8 @@ static void conv_rot180(int d0, int d1, float *x) /* rotate/reverse a weight mar
int i, j;
for (i = 0; i < d0; ++i) {
float tmp, *xi = &x[i * d1];
- for (j = 0; j < d1>>1; ++j)
- tmp = xi[j], xi[j] = xi[d1-1-j], xi[d1-1-j] = tmp;
+ for (j = 0; j < d1 >> 1; ++j)
+ tmp = xi[j], xi[j] = xi[d1 - 1 - j], xi[d1 - 1 - j] = tmp;
}
}
@@ -1962,39 +2122,48 @@ static void conv2d_add_3to1(int d[4], const float *y, float *x) /* convert the N
#define conv_out_size(in_size, aux) (((in_size) - (aux)->kernel_size + (aux)->pad[0] + (aux)->pad[1]) / (aux)->stride + 1)
-#define process_row_for(_xx, _ww, _yy, _wn, _pn, _stride, _pad, _t) do { \
- int j, l; \
- if (_stride > 1) { \
- for (l = 0; l < _wn; ++l) { \
- const float *xl = &_xx[l - _pad]; \
- for (j = 0; j < _pn; ++j, xl += _stride) _t[j] = *xl; \
- kad_saxpy(_pn, _ww[l], _t, _yy); \
- } \
- } else for (l = 0; l < _wn; ++l) kad_saxpy(_pn, _ww[l], &_xx[l - _pad], _yy); \
-} while (0)
-
-#define process_row_back_x(_xx, _ww, _yy, _wn, _pn, _stride, _pad, _t) do { \
- int j, l; \
- if (_stride > 1) { \
- for (l = 0; l < _wn; ++l) { \
- float *xl = &_xx[l - _pad]; \
- memset(_t, 0, _pn * sizeof(float)); \
- kad_saxpy(_pn, _ww[l], _yy, _t); \
- for (j = 0; j < _pn; ++j, xl += _stride) *xl += _t[j]; \
- } \
- } else for (l = 0; l < _wn; ++l) kad_saxpy(_pn, _ww[l], _yy, &_xx[l - _pad]); \
-} while (0)
-
-#define process_row_back_w(_xx, _ww, _yy, _wn, _pn, _stride, _pad, _t) do { \
- int j, l; \
- if (_stride > 1) { \
- for (l = 0; l < _wn; ++l) { \
- const float *xl = &_xx[l - _pad]; \
- for (j = 0; j < _pn; ++j, xl += _stride) _t[j] = *xl; \
- _ww[l] += kad_sdot(_pn, _yy, _t); \
- } \
- } else for (l = 0; l < _wn; ++l) _ww[l] += kad_sdot(_pn, _yy, &_xx[l - _pad]); \
-} while (0)
+#define process_row_for(_xx, _ww, _yy, _wn, _pn, _stride, _pad, _t) \
+ do { \
+ int j, l; \
+ if (_stride > 1) { \
+ for (l = 0; l < _wn; ++l) { \
+ const float *xl = &_xx[l - _pad]; \
+ for (j = 0; j < _pn; ++j, xl += _stride) _t[j] = *xl; \
+ kad_saxpy(_pn, _ww[l], _t, _yy); \
+ } \
+ } \
+ else \
+ for (l = 0; l < _wn; ++l) kad_saxpy(_pn, _ww[l], &_xx[l - _pad], _yy); \
+ } while (0)
+
+#define process_row_back_x(_xx, _ww, _yy, _wn, _pn, _stride, _pad, _t) \
+ do { \
+ int j, l; \
+ if (_stride > 1) { \
+ for (l = 0; l < _wn; ++l) { \
+ float *xl = &_xx[l - _pad]; \
+ memset(_t, 0, _pn * sizeof(float)); \
+ kad_saxpy(_pn, _ww[l], _yy, _t); \
+ for (j = 0; j < _pn; ++j, xl += _stride) *xl += _t[j]; \
+ } \
+ } \
+ else \
+ for (l = 0; l < _wn; ++l) kad_saxpy(_pn, _ww[l], _yy, &_xx[l - _pad]); \
+ } while (0)
+
+#define process_row_back_w(_xx, _ww, _yy, _wn, _pn, _stride, _pad, _t) \
+ do { \
+ int j, l; \
+ if (_stride > 1) { \
+ for (l = 0; l < _wn; ++l) { \
+ const float *xl = &_xx[l - _pad]; \
+ for (j = 0; j < _pn; ++j, xl += _stride) _t[j] = *xl; \
+ _ww[l] += kad_sdot(_pn, _yy, _t); \
+ } \
+ } \
+ else \
+ for (l = 0; l < _wn; ++l) _ww[l] += kad_sdot(_pn, _yy, &_xx[l - _pad]); \
+ } while (0)
/* Forward and backward passes are implemented with two different algorithms.
