aboutsummaryrefslogtreecommitdiffstats
path: root/src/classifiers
diff options
context:
space:
mode:
authorVsevolod Stakhov <vsevolod@rambler-co.ru>2011-06-28 19:07:26 +0400
committerVsevolod Stakhov <vsevolod@rambler-co.ru>2011-06-28 19:07:26 +0400
commitb3c36d4946f675619b81c9223f5ac1a86c55c55c (patch)
tree6cdd79cae18ce387f6c00f8ce23aef65b4a5c02b /src/classifiers
parent0e6a4235b1794a61d12fcde33cffaf8dd83c51f0 (diff)
downloadrspamd-b3c36d4946f675619b81c9223f5ac1a86c55c55c.tar.gz
rspamd-b3c36d4946f675619b81c9223f5ac1a86c55c55c.zip
* Add correcting factor to statistics.
Now learning increments version of a statfile. Avoid learning and classifying of similar text parts if a message has 2 text parts. Several fixes to statistics.
Diffstat (limited to 'src/classifiers')
-rw-r--r--src/classifiers/bayes.c48
1 files changed, 33 insertions, 15 deletions
diff --git a/src/classifiers/bayes.c b/src/classifiers/bayes.c
index af79e0eaa..7363df522 100644
--- a/src/classifiers/bayes.c
+++ b/src/classifiers/bayes.c
@@ -47,7 +47,8 @@ struct bayes_statfile_data {
guint64 total_hits;
double local_probability;
double post_probability;
- guint64 value;
+ double corr;
+ double value;
struct statfile *st;
stat_file_t *file;
};
@@ -60,6 +61,7 @@ struct bayes_callback_data {
stat_file_t *file;
struct bayes_statfile_data *statfiles;
guint32 statfiles_num;
+ guint64 learned_tokens;
};
static gboolean
@@ -67,7 +69,8 @@ bayes_learn_callback (gpointer key, gpointer value, gpointer data)
{
token_node_t *node = key;
struct bayes_callback_data *cd = data;
- gint v, c;
+ gint c;
+ guint64 v;
c = (cd->in_class) ? 1 : -1;
@@ -75,8 +78,9 @@ bayes_learn_callback (gpointer key, gpointer value, gpointer data)
v = statfile_pool_get_block (cd->pool, cd->file, node->h1, node->h2, cd->now);
if (v == 0 && c > 0) {
statfile_pool_set_block (cd->pool, cd->file, node->h1, node->h2, cd->now, c);
+ cd->learned_tokens ++;
}
- else {
+ else if (v != 0) {
if (G_LIKELY (c > 0)) {
v ++;
}
@@ -86,6 +90,7 @@ bayes_learn_callback (gpointer key, gpointer value, gpointer data)
}
}
statfile_pool_set_block (cd->pool, cd->file, node->h1, node->h2, cd->now, v);
+ cd->learned_tokens ++;
}
return FALSE;
@@ -102,24 +107,21 @@ bayes_classify_callback (gpointer key, gpointer value, gpointer data)
struct bayes_callback_data *cd = data;
double renorm = 0;
gint i;
- guint64 local_hits = 0;
+ double local_hits = 0;
struct bayes_statfile_data *cur;
for (i = 0; i < cd->statfiles_num; i ++) {
cur = &cd->statfiles[i];
- cur->value = statfile_pool_get_block (cd->pool, cur->file, node->h1, node->h2, cd->now);
+ cur->value = statfile_pool_get_block (cd->pool, cur->file, node->h1, node->h2, cd->now) * cur->corr;
if (cur->value > 0) {
- cur->total_hits += cur->value;
+ cur->total_hits ++;
cur->hits = cur->value;
local_hits += cur->value;
}
- else {
- cur->value = 0;
- }
}
for (i = 0; i < cd->statfiles_num; i ++) {
cur = &cd->statfiles[i];
- cur->local_probability = 0.5 + ((double)cur->value - ((double)local_hits - cur->value)) /
+ cur->local_probability = 0.5 + (cur->value - (local_hits - cur->value)) /
(LOCAL_PROB_DENOM * (1.0 + local_hits));
renorm += cur->post_probability * cur->local_probability;
}
@@ -145,7 +147,7 @@ bayes_classify_callback (gpointer key, gpointer value, gpointer data)
cur->post_probability = G_MINDOUBLE * 100;
}
if (cd->ctx->debug) {
- msg_info ("token: %s, statfile: %s, probability: %uL, post_probability: %.4f",
+ msg_info ("token: %s, statfile: %s, probability: %.4f, post_probability: %.4f",
node->extra, cur->st->symbol, cur->value, cur->post_probability);
}
}
@@ -169,8 +171,9 @@ gboolean
bayes_classify (struct classifier_ctx* ctx, statfile_pool_t *pool, GTree *input, struct worker_task *task)
{
struct bayes_callback_data data;
- char *value;
- int nodes, minnodes, i, cnt, best_num = 0;
+ gchar *value;
+ gint nodes, minnodes, i = 0, cnt, best_num = 0;
+ guint64 rev, total_learns = 0;
double best = 0;
struct statfile *st;
stat_file_t *file;
@@ -198,7 +201,6 @@ bayes_classify (struct classifier_ctx* ctx, statfile_pool_t *pool, GTree *input,
data.ctx = ctx;
cur = ctx->cfg->statfiles;
- i = 0;
while (cur) {
/* Select statfile to learn */
st = cur->data;
@@ -214,11 +216,21 @@ bayes_classify (struct classifier_ctx* ctx, statfile_pool_t *pool, GTree *input,
data.statfiles[i].st = st;
data.statfiles[i].post_probability = 0.5;
data.statfiles[i].local_probability = 0.5;
- i ++;
+ statfile_get_revision (file, &rev, NULL);
+ total_learns += rev;
+
cur = g_list_next (cur);
+ i ++;
}
+
cnt = i;
+ /* Calculate correction factor */
+ for (i = 0; i < cnt; i ++) {
+ statfile_get_revision (data.statfiles[i].file, &rev, NULL);
+ data.statfiles[i].corr = ((double)rev / cnt) / (double)total_learns;
+ }
+
g_tree_foreach (input, bayes_classify_callback, &data);
for (i = 0; i < cnt; i ++) {
@@ -277,6 +289,7 @@ bayes_learn (struct classifier_ctx* ctx, statfile_pool_t *pool, const char *symb
data.in_class = in_class;
data.now = time (NULL);
data.ctx = ctx;
+ data.learned_tokens = 0;
cur = ctx->cfg->statfiles;
while (cur) {
/* Select statfile to learn */
@@ -321,8 +334,13 @@ bayes_learn (struct classifier_ctx* ctx, statfile_pool_t *pool, const char *symb
data.file = to_learn;
statfile_pool_lock_file (pool, data.file);
g_tree_foreach (input, bayes_learn_callback, &data);
+ statfile_inc_revision (to_learn);
statfile_pool_unlock_file (pool, data.file);
+ if (sum != NULL) {
+ *sum = data.learned_tokens;
+ }
+
return TRUE;
}