diff options
author | Vsevolod Stakhov <vsevolod@rambler-co.ru> | 2010-08-02 20:27:48 +0400 |
---|---|---|
committer | Vsevolod Stakhov <vsevolod@rambler-co.ru> | 2010-08-02 20:27:48 +0400 |
commit | 9406633ff5e9a4ce288e3541c0a7e6beb5afccdc (patch) | |
tree | ce3e1dc74b854d37109d27a954df321646a2326e /src/classifiers/winnow.c | |
parent | 76ba7fe19e094bf447c6f9eeab5c4654c002f873 (diff) | |
download | rspamd-9406633ff5e9a4ce288e3541c0a7e6beb5afccdc.tar.gz rspamd-9406633ff5e9a4ce288e3541c0a7e6beb5afccdc.zip |
* Improve logic of learning messages: do not learn more than specific threshold
* Fix inserting results for symbols that were incorrectly (for example more than 1 time) defined in config file
Diffstat (limited to 'src/classifiers/winnow.c')
-rw-r--r-- | src/classifiers/winnow.c | 90 |
1 files changed, 82 insertions, 8 deletions
diff --git a/src/classifiers/winnow.c b/src/classifiers/winnow.c index 7599b1150..481d3717d 100644 --- a/src/classifiers/winnow.c +++ b/src/classifiers/winnow.c @@ -42,7 +42,7 @@ #define MAX_WEIGHT G_MAXDOUBLE / 2. -#define ALPHA 0.001 +#define ALPHA 0.01 #define MAX_LEARN_ITERATIONS 100 @@ -55,6 +55,7 @@ struct winnow_callback_data { double multiplier; int count; gboolean in_class; + gboolean do_demote; gboolean fresh_run; time_t now; }; @@ -152,6 +153,11 @@ learn_callback (gpointer key, gpointer value, gpointer data) } statfile_pool_set_block (cd->pool, cd->file, node->h1, node->h2, cd->now, node->value); } + else if (cd->do_demote) { + /* Demote blocks in file */ + node->value *= WINNOW_DEMOTION * cd->multiplier; + statfile_pool_set_block (cd->pool, cd->file, node->h1, node->h2, cd->now, node->value); + } } @@ -231,7 +237,7 @@ winnow_classify (struct classifier_ctx *ctx, statfile_pool_t * pool, GTree * inp } if (data.count != 0) { - res = data.sum / data.count; + res = data.sum / (double)data.count; } else { res = 0; @@ -251,7 +257,7 @@ winnow_classify (struct classifier_ctx *ctx, statfile_pool_t * pool, GTree * inp max = st->normalizer (task->cfg, max, st->normalizer_data); } sumbuf = memory_pool_alloc (task->task_pool, 32); - snprintf (sumbuf, 32, "%.2Lg", max); + rspamd_snprintf (sumbuf, 32, "%.2F", max); cur = g_list_prepend (NULL, sumbuf); insert_result (task, sel->symbol, max, cur); } @@ -305,7 +311,7 @@ winnow_weights (struct classifier_ctx *ctx, statfile_pool_t * pool, GTree * inpu w = memory_pool_alloc0 (task->task_pool, sizeof (struct classify_weight)); if (data.count != 0) { - res = data.sum / data.count; + res = data.sum / (double)data.count; } else { res = 0; @@ -334,10 +340,11 @@ winnow_learn (struct classifier_ctx *ctx, statfile_pool_t *pool, stat_file_t *fi }; char *value; int nodes, minnodes, iterations = 0; - struct statfile *st; + struct statfile *st, *sel_st; stat_file_t *sel = NULL; long double res = 0., max = 0.; - GList *cur; + double learn_threshold = 1.0; + GList *cur, *to_demote = NULL; g_assert (pool != NULL); g_assert (ctx != NULL); @@ -357,7 +364,67 @@ winnow_learn (struct classifier_ctx *ctx, statfile_pool_t *pool, stat_file_t *fi return; } } + if (ctx->cfg->opts && (value = g_hash_table_lookup (ctx->cfg->opts, "learn_threshold")) != NULL) { + learn_threshold = strtod (value, NULL); + } + if (learn_threshold >= 1.0) { + /* Classify message and check target statfile score */ + cur = ctx->cfg->statfiles; + /* Check target statfile */ + data.file = file; + data.sum = 0; + data.count = 0; + data.file = file; + statfile_pool_lock_file (pool, data.file); + g_tree_foreach (input, classify_callback, &data); + statfile_pool_unlock_file (pool, data.file); + if (data.count > 0) { + max = data.sum / (double)data.count; + } + else { + max = 0; + } + while (cur) { + st = cur->data; + data.sum = 0; + data.count = 0; + if ((data.file = statfile_pool_is_open (pool, st->path)) == NULL) { + if ((data.file = statfile_pool_open (pool, st->path, st->size, FALSE)) == NULL) { + msg_warn ("cannot open %s, skip it", st->path); + cur = g_list_next (cur); + continue; + } + } + statfile_pool_lock_file (pool, data.file); + g_tree_foreach (input, classify_callback, &data); + statfile_pool_unlock_file (pool, data.file); + if (data.count != 0) { + res = data.sum / data.count; + } + else { + res = 0; + } + if (file != data.file && res / max > learn_threshold) { + /* Demote tokens in this statfile */ + to_demote = g_list_prepend (to_demote, data.file); + } + else if (file == data.file) { + sel_st = st; + } + cur = g_list_next (cur); + } + } + else { + msg_err ("learn threshold is less than 1, so cannot do learn, please check your configuration"); + return; + } + /* If to_demote list is empty this message is already classified correctly */ + if (max > ALPHA && to_demote == NULL) { + msg_info ("this message is already of class %s with threshold %.2f and weight %.2F", + sel_st->symbol, learn_threshold, max); + goto end; + } do { cur = ctx->cfg->statfiles; data.fresh_run = TRUE; @@ -372,6 +439,12 @@ winnow_learn (struct classifier_ctx *ctx, statfile_pool_t *pool, stat_file_t *fi continue; } } + if (to_demote != NULL && g_list_find (to_demote, data.file) != NULL) { + data.do_demote = TRUE; + } + else { + data.do_demote = FALSE; + } statfile_pool_lock_file (pool, data.file); g_tree_foreach (input, learn_callback, &data); statfile_pool_unlock_file (pool, data.file); @@ -402,11 +475,12 @@ winnow_learn (struct classifier_ctx *ctx, statfile_pool_t *pool, stat_file_t *fi file->filename, MAX_LEARN_ITERATIONS, max); } else { - msg_info ("learned statfile %s successfully with %d iterations and sum %G", file->filename, iterations, max); + msg_info ("learned statfile %s successfully with %d iterations and sum %G", file->filename, iterations + 1, max); } +end: if (sum) { - *sum = max; + *sum = (double)max; } } |