* The first is faster for small kernels with few input channels; otherwise the
@@ -2003,56 +2172,59 @@ static void conv2d_add_3to1(int d[4], const float *y, float *x) /* convert the N
*/
int kad_op_conv2d(kad_node_t *p, int action) /* in the number-channel-height-width (NCHW) shape */
{
-#define conv2d_loop1(_x, _w, _y, _tmp, _row_func) do { /* for the NCHW shape */ \
- int n, c1, c0, i, k, ii; \
- for (n = 0; n < q->d[0]; ++n) /* mini-batch */ \
- for (c1 = 0; c1 < w->d[0]; ++c1) /* output channel */ \
- for (c0 = 0; c0 < w->d[1]; ++c0) /* input channel */ \
- for (k = 0; k < w->d[2]; ++k) { /* kernel row */ \
- float *_ww = &(_w)[((c1 * w->d[1] + c0) * w->d[2] + k) * w->d[3]]; \
+#define conv2d_loop1(_x, _w, _y, _tmp, _row_func) \
+ do { /* for the NCHW shape */ \
+ int n, c1, c0, i, k, ii; \
+ for (n = 0; n < q->d[0]; ++n) /* mini-batch */ \
+ for (c1 = 0; c1 < w->d[0]; ++c1) /* output channel */ \
+ for (c0 = 0; c0 < w->d[1]; ++c0) /* input channel */ \
+ for (k = 0; k < w->d[2]; ++k) { /* kernel row */ \
+ float *_ww = &(_w)[((c1 * w->d[1] + c0) * w->d[2] + k) * w->d[3]]; \
for (i = 0, ii = k - aux[0].pad[0]; i < p->d[2] && ii >= 0 && ii < q->d[2]; ++i, ii += aux[0].stride) { /* output row */ \
- float *_xx = &(_x)[((n * q->d[1] + c0) * q->d[2] + ii) * q->d[3]]; \
- float *_yy = &(_y)[((n * p->d[1] + c1) * p->d[2] + i) * p->d[3]]; \
- if (x_padded) { \
- memcpy(x_padded + aux[1].pad[0], _xx, q->d[3] * sizeof(float)); \
- _xx = x_padded + aux[1].pad[0]; \
- } \
- _row_func(_xx, _ww, _yy, w->d[3], p->d[3], aux[1].stride, aux[1].pad[0], (_tmp)); \
- } /* ~i */ \
- } /* ~k, c0, c1, n */ \
+ float *_xx = &(_x)[((n * q->d[1] + c0) * q->d[2] + ii) * q->d[3]]; \
+ float *_yy = &(_y)[((n * p->d[1] + c1) * p->d[2] + i) * p->d[3]]; \
+ if (x_padded) { \
+ memcpy(x_padded + aux[1].pad[0], _xx, q->d[3] * sizeof(float)); \
+ _xx = x_padded + aux[1].pad[0]; \
+ } \
+ _row_func(_xx, _ww, _yy, w->d[3], p->d[3], aux[1].stride, aux[1].pad[0], (_tmp)); \
+ } /* ~i */ \
+ } /* ~k, c0, c1, n */ \
} while (0)
-#define conv2d_loop2(_x, _w, _y, _code) do { /* for the NHWC shape */ \
- int n, c1, i, j, k, ii, j_skip = aux[1].stride * q->d[1], m = w->d[3] * w->d[1]; \
- for (n = 0; n < q->d[0]; ++n) /* mini-batch */ \
- for (c1 = 0; c1 < w->d[0]; ++c1) /* output channel */ \
- for (k = 0; k < w->d[2]; ++k) { /* kernel row */ \
- float *_ww = &(_w)[(c1 * w->d[2] + k) * m]; \
+#define conv2d_loop2(_x, _w, _y, _code) \
+ do { /* for the NHWC shape */ \
+ int n, c1, i, j, k, ii, j_skip = aux[1].stride * q->d[1], m = w->d[3] * w->d[1]; \
+ for (n = 0; n < q->d[0]; ++n) /* mini-batch */ \
+ for (c1 = 0; c1 < w->d[0]; ++c1) /* output channel */ \
+ for (k = 0; k < w->d[2]; ++k) { /* kernel row */ \
+ float *_ww = &(_w)[(c1 * w->d[2] + k) * m]; \
for (i = 0, ii = k - aux[0].pad[0]; i < p->d[2] && ii >= 0 && ii < q->d[2]; ++i, ii += aux[0].stride) { /* output and input row */ \
- float *_xx = &(_x)[(n * q->d[2] + ii) * q->d[3] * q->d[1]]; \
- float *_yy = &(_y)[((n * p->d[1] + c1) * p->d[2] + i) * p->d[3]]; \
- if (x_padded) { \
- memcpy(x_padded + aux[1].pad[0] * q->d[1], _xx, q->d[3] * q->d[1] * sizeof(float)); \
- _xx = x_padded; \
- } \
- for (j = 0; j < p->d[3]; ++j, _xx += j_skip, ++_yy) _code; /* output and input column */ \
- } /* ~i */ \
- } /* ~k, c1, n */ \
+ float *_xx = &(_x)[(n * q->d[2] + ii) * q->d[3] * q->d[1]]; \
+ float *_yy = &(_y)[((n * p->d[1] + c1) * p->d[2] + i) * p->d[3]]; \
