diff options
author | Vsevolod Stakhov <vsevolod@highsecure.ru> | 2018-05-30 14:54:41 +0100 |
---|---|---|
committer | Vsevolod Stakhov <vsevolod@highsecure.ru> | 2018-05-30 14:54:41 +0100 |
commit | 5d0d46d81568bd1f84b488a230360f8cc0a6e01a (patch) | |
tree | bfb118fcea9bbb487a25468dbe18a4bc16eb45ce /lualib/rspamadm | |
parent | 7c15db236e7511e957c540968b0e205c2b1d2b95 (diff) | |
download | rspamd-5d0d46d81568bd1f84b488a230360f8cc0a6e01a.tar.gz rspamd-5d0d46d81568bd1f84b488a230360f8cc0a6e01a.zip |
[Minor] Further fixes to rescore tool
Diffstat (limited to 'lualib/rspamadm')
-rw-r--r-- | lualib/rspamadm/rescore.lua | 54 |
1 files changed, 33 insertions, 21 deletions
diff --git a/lualib/rspamadm/rescore.lua b/lualib/rspamadm/rescore.lua index 80b9630f4..cc331c6e8 100644 --- a/lualib/rspamadm/rescore.lua +++ b/lualib/rspamadm/rescore.lua @@ -188,17 +188,18 @@ local function init_weights(all_symbols, original_symbol_scores) return weights end -local function shuffle(logs) +local function shuffle(logs, messages) local size = #logs for i = size, 1, -1 do local rand = math.random(size) logs[i], logs[rand] = logs[rand], logs[i] + messages[i], messages[rand] = messages[rand], messages[i] end end -local function split_logs(logs, split_percent) +local function split_logs(logs, messages, split_percent) if not split_percent then split_percent = 60 @@ -208,16 +209,20 @@ local function split_logs(logs, split_percent) local test_logs = {} local train_logs = {} + local test_messages = {} + local train_messages = {} for i=1,split_index do - train_logs[#train_logs + 1] = logs[i] + table.insert(train_logs, logs[i]) + table.insert(train_messages, messages[i]) end for i=split_index + 1, #logs do - test_logs[#test_logs + 1] = logs[i] + table.insert(test_logs, logs[i]) + table.insert(test_messages, messages[i]) end - return train_logs, test_logs + return {train_logs,train_messages}, {test_logs,test_messages} end local function stitch_new_scores(all_symbols, new_scores) @@ -291,7 +296,10 @@ local function print_score_diff(new_symbol_scores, original_symbol_scores) end -local function calculate_fscore_from_weights(logs, all_symbols, weights, threshold) +local function calculate_fscore_from_weights(logs, messages, + all_symbols, + weights, + threshold) local new_symbol_scores = weights:clone() @@ -300,14 +308,15 @@ local function calculate_fscore_from_weights(logs, all_symbols, weights, thresho logs = update_logs(logs, new_symbol_scores) local file_stats, _, all_fps, all_fns = - rescore_utility.generate_statistics_from_logs(logs, threshold) + rescore_utility.generate_statistics_from_logs(logs, messages, threshold) return file_stats.fscore, all_fps, all_fns end -local function print_stats(logs, threshold) +local function print_stats(logs, messages, threshold) - local file_stats, _ = rescore_utility.generate_statistics_from_logs(logs, threshold) + local file_stats, _ = rescore_utility.generate_statistics_from_logs(logs, + messages, threshold) local file_stat_format = [[ F-score: %.2f @@ -519,7 +528,7 @@ local function handler(args) end local threshold,reject_score = get_threshold() - local logs = rescore_utility.get_all_logs(opts['log']) + local logs,messages = rescore_utility.get_all_logs(opts['log']) if opts['ignore-symbol'] then local function add_ignore(s) @@ -574,7 +583,9 @@ local function handler(args) -- Display hit frequencies if opts['freq'] then - local _, all_symbols_stats = rescore_utility.generate_statistics_from_logs(logs, threshold) + local _, all_symbols_stats = rescore_utility.generate_statistics_from_logs(logs, + messages, + threshold) local t = {} for _, symbol_stats in pairs(all_symbols_stats) do table.insert(t, symbol_stats) end @@ -607,7 +618,7 @@ local function handler(args) end -- Print file statistics - print_stats(logs, threshold) + print_stats(logs, messages, threshold) -- Work out how many symbols weren't seen in the corpus local symbols_no_hits = {} @@ -635,13 +646,13 @@ local function handler(args) return end - shuffle(logs) + shuffle(logs, messages) torch.setdefaulttensortype('torch.FloatTensor') - local train_logs, validation_logs = split_logs(logs, 70) - local cv_logs, test_logs = split_logs(validation_logs, 50) + local train_logs, validation_logs = split_logs(logs, messages,70) + local cv_logs, test_logs = split_logs(validation_logs[1], validation_logs[2], 50) - local dataset = make_dataset_from_logs(train_logs, all_symbols, reject_score) + local dataset = make_dataset_from_logs(train_logs[1], all_symbols, reject_score) -- Start of perceptron training local input_size = #all_symbols @@ -675,7 +686,8 @@ local function handler(args) initial_weights) end - local fscore, fps, fns = calculate_fscore_from_weights(cv_logs, + local fscore, fps, fns = calculate_fscore_from_weights(cv_logs[1], + cv_logs[2], all_symbols, linear_module.weight[1], threshold) @@ -710,13 +722,13 @@ local function handler(args) -- Pre-rescore test stats logger.message("\n\nPre-rescore test stats\n") - test_logs = update_logs(test_logs, original_symbol_scores) - print_stats(test_logs, threshold) + test_logs[1] = update_logs(test_logs[1], original_symbol_scores) + print_stats(test_logs[1], test_logs[2], threshold) -- Post-rescore test stats - test_logs = update_logs(test_logs, new_symbol_scores) + test_logs[1] = update_logs(test_logs[1], new_symbol_scores) logger.message("\n\nPost-rescore test stats\n") - print_stats(test_logs, threshold) + print_stats(test_logs[1], test_logs[2], threshold) logger.messagex('Best fscore=%s, best learning rate=%s, best weight decay=%s', best_fscore, best_learning_rate, best_weight_decay) |