diff options
author | Vsevolod Stakhov <vsevolod@highsecure.ru> | 2020-12-17 13:15:02 +0000 |
---|---|---|
committer | GitHub <noreply@github.com> | 2020-12-17 13:15:02 +0000 |
commit | c3bbc67337285414516173f778f8e5ab0841b1f6 (patch) | |
tree | bcc38704958dc6df79bc6207c93e9f12ea011ba9 /src | |
parent | 1710451544a6e4e37d7865c088782f99d8082360 (diff) | |
parent | 960b608d352e8c820b0725d898d78959ca59ee7d (diff) | |
download | rspamd-c3bbc67337285414516173f778f8e5ab0841b1f6.tar.gz rspamd-c3bbc67337285414516173f778f8e5ab0841b1f6.zip |
Merge pull request #3570 from fatalbanana/nn_training
[Feature] Add controller endpoint for training neural
Diffstat (limited to 'src')
-rw-r--r-- | src/plugins/lua/neural.lua | 788 |
1 files changed, 39 insertions, 749 deletions
diff --git a/src/plugins/lua/neural.lua b/src/plugins/lua/neural.lua index 5eab75d76..3d1c387a5 100644 --- a/src/plugins/lua/neural.lua +++ b/src/plugins/lua/neural.lua @@ -19,22 +19,21 @@ if confighelp then return end -local rspamd_logger = require "rspamd_logger" -local rspamd_util = require "rspamd_util" -local rspamd_kann = require "rspamd_kann" -local rspamd_text = require "rspamd_text" +local fun = require "fun" local lua_redis = require "lua_redis" local lua_util = require "lua_util" +local lua_verdict = require "lua_verdict" +local neural_common = require "plugins/neural" +local rspamd_kann = require "rspamd_kann" +local rspamd_logger = require "rspamd_logger" local rspamd_tensor = require "rspamd_tensor" -local fun = require "fun" -local lua_settings = require "lua_settings" -local meta_functions = require "lua_meta" +local rspamd_text = require "rspamd_text" +local rspamd_util = require "rspamd_util" local ts = require("tableshape").types -local lua_verdict = require "lua_verdict" + local N = "neural" --- Used in prefix to avoid wrong ANN to be loaded -local plugin_ver = '2' +local settings = neural_common.settings -- Module vars local default_options = { @@ -52,7 +51,7 @@ local default_options = { classes_bias = 0.0, -- balanced mode: what difference is allowed between classes (1:1 proportion means 0 bias) spam_skip_prob = 0.0, -- proportional mode: spam skip probability (0-1) ham_skip_prob = 0.0, -- proportional mode: ham skip probability - store_pool_only = false, -- store tokens in mempool variable only (disables autotrain); + store_pool_only = false, -- store tokens in cache only (disables autotrain); -- neural_vec_mpack stores vector of training data in messagepack neural_profile_digest stores profile digest }, watch_interval = 60.0, @@ -77,207 +76,9 @@ local redis_profile_schema = ts.shape{ local has_blas = rspamd_tensor.has_blas() local text_cookie = rspamd_text.cookie --- Rule structure: --- * static config fields (see `default_options`) --- * prefix - name or defined prefix --- * settings - table of settings indexed by settings id, -1 is used when no settings defined - --- Rule settings element defines elements for specific settings id: --- * symbols - static symbols profile (defined by config or extracted from symcache) --- * name - name of settings id --- * digest - digest of all symbols --- * ann - dynamic ANN configuration loaded from Redis --- * train - train data for ANN (e.g. the currently trained ANN) - --- Settings ANN table is loaded from Redis and represents dynamic profile for ANN --- Some elements are directly stored in Redis, ANN is, in turn loaded dynamically --- * version - version of ANN loaded from redis --- * redis_key - name of ANN key in Redis --- * symbols - symbols in THIS PARTICULAR ANN (might be different from set.symbols) --- * distance - distance between set.symbols and set.ann.symbols --- * ann - kann object - -local settings = { - rules = {}, - prefix = 'rn', -- Neural network default prefix - max_profiles = 3, -- Maximum number of NN profiles stored -} - -local module_config = rspamd_config:get_all_opt("neural") -if not module_config then - -- Legacy - module_config = rspamd_config:get_all_opt("fann_redis") -end - - --- Lua script that checks if we can store a new training vector --- Uses the following keys: --- key1 - ann key --- returns nspam,nham (or nil if locked) -local redis_lua_script_vectors_len = [[ - local prefix = KEYS[1] - local locked = redis.call('HGET', prefix, 'lock') - if locked then - local host = redis.call('HGET', prefix, 'hostname') or 'unknown' - return string.format('%s:%s', host, locked) - end - local nspam = 0 - local nham = 0 - - local ret = redis.call('LLEN', prefix .. '_spam') - if ret then nspam = tonumber(ret) end - ret = redis.call('LLEN', prefix .. '_ham') - if ret then nham = tonumber(ret) end - - return {nspam,nham} -]] -local redis_lua_script_vectors_len_id = nil - --- Lua script to invalidate ANNs by rank --- Uses the following keys --- key1 - prefix for keys --- key2 - number of elements to leave -local redis_lua_script_maybe_invalidate = [[ - local card = redis.call('ZCARD', KEYS[1]) - local lim = tonumber(KEYS[2]) - if card > lim then - local to_delete = redis.call('ZRANGE', KEYS[1], 0, card - lim - 1) - for _,k in ipairs(to_delete) do - local tb = cjson.decode(k) - redis.call('DEL', tb.redis_key) - -- Also train vectors - redis.call('DEL', tb.redis_key .. '_spam') - redis.call('DEL', tb.redis_key .. '_ham') - end - redis.call('ZREMRANGEBYRANK', KEYS[1], 0, card - lim - 1) - return to_delete - else - return {} - end -]] -local redis_maybe_invalidate_id = nil - --- Lua script to invalidate ANN from redis --- Uses the following keys --- key1 - prefix for keys --- key2 - current time --- key3 - key expire --- key4 - hostname -local redis_lua_script_maybe_lock = [[ - local locked = redis.call('HGET', KEYS[1], 'lock') - local now = tonumber(KEYS[2]) - if locked then - locked = tonumber(locked) - local expire = tonumber(KEYS[3]) - if now > locked and (now - locked) < expire then - return {tostring(locked), redis.call('HGET', KEYS[1], 'hostname') or 'unknown'} - end - end - redis.call('HSET', KEYS[1], 'lock', tostring(now)) - redis.call('HSET', KEYS[1], 'hostname', KEYS[4]) - return 1 -]] -local redis_maybe_lock_id = nil - --- Lua script to save and unlock ANN in redis --- Uses the following keys --- key1 - prefix for ANN --- key2 - prefix for profile --- key3 - compressed ANN --- key4 - profile as JSON --- key5 - expire in seconds --- key6 - current time --- key7 - old key --- key8 - optional PCA -local redis_lua_script_save_unlock = [[ - local now = tonumber(KEYS[6]) - redis.call('ZADD', KEYS[2], now, KEYS[4]) - redis.call('HSET', KEYS[1], 'ann', KEYS[3]) - redis.call('DEL', KEYS[1] .. '_spam') - redis.call('DEL', KEYS[1] .. '_ham') - redis.call('HDEL', KEYS[1], 'lock') - redis.call('HDEL', KEYS[7], 'lock') - redis.call('EXPIRE', KEYS[1], tonumber(KEYS[5])) - if KEYS[8] then - redis.call('HSET', KEYS[1], 'pca', KEYS[8]) - end - return 1 -]] -local redis_save_unlock_id = nil - -local redis_params - -local function load_scripts(params) - redis_lua_script_vectors_len_id = lua_redis.add_redis_script(redis_lua_script_vectors_len, - params) - redis_maybe_invalidate_id = lua_redis.add_redis_script(redis_lua_script_maybe_invalidate, - params) - redis_maybe_lock_id = lua_redis.add_redis_script(redis_lua_script_maybe_lock, - params) - redis_save_unlock_id = lua_redis.add_redis_script(redis_lua_script_save_unlock, - params) -end - -local function result_to_vector(task, profile) - if not profile.zeros then - -- Fill zeros vector - local zeros = {} - for i=1,meta_functions.count_metatokens() do - zeros[i] = 0.0 - end - for _,_ in ipairs(profile.symbols) do - zeros[#zeros + 1] = 0.0 - end - profile.zeros = zeros - end - - local vec = lua_util.shallowcopy(profile.zeros) - local mt = meta_functions.rspamd_gen_metatokens(task) - - for