+ if (x_padded) { \
+ memcpy(x_padded + aux[1].pad[0] * q->d[1], _xx, q->d[3] * q->d[1] * sizeof(float)); \
+ _xx = x_padded; \
+ } \
+ for (j = 0; j < p->d[3]; ++j, _xx += j_skip, ++_yy) _code; /* output and input column */ \
+ } /* ~i */ \
+ } /* ~k, c1, n */ \
} while (0)
- conv_conf_t *aux = (conv_conf_t*)p->ptr;
+ conv_conf_t *aux = (conv_conf_t *) p->ptr;
kad_node_t *q = p->child[0], *w = p->child[1];
float *t = 0, *q1 = 0, *w1 = 0, *x_padded = 0;
int algo_switch = 0;
if (action == KAD_FORWARD || action == KAD_BACKWARD) { /* allocate working space */
if (w->d[3] * w->d[1] < 16) {
- t = (float*)malloc(p->d[3] * sizeof(float));
- x_padded = aux[1].pad[0] + aux[1].pad[1] > 0? (float*)calloc(q->d[3] + aux[1].pad[0] + aux[1].pad[1], sizeof(float)) : 0;
- } else {
- q1 = (float*)malloc(kad_len(q) * sizeof(float));
- w1 = (float*)malloc(kad_len(w) * sizeof(float));
- x_padded = aux[1].pad[0] + aux[1].pad[1] > 0? (float*)calloc((q->d[3] + aux[1].pad[0] + aux[1].pad[1]) * q->d[1], sizeof(float)) : 0;
+ t = (float *) g_malloc(p->d[3] * sizeof(float));
+ x_padded = aux[1].pad[0] + aux[1].pad[1] > 0 ? (float *) g_malloc0_n(q->d[3] + aux[1].pad[0] + aux[1].pad[1], sizeof(float)) : 0;
+ }
+ else {
+ q1 = (float *) g_malloc(kad_len(q) * sizeof(float));
+ w1 = (float *) g_malloc(kad_len(w) * sizeof(float));
+ x_padded = aux[1].pad[0] + aux[1].pad[1] > 0 ? (float *) g_malloc0_n((q->d[3] + aux[1].pad[0] + aux[1].pad[1]) * q->d[1], sizeof(float)) : 0;
algo_switch = 1;
}
}
@@ -2061,23 +2233,27 @@ int kad_op_conv2d(kad_node_t *p, int action) /* in the number-channel-height-wid
if (q->d[1] != w->d[1]) return -1; /* unmatched input channels */
p->n_d = 4;
p->d[0] = q->d[0], p->d[1] = w->d[0], p->d[2] = conv_out_size(q->d[2], &aux[0]), p->d[3] = conv_out_size(q->d[3], &aux[1]);
- } else if (action == KAD_FORWARD) {
+ }
+ else if (action == KAD_FORWARD) {
conv_rot180(w->d[0] * w->d[1], w->d[2] * w->d[3], w->x);
memset(p->x, 0, kad_len(p) * sizeof(float));
if (!algo_switch) { /* this is the first algorithm */
conv2d_loop1(q->x, w->x, p->x, t, process_row_for);
- } else { /* this is the second algorithm */
+ }
+ else { /* this is the second algorithm */
conv2d_move_1to3(q->d, q->x, q1);
conv2d_move_1to3(w->d, w->x, w1);
conv2d_loop2(q1, w1, p->x, (*_yy += kad_sdot(m, _ww, _xx)));
}
conv_rot180(w->d[0] * w->d[1], w->d[2] * w->d[3], w->x);
- } else if (action == KAD_BACKWARD) {
+ }
+ else if (action == KAD_BACKWARD) {
if (kad_is_back(p->child[0])) { /* backprop to the input array */
conv_rot180(w->d[0] * w->d[1], w->d[2] * w->d[3], w->x);
if (!algo_switch) {
conv2d_loop1(q->g, w->x, p->g, t, process_row_back_x);
- } else {
+ }
+ else {
memset(q1, 0, kad_len(q) * sizeof(float));
conv2d_move_1to3(w->d, w->x, w1);
conv2d_loop2(q1, w1, p->g, kad_saxpy(m, *_yy, _ww, _xx));
@@ -2089,7 +2265,8 @@ int kad_op_conv2d(kad_node_t *p, int action) /* in the number-channel-height-wid
conv_rot180(w->d[0] * w->d[1], w->d[2] * w->d[3], w->g);
if (!algo_switch) {
conv2d_loop1(q->x, w->g, p->g, t, process_row_back_w);
- } else {
+ }
+ else {
conv2d_move_1to3(q->d, q->x, q1);
memset(w1, 0, kad_len(w) * sizeof(float));
conv2d_loop2(q1, w1, p->g, kad_saxpy(m, *_yy, _xx, _ww));
@@ -2098,23 +2275,28 @@ int kad_op_conv2d(kad_node_t *p, int action) /* in the number-channel-height-wid
conv_rot180(w->d[0] * w->d[1], w->d[2] * w->d[3], w->g);
}
}
- free(t); free(q1); free(w1); free(x_padded);
+ g_free(t);
+ g_free(q1);
+ g_free(w1);
+ g_free(x_padded);
return 0;
}
int kad_op_max2d(kad_node_t *p, int action)
{
- conv_conf_t *aux = (conv_conf_t*)p->ptr;
+ conv_conf_t *aux = (conv_conf_t *) p->ptr;
kad_node_t *q = p->child[0];
if (action == KAD_SYNC_DIM) {
if (q->n_d != 4) return -1;
p->n_d = 4;
p->d[0] = q->d[0], p->d[1] = q->d[1], p->d[2] = conv_out_size(q->d[2], &aux[0]), p->d[3] = conv_out_size(q->d[3], &aux[1]);
- } else if (action == KAD_ALLOC) {
- p->gtmp = realloc(p->gtmp, kad_len(p) * sizeof(int));
- } else if (action == KAD_FORWARD) {
+ }
+ else if (action == KAD_ALLOC) {
+ p->gtmp = g_realloc(p->gtmp, kad_len(p) * sizeof(int));
+ }
+ else if (action == KAD_FORWARD) {
int rest = 1, len, t, i;
- int *f = (int*)p->gtmp;
+ int *f = (int *) p->gtmp;
len = kad_len(p);
for (i = 0; i < len; ++i) p->x[i] = -FLT_MAX;
for (i = 0; i < p->n_d - 2; ++i) rest *= p->d[i];
@@ -2128,14 +2310,15 @@ int kad_op_max2d(kad_node_t *p, int action)
v0 = (t * q->d[p->n_d - 2] + ii) * q->d[p->n_d - 1];
v_end = v0 + q->d[p->n_d - 1];
for (l = 0; l < aux[1].kernel_size; ++l)
- for (j = 0, v = v0 + (l > aux[1].pad[0]? l - aux[1].pad[0] : 0); j < p_col && v < v_end; ++j, v += aux[1].stride)
+ for (j = 0, v = v0 + (l > aux[1].pad[0] ? l - aux[1].pad[0] : 0); j < p_col && v < v_end; ++j, v += aux[1].stride)
if (p->x[u + j] < q->x[v])
p->x[u + j] = q->x[v], f[u + j] = v;
} /* ~k */
- } /* ~i */
+ } /* ~i */
}
- } else if (action == KAD_BACKWARD) {
- int i, len, *f = (int*)p->gtmp;
+ }
+ else if (action == KAD_BACKWARD) {
+ int i, len, *f = (int *) p->gtmp;
len = kad_len(p);
for (i = 0; i < len; ++i) q->g[f[i]] += p->g[i];
}
@@ -2164,50 +2347,53 @@ static void conv1d_add_2to1(int d[3], const float *y, float *x)
int kad_op_conv1d(kad_node_t *p, int action) /* in the number-channel-width (NCW) shape */
{
-#define conv1d_loop1(_x, _w, _y, _tmp, _row_func) do { /* for the NCW shape */ \
- int n, c1, c0; \
- for (n = 0; n < q->d[0]; ++n) /* mini-batch */ \
- for (c1 = 0; c1 < w->d[0]; ++c1) /* output channel */ \
- for (c0 = 0; c0 < w->d[1]; ++c0) { /* input channel */ \
- float *_ww = &(_w)[(c1 * w->d[1] + c0) * w->d[2]]; \
- float *_xx = &(_x)[(n * q->d[1] + c0) * q->d[2]]; \
- float *_yy = &(_y)[(n * p->d[1] + c1) * p->d[2]]; \
- if (x_padded) { \
- memcpy(x_padded + aux->pad[0], _xx, q->d[2] * sizeof(float)); \
- _xx = x_padded + aux->pad[0]; \
- } \
+#define conv1d_loop1(_x, _w, _y, _tmp, _row_func) \
+ do { /* for the NCW shape */ \
+ int n, c1, c0; \
+ for (n = 0; n < q->d[0]; ++n) /* mini-batch */ \
+ for (c1 = 0; c1 < w->d[0]; ++c1) /* output channel */ \
+ for (c0 = 0; c0 < w->d[1]; ++c0) { /* input channel */ \
+ float *_ww = &(_w)[(c1 * w->d[1] + c0) * w->d[2]]; \
+ float *_xx = &(_x)[(n * q->d[1] + c0) * q->d[2]]; \
+ float *_yy = &(_y)[(n * p->d[1] + c1) * p->d[2]]; \
+ if (x_padded) { \
+ memcpy(x_padded + aux->pad[0], _xx, q->d[2] * sizeof(float)); \
+ _xx = x_padded + aux->pad[0]; \
+ } \
_row_func(_xx, _ww, _yy, w->d[2], p->d[2], aux->stride, aux->pad[0], (_tmp)); \
- } /* ~c0, c1, n */ \
+ } /* ~c0, c1, n */ \
} while (0)
-#define conv1d_loop2(_x, _w, _y, _code) do { /* for the NWC shape */ \
- int n, c1, j, j_skip = aux->stride * q->d[1], m = w->d[2] * w->d[1]; \
- for (n = 0; n < q->d[0]; ++n) /* mini-batch */ \
- for (c1 = 0; c1 < w->d[0]; ++c1) { /* output channel */ \
- float *_ww = &(_w)[c1 * m]; \
- float *_xx = &(_x)[n * q->d[1] * q->d[2]]; \
- float *_yy = &(_y)[(n * p->d[1] + c1) * p->d[2]]; \