i,v in ipairs(mt) do - vec[i] = v - end - - task:process_ann_tokens(profile.symbols, vec, #mt, 0.1) - - return vec -end - --- Used to generate new ANN key for specific profile -local function new_ann_key(rule, set, version) - local ann_key = string.format('%s_%s_%s_%s_%s', settings.prefix, - rule.prefix, set.name, set.digest:sub(1, 8), tostring(version)) - - return ann_key -end - --- Extract settings element for a specific settings id -local function get_rule_settings(task, rule) - local sid = task:get_settings_id() or -1 - - local set = rule.settings[sid] - - if not set then return nil end - - while type(set) == 'number' do - -- Reference to another settings! - set = rule.settings[set] - end - - return set -end - --- Generate redis prefix for specific rule and specific settings -local function redis_ann_prefix(rule, settings_name) - -- We also need to count metatokens: - local n = meta_functions.version - return string.format('%s%d_%s_%d_%s', - settings.prefix, plugin_ver, rule.prefix, n, settings_name) -end - -- Creates and stores ANN profile in Redis local function new_ann_profile(task, rule, set, version) - local ann_key = new_ann_key(rule, set, version) + local ann_key = neural_common.new_ann_key(rule, set, version, settings) local profile = { symbols = set.symbols, @@ -321,7 +122,7 @@ local function ann_scores_filter(task) local ann local profile - local set = get_rule_settings(task, rule) + local set = neural_common.get_rule_settings(task, rule) if set then if set.ann then ann = set.ann.ann @@ -336,7 +137,7 @@ local function ann_scores_filter(task) end if ann then - local vec = result_to_vector(task, profile) + local vec = neural_common.result_to_vector(task, profile) local score local out = ann:apply1(vec, set.ann.pca) @@ -357,112 +158,12 @@ local function ann_scores_filter(task) end end -local function create_ann(n, nlayers, rule) - -- We ignore number of layers so far when using kann - local nhidden = math.floor(n * (rule.hidden_layer_mult or 1.0) + 1.0) - local t = rspamd_kann.layer.input(n) - t = rspamd_kann.transform.relu(t) - t = rspamd_kann.layer.dense(t, nhidden); - t = rspamd_kann.layer.cost(t, 1, rspamd_kann.cost.ceb_neg) - return rspamd_kann.new.kann(t) -end - -local function can_push_train_vector(rule, task, learn_type, nspam, nham) - local train_opts = rule.train - local coin = math.random() - - if train_opts.train_prob and coin < 1.0 - train_opts.train_prob then - rspamd_logger.infox(task, 'probabilistically skip sample: %s', coin) - return false - end - - if train_opts.learn_mode == 'balanced' then - -- Keep balanced training set based on number of spam and ham samples - if learn_type == 'spam' then - if nspam <= train_opts.max_trains then - if nspam > nham then - -- Apply sampling - local skip_rate = 1.0 - nham / (nspam + 1) - if coin < skip_rate - train_opts.classes_bias then - rspamd_logger.infox(task, - 'skip %s sample to keep spam/ham balance; probability %s; %s spam and %s ham vectors stored', - learn_type, - skip_rate - train_opts.classes_bias, - nspam, nham) - return false - end - end - return true - else -- Enough learns - rspamd_logger.infox(task, 'skip %s sample to keep spam/ham balance; too many spam samples: %s', - learn_type, - nspam) - end - else - if nham <= train_opts.max_trains then - if nham > nspam then - -- Apply sampling - local skip_rate = 1.0 - nspam / (nham + 1) - if coin < skip_rate - train_opts.classes_bias then - rspamd_logger.infox(task, - 'skip %s sample to keep spam/ham balance; probability %s; %s spam and %s ham vectors stored', - learn_type, - skip_rate - train_opts.classes_bias, - nspam, nham) - return false - end - end - return true - else - rspamd_logger.infox(task, 'skip %s sample to keep spam/ham balance; too many ham samples: %s', learn_type, - nham) - end - end - else - -- Probabilistic learn mode, we just skip learn if