- if (x_padded) { \
+#define conv1d_loop2(_x, _w, _y, _code) \
+ do { /* for the NWC shape */ \
+ int n, c1, j, j_skip = aux->stride * q->d[1], m = w->d[2] * w->d[1]; \
+ for (n = 0; n < q->d[0]; ++n) /* mini-batch */ \
+ for (c1 = 0; c1 < w->d[0]; ++c1) { /* output channel */ \
+ float *_ww = &(_w)[c1 * m]; \
+ float *_xx = &(_x)[n * q->d[1] * q->d[2]]; \
+ float *_yy = &(_y)[(n * p->d[1] + c1) * p->d[2]]; \
+ if (x_padded) { \
memcpy(x_padded + aux->pad[0] * q->d[1], _xx, q->d[2] * q->d[1] * sizeof(float)); \
- _xx = x_padded; \
- } \
- for (j = 0; j < p->d[2]; ++j, _xx += j_skip, ++_yy) _code; \
- } /* ~c1, n */ \
+ _xx = x_padded; \
+ } \
+ for (j = 0; j < p->d[2]; ++j, _xx += j_skip, ++_yy) _code; \
+ } /* ~c1, n */ \
} while (0)
- conv_conf_t *aux = (conv_conf_t*)p->ptr;
+ conv_conf_t *aux = (conv_conf_t *) p->ptr;
kad_node_t *q = p->child[0], *w = p->child[1];
float *t = 0, *q1 = 0, *w1 = 0, *x_padded = 0;
int algo_switch = 0;
if (action == KAD_FORWARD || action == KAD_BACKWARD) { /* allocate working space */
if (w->d[2] * w->d[1] < 32) {
- t = (float*)malloc(p->d[2] * sizeof(float));
- x_padded = aux->pad[0] + aux->pad[1] > 0? (float*)calloc(q->d[2] + aux->pad[0] + aux->pad[1], sizeof(float)) : 0;
- } else {
- q1 = (float*)malloc(kad_len(q) * sizeof(float));
- w1 = (float*)malloc(kad_len(w) * sizeof(float));
- x_padded = aux->pad[0] + aux->pad[1] > 0? (float*)calloc((q->d[2] + aux->pad[0] + aux->pad[1]) * q->d[1], sizeof(float)) : 0;
+ t = (float *) g_malloc(p->d[2] * sizeof(float));
+ x_padded = aux->pad[0] + aux->pad[1] > 0 ? (float *) g_malloc0_n(q->d[2] + aux->pad[0] + aux->pad[1], sizeof(float)) : 0;
+ }
+ else {
+ q1 = (float *) g_malloc(kad_len(q) * sizeof(float));
+ w1 = (float *) g_malloc(kad_len(w) * sizeof(float));
+ x_padded = aux->pad[0] + aux->pad[1] > 0 ? (float *) g_malloc0_n((q->d[2] + aux->pad[0] + aux->pad[1]) * q->d[1], sizeof(float)) : 0;
algo_switch = 1;
}
}
@@ -2216,23 +2402,27 @@ int kad_op_conv1d(kad_node_t *p, int action) /* in the number-channel-width (NCW
if (q->d[1] != w->d[1]) return -1; /* unmatched input channels */
p->n_d = 3;
p->d[0] = q->d[0], p->d[1] = w->d[0], p->d[2] = conv_out_size(q->d[2], aux);
- } else if (action == KAD_FORWARD) {
+ }
+ else if (action == KAD_FORWARD) {
conv_rot180(w->d[0] * w->d[1], w->d[2], w->x);
memset(p->x, 0, kad_len(p) * sizeof(float));
if (!algo_switch) { /* this is the first algorithm */
conv1d_loop1(q->x, w->x, p->x, t, process_row_for);
- } else { /* this is the second algorithm */
+ }
+ else { /* this is the second algorithm */
conv1d_move_1to2(q->d, q->x, q1);
conv1d_move_1to2(w->d, w->x, w1);
conv1d_loop2(q1, w1, p->x, (*_yy += kad_sdot(m, _ww, _xx)));
}
conv_rot180(w->d[0] * w->d[1], w->d[2], w->x);
- } else if (action == KAD_BACKWARD) {
+ }
+ else if (action == KAD_BACKWARD) {
if (kad_is_back(p->child[0])) { /* backprop to the input array */
conv_rot180(w->d[0] * w->d[1], w->d[2], w->x);
if (!algo_switch) {
conv1d_loop1(q->g, w->x, p->g, t, process_row_back_x);
- } else {
+ }
+ else {
memset(q1, 0, kad_len(q) * sizeof(float));
conv1d_move_1to2(w->d, w->x, w1);
conv1d_loop2(q1, w1, p->g, kad_saxpy(m, *_yy, _ww, _xx));
@@ -2244,7 +2434,8 @@ int kad_op_conv1d(kad_node_t *p, int action) /* in the number-channel-width (NCW
conv_rot180(w->d[0] * w->d[1], w->d[2], w->g);
if (!algo_switch) {
conv1d_loop1(q->x, w->g, p->g, t, process_row_back_w);
- } else {
+ }
+ else {
conv1d_move_1to2(q->d, q->x, q1);
memset(w1, 0, kad_len(w) * sizeof(float));
conv1d_loop2(q1, w1, p->g, kad_saxpy(m, *_yy, _xx, _ww));
@@ -2253,23 +2444,28 @@ int kad_op_conv1d(kad_node_t *p, int action) /* in the number-channel-width (NCW
conv_rot180(w->d[0] * w->d[1], w->d[2], w->g);
}
}
- free(t); free(q1); free(w1); free(x_padded);
+ g_free(t);
+ g_free(q1);
+ g_free(w1);
+ g_free(x_padded);
return 0;
}
int kad_op_max1d(kad_node_t *p, int action)
{
- conv_conf_t *aux = (conv_conf_t*)p->ptr;
+ conv_conf_t *aux = (conv_conf_t *) p->ptr;
kad_node_t *q = p->child[0];
if (action == KAD_SYNC_DIM) {
if (q->n_d != 3) return -1;
p->n_d = 3;
p->d[0] = q->d[0], p->d[1] = q->d[1], p->d[2] = conv_out_size(q->d[2], aux);
- } else if (action == KAD_ALLOC) {
- p->gtmp = realloc(p->gtmp, kad_len(p) * sizeof(int));
- } else if (action == KAD_FORWARD) {
+ }
+ else if (action == KAD_ALLOC) {
+ p->gtmp = g_realloc(p->gtmp, kad_len(p) * sizeof(int));
+ }
+ else if (action == KAD_FORWARD) {
int rest = 1, len, t, i;
- int *f = (int*)p->gtmp;
+ int *f = (int *) p->gtmp;
len = kad_len(p);
for (i = 0; i < len; ++i) p->x[i] = -FLT_MAX;
for (i = 0; i < p->n_d - 1; ++i) rest *= p->d[i];
@@ -2277,12 +2473,13 @@ int kad_op_max1d(kad_node_t *p, int action)
int j, l, p_width = p->d[p->n_d - 1];
int u = t * p_width, v, v0 = t * q->d[p->n_d - 1], v_end = v0 + q->d[p->n_d - 1];
for (l = 0; l < aux->kernel_size; ++l)
- for (j = 0, v = v0 + (l > aux->pad[0]? l - aux->pad[0] : 0); j < p_width && v < v_end; ++j, v += aux->stride)
+ for (j = 0, v = v0 + (l > aux->pad[0] ? l - aux->pad[0] : 0); j < p_width && v < v_end; ++j, v += aux->stride)
if (p->x[u + j] < q->x[v])
p->x[u + j] = q->x[v], f[u + j] = v;
}
- } else if (action == KAD_BACKWARD) {
- int i, len, *f = (int*)p->gtmp;
+ }
+ else if (action == KAD_BACKWARD) {
+ int i, len, *f = (int *) p->gtmp;
len = kad_len(p);
for (i = 0; i < len; ++i) q->g[f[i]] += p->g[i];
}
@@ -2291,17 +2488,19 @@ int kad_op_max1d(kad_node_t *p, int action)
int kad_op_avg1d(kad_node_t *p, int action)
{
- conv_conf_t *aux = (conv_conf_t*)p->ptr;
+ conv_conf_t *aux = (conv_conf_t *) p->ptr;
kad_node_t *q = p->child[0];
if (action == KAD_SYNC_DIM) {
if (q->n_d != 3) return -1;
p->n_d = 3;
p->d[0] = q->d[0], p->d[1] = q->d[1], p->d[2] = conv_out_size(q->d[2], aux);
- } else if (action == KAD_ALLOC) {
- p->gtmp = realloc(p->gtmp, kad_len(p) * sizeof(int));
- } else if (action == KAD_FORWARD) {
+ }
+ else if (action == KAD_ALLOC) {
+ p->gtmp = g_realloc(p->gtmp, kad_len(p) * sizeof(int));
+ }
+ else if (action == KAD_FORWARD) {
int rest = 1, len, t, i;
- int *f = (int*)p->gtmp;
+ int *f = (int *) p->gtmp;
len = kad_len(p);
for (i = 0; i < len; ++i) p->x[i] = 0.0f, f[i] = 0;
for (i = 0; i < p->n_d - 1; ++i) rest *= p->d[i];
@@ -2309,19 +2508,20 @@ int kad_op_avg1d(kad_node_t *p, int action)
int j, l, p_width = p->d[p->n_d - 1];
int u = t * p_width, v, v0 = t * q->d[p->n_d - 1], v_end = v0 + q->d[p->n_d - 1];
for (l = 0; l < aux->kernel_size; ++l)
- for (j = 0, v = v0 + (l > aux->pad[0]? l - aux->pad[0] : 0); j < p_width && v < v_end; ++j, v += aux->stride)
+ for (j = 0, v = v0 + (l > aux->pad[0] ? l - aux->pad[0] : 0); j < p_width && v < v_end; ++j, v += aux->stride)
p->x[u + j] += q->x[v], ++f[u + j];
}
for (i = 0; i < len; ++i) p->x[i] /= f[i];
- } else if (action == KAD_BACKWARD) {
+ }
+ else if (action == KAD_BACKWARD) {
int rest = 1, t, i;
- int *f = (int*)p->gtmp;
+ int *f = (int *) p->gtmp;