we already have enough samples or - -- if our coin drop is less than desired probability - if learn_type == 'spam' then - if nspam <= train_opts.max_trains then - if train_opts.spam_skip_prob then - if coin <= train_opts.spam_skip_prob then - rspamd_logger.infox(task, 'skip %s sample probabilisticaly; probability %s (%s skip chance)', learn_type, - coin, train_opts.spam_skip_prob) - return false - end - - return true - end - else - rspamd_logger.infox(task, 'skip %s sample; too many spam samples: %s (%s limit)', learn_type, - nspam, train_opts.max_trains) - end - else - if nham <= train_opts.max_trains then - if train_opts.ham_skip_prob then - if coin <= train_opts.ham_skip_prob then - rspamd_logger.infox(task, 'skip %s sample probabilisticaly; probability %s (%s skip chance)', learn_type, - coin, train_opts.ham_skip_prob) - return false - end - - return true - end - else - rspamd_logger.infox(task, 'skip %s sample; too many ham samples: %s (%s limit)', learn_type, - nham, train_opts.max_trains) - end - end - end - - return false -end - local function ann_push_task_result(rule, task, verdict, score, set) local train_opts = rule.train local learn_spam, learn_ham local skip_reason = 'unknown' - if train_opts.autotrain then + if not train_opts.store_pool_only and train_opts.autotrain then if train_opts.spam_score then learn_spam = score >= train_opts.spam_score @@ -510,10 +211,10 @@ local function ann_push_task_result(rule, task, verdict, score, set) learn_ham = false learn_spam = false - -- Explicitly store tokens in a mempool variable - local vec = result_to_vector(task, set) - task:get_mempool():set_variable('neural_vec_mpack', ucl.to_format(vec, 'msgpack')) - task:get_mempool():set_variable('neural_profile_digest', set.digest) + -- Explicitly store tokens in cache + local vec = neural_common.result_to_vector(task, set) + task:cache_set('neural_vec_mpack', ucl.to_format(vec, 'msgpack')) + task:cache_set('neural_profile_digest', set.digest) skip_reason = 'store_pool_only has been set' end end @@ -527,8 +228,8 @@ local function ann_push_task_result(rule, task, verdict, score, set) if not err and type(data) == 'table' then local nspam,nham = data[1],data[2] - if can_push_train_vector(rule, task, learn_type, nspam, nham) then - local vec = result_to_vector(task, set) + if neural_common.can_push_train_vector(rule, task, learn_type, nspam, nham) then + local vec = neural_common.result_to_vector(task, set) local str = rspamd_util.zstd_compress(table.concat(vec, ';')) local target_key = set.ann.redis_key .. '_' .. learn_type @@ -585,7 +286,7 @@ local function ann_push_task_result(rule, task, verdict, score, set) set.name) end - lua_redis.exec_redis_script(redis_lua_script_vectors_len_id, + lua_redis.exec_redis_script(neural_common.redis_script_id.vectors_len, {task = task, is_write = false}, vectors_len_cb, { @@ -605,284 +306,6 @@ end --- Offline training logic --- Closure generator for unlock function -local function gen_unlock_cb(rule, set, ann_key) - return function (err) - if err then - rspamd_logger.errx(rspamd_config, 'cannot unlock ANN %s:%s at %s from redis: %s', - rule.prefix, set.name, ann_key, err) - else - lua_util.debugm(N, rspamd_config, 'unlocked ANN %s:%s at %s', - rule.prefix, set.name, ann_key) - end - end -end - --- This function is intended to extend lock for ANN during training --- It registers periodic that increases locked key each 30 seconds unless --- `set.learning_spawned` is set to `true` -local function register_lock_extender(rule, set, ev_base, ann_key) - rspamd_config:add_periodic(ev_base, 30.0, - function() - local function redis_lock_extend_cb(_err, _) - if _err then - rspamd_logger.errx(rspamd_config, 'cannot lock ANN %s from redis: %s', - ann_key, _err) - else - rspamd_logger.infox(rspamd_config, 'extend lock for ANN %s for 30 seconds', - ann_key) - end - end - - if set.learning_spawned then - lua_redis.redis_make_request_taskless(ev_base, - rspamd_config, - rule.redis, - nil, - true, -- is write - redis_lock_extend_cb, --callback - 'HINCRBY', -- command - {ann_key, 'lock', '30'} - ) - else - lua_util.debugm(N, rspamd_config, "stop lock extension as learning_spawned is false") - return false -- do not plan any more updates - end - - return true - end - ) -end - --- This function takes all inputs, applies PCA transformation and returns the final --- PCA matrix as rspamd_tensor -local function learn_pca(inputs, max_inputs) - local scatter_matrix = rspamd_tensor.scatter_matrix(rspamd_tensor.fromtable(inputs)) - local eigenvals = scatter_matrix:eigen() - -- scatter matrix is not filled with eigenvectors - lua_util.debugm(N, 'eigenvalues: %s', eigenvals) - local w = rspamd_tensor.new(2, max_inputs, #scatter_matrix[1]) - for i=1,max_inputs do - w[i] = scatter_matrix[#scatter_matrix - i + 1] - end - - lua_util.debugm(N, 'pca matrix: %s', w) - - return w -end - --- Fills ANN data for a specific settings element -local function fill_set_ann(set, ann_key) - if not set.ann then - set.ann = { - symbols = set.symbols, - distance = 0, - digest = set.digest, - redis_key = ann_key, - version = 0, - } - end -end - --- This function receives training vectors, checks them, spawn learning and saves ANN in Redis -local function spawn_train(worker, ev_base, rule, set, ann_key, ham_vec, spam_vec) - -- Check training data sanity - -- Now we need to join inputs and create the appropriate test vectors - local n = #set.symbols + - meta_functions.rspamd_count_metatokens() - - -- Now we can train ann - local train_ann = create_ann(rule.max_inputs or n, 3, rule) - - if #ham_vec + #spam_vec < rule.train.max_trains / 2 then - -- Invalidate ANN as it is definitely invalid - -- TODO: add invalidation - assert(false) - else - local inputs, outputs = {}, {} - - -- Used to show sparsed vectors in a convenient format (for debugging only) - local function debug_vec(t) - local ret = {} - for i,v in ipairs(t) do - if v ~= 0 then - ret[#ret + 1] = string.format('%d=%.2f', i, v) - end - end - - return ret - end - - -- Make training set by joining vectors - -- KANN automatically shuffles those samples - -- 1.0 is used for spam and -1.0 is used for ham - -- It implies that output layer can express that (e.g. tanh output) - for _,e in ipairs(spam_vec) do - inputs[#inputs + 1] = e - outputs[#outputs + 1] = {1.0} - --rspamd_logger.debugm(N, rspamd_config, 'spam vector: %s', debug_vec(e)) - end - for _,e in ipairs(ham_vec) do - inputs[#inputs + 1] = e - outputs[#outputs + 1] = {-1.0} - --rspamd_logger.debugm(N, rspamd_config, 'ham vector: %s', debug_vec(e)) - end - - -- Called in child process - local function train() - local log_thresh = rule.train.max_iterations / 10 - local seen_nan = false - - local function train_cb(iter, train_cost, value_cost) - if (iter * (rule.train.max_iterations / log_thresh)) % (rule.train.max_iterations) == 0 then - if train_cost ~= train_cost and not seen_nan then - -- We have nan :( try to log lot's of stuff to dig into a problem - seen_nan = true - rspamd_logger.errx(rspamd_config, 'ANN %s:%s: train error: observed nan in error cost!; value cost = %s', - rule.prefix, set.name, - value_cost) - for i,e in ipairs(inputs) do - lua_util.debugm(N, rspamd_config, 'train vector %s -> %s', - debug_vec(e), outputs[i][1]) - end - end - - rspamd_logger.infox(rspamd_config, - "ANN %s:%s: learned from %s redis key in %s iterations, error: %s, value cost: %s", - rule.prefix, set.name, - ann_key, - iter, - train_cost, - value_cost) - end - end - - lua_util.debugm(N, rspamd_config, "subprocess to learn ANN %s:%s has been started", - rule.prefix, set.name) - - local ret,err = pcall(train_ann.train1, train_ann, - inputs, outputs, { - lr = rule.train.learning_rate