for (i = 0; i < p->n_d - 1; ++i) rest *= p->d[i];
for (t = 0; t < rest; ++t) {
int j, l, p_width = p->d[p->n_d - 1];
int u = t * p_width, v, v0 = t * q->d[p->n_d - 1], v_end = v0 + q->d[p->n_d - 1];
for (l = 0; l < aux->kernel_size; ++l)
- for (j = 0, v = v0 + (l > aux->pad[0]? l - aux->pad[0] : 0); j < p_width && v < v_end; ++j, v += aux->stride)
+ for (j = 0, v = v0 + (l > aux->pad[0] ? l - aux->pad[0] : 0); j < p_width && v < v_end; ++j, v += aux->stride)
q->g[v] += p->g[u + j] / f[u + j];
}
}
@@ -2332,49 +2532,48 @@ int kad_op_avg1d(kad_node_t *p, int action)
kad_op_f kad_op_list[KAD_MAX_OP] = {
0,
- kad_op_add, /* 1: element-wise addition */
- kad_op_mul, /* 2: element-wise multiplication */
- kad_op_cmul, /* 3: column multiplication */
- kad_op_ce_bin_neg, /* 4: binary cross-entropy for (-1,1) */
- kad_op_square, /* 5: square */
- kad_op_sigm, /* 6: sigmoid */
- kad_op_tanh, /* 7: tanh */
- kad_op_relu, /* 8: ReLU */
- kad_op_matmul, /* 9: matrix multiplication */
- kad_op_avg, /* 10: general average pooling (not for ConvNet) */
- kad_op_1minus, /* 11: 1-x */
- kad_op_select, /* 12: choose between one of the children */
- kad_op_ce_multi, /* 13: multi-class cross-entropy */
- kad_op_softmax, /* 14: softmax */
- kad_op_dropout, /* 15: dropout */
- kad_op_conv2d, /* 16: 2D convolution */
- kad_op_max2d, /* 17: 2D max pooling (for 2D ConvNet) */
- kad_op_conv1d, /* 18: 1D convolution */
- kad_op_max1d, /* 19: 1D max pooling (for 1D ConvNet) */
- kad_op_slice, /* 20: slice data at a dimension */
- kad_op_max, /* 21: general max pooling */
- kad_op_ce_bin, /* 22: binary cross-entropy for (0,1) */
- kad_op_sub, /* 23: element-wise subtraction */
- kad_op_sample_normal, /* 24: sample from a normal distribution */
- kad_op_reduce_sum, /* 25 */
- kad_op_reduce_mean, /* 26 */
- kad_op_log, /* 27: log() */
- kad_op_avg1d, /* 28: 1D average pooling (for 1D ConvNet) */
- kad_op_mse, /* 29: mean square error */
- kad_op_reshape, /* 30 */
- kad_op_concat, /* 31 */
- kad_op_stdnorm, /* 32: layer normalization */
- kad_op_exp, /* 33: exp() */
- kad_op_sin, /* 34: sin() */
- kad_op_stack, /* 35: tf.stack, but on the first axis only */
- kad_op_reverse /* 36: tf.reverse, but on one axis only */
+ kad_op_add, /* 1: element-wise addition */
+ kad_op_mul, /* 2: element-wise multiplication */
+ kad_op_cmul, /* 3: column multiplication */
+ kad_op_ce_bin_neg, /* 4: binary cross-entropy for (-1,1) */
+ kad_op_square, /* 5: square */
+ kad_op_sigm, /* 6: sigmoid */
+ kad_op_tanh, /* 7: tanh */
+ kad_op_relu, /* 8: ReLU */
+ kad_op_matmul, /* 9: matrix multiplication */
+ kad_op_avg, /* 10: general average pooling (not for ConvNet) */
+ kad_op_1minus, /* 11: 1-x */
+ kad_op_select, /* 12: choose between one of the children */
+ kad_op_ce_multi, /* 13: multi-class cross-entropy */
+ kad_op_softmax, /* 14: softmax */
+ kad_op_dropout, /* 15: dropout */
+ kad_op_conv2d, /* 16: 2D convolution */
+ kad_op_max2d, /* 17: 2D max pooling (for 2D ConvNet) */
+ kad_op_conv1d, /* 18: 1D convolution */
+ kad_op_max1d, /* 19: 1D max pooling (for 1D ConvNet) */
+ kad_op_slice, /* 20: slice data at a dimension */
+ kad_op_max, /* 21: general max pooling */
+ kad_op_ce_bin, /* 22: binary cross-entropy for (0,1) */
+ kad_op_sub, /* 23: element-wise subtraction */
+ kad_op_sample_normal, /* 24: sample from a normal distribution */
+ kad_op_reduce_sum, /* 25 */
+ kad_op_reduce_mean, /* 26 */
+ kad_op_log, /* 27: log() */
+ kad_op_avg1d, /* 28: 1D average pooling (for 1D ConvNet) */
+ kad_op_mse, /* 29: mean square error */
+ kad_op_reshape, /* 30 */
+ kad_op_concat, /* 31 */
+ kad_op_stdnorm, /* 32: layer normalization */
+ kad_op_exp, /* 33: exp() */
+ kad_op_sin, /* 34: sin() */
+ kad_op_stack, /* 35: tf.stack, but on the first axis only */
+ kad_op_reverse /* 36: tf.reverse, but on one axis only */
};
char *kad_op_name[KAD_MAX_OP] = {
0, "add", "mul", "cmul", "ce_bin_neg", "square", "sigm", "tanh", "relu", "matmul", "avg", "1minus", "select", "ce_multi", "softmax",
"dropout", "conv2d", "max2d", "conv1d", "max1d", "slice", "max", "ce_bin", "sub", "sample_normal", "reduce_sum", "reduce_mean", "log",
- "avg1d", "mse", "reshape", "concat", "stdnorm", "exp", "sin", "stack", "reverse"
-};
+ "avg1d", "mse", "reshape", "concat", "stdnorm", "exp", "sin", "stack", "reverse"};
/**************************
*** Debugging routines ***
@@ -2395,7 +2594,8 @@ void kad_print_graph(FILE *fp, int n, kad_node_t **v)
kad_node_t *p = v[i];
fprintf(fp, "%d\t%x:%x\t%d\t", i, p->flag, p->ext_flag, p->ext_label);
if (p->pre) fprintf(fp, "%d\t", p->pre->tmp);
- else fprintf(fp, ".\t");
+ else
+ fprintf(fp, ".\t");
fputs("[", fp);
for (j = 0; j < p->n_d; ++j) {
if (j) fputc(',', fp);
@@ -2409,7 +2609,11 @@ void kad_print_graph(FILE *fp, int n, kad_node_t **v)
fprintf(fp, "$%d", p->child[j]->tmp);
}
fprintf(fp, ")");
- } else fprintf(fp, "%s", kad_is_feed(p)? "feed" : kad_is_var(p)? "var" : kad_is_const(p)? "const" : "N/A");
+ }
+ else
+ fprintf(fp, "%s", kad_is_feed(p) ? "feed" : kad_is_var(p) ? "var"
+ : kad_is_const(p) ? "const"
+ : "N/A");
fputc('\n', fp);
}
for (i = 0; i < n; ++i) v[i]->tmp = 0;
@@ -2431,7 +2635,7 @@ void kad_check_grad(int n, kad_node_t **a, int from)
int i, k, n_var;
float *g0, *delta, f0, f_minus, f_plus, s0, s1, rel_err, p_m_err;
n_var = kad_size_var(n, a);
- g0 = (float*)calloc(n_var, sizeof(float));
+ g0 = (float *) g_malloc0_n(n_var, sizeof(float));
f0 = *kad_eval_at(n, a, from);
kad_grad(n, a, from);
for (i = k = 0; i < n; ++i)
@@ -2439,8 +2643,8 @@ void kad_check_grad(int n, kad_node_t **a, int from)
memcpy(&g0[k], a[i]->g, kad_len(a[i]) * sizeof(float));
k += kad_len(a[i]);
}
- delta = (float*)calloc(n_var, sizeof(float));
- for (k = 0; k < n_var; ++k) delta[k] = (float)kad_drand(0) * eps;
+ delta = (float *) g_malloc0_n(n_var, sizeof(float));
+ for (k = 0; k < n_var; ++k) delta[k] = (float) kad_drand(0) * eps;
kad_add_delta(n, a, 1.0f, delta);
f_plus = *kad_eval_at(n, a, from);
kad_add_delta(n, a, -2.0f, delta);
@@ -2448,13 +2652,17 @@ void kad_check_grad(int n, kad_node_t **a, int from)
kad_add_delta(n, a, 1.0f, delta);
s0 = kad_sdot(n_var, g0, delta);
s1 = .5f * (f_plus - f_minus);
- fprintf(stderr, "Gradient check -- %g <=> %g @ %g -- ", s0/eps, s1/eps, f0);
+ fprintf(stderr, "Gradient check -- %g <=> %g @ %g -- ", s0 / eps, s1 / eps, f0);
if (fabs(s1) >= rel * eps) {
rel_err = fabsf(fabsf(s0) - fabsf(s1)) / (fabsf(s0) + fabsf(s1));
p_m_err = fabsf(f_plus + f_minus - 2.0f * f0) / fabsf(f_plus - f_minus);
fprintf(stderr, "rel_err:%g p_m_err:%g -- ", rel_err, p_m_err);
if (rel_err >= rel && rel_err > p_m_err) fprintf(stderr, "failed\n");
- else fprintf(stderr, "passed\n");
- } else fprintf(stderr, "skipped\n");
- free(delta); free(g0);
+ else
+ fprintf(stderr, "passed\n");
+ }
+ else
+ fprintf(stderr, "skipped\n");
+ g_free(delta);
+ g_free(g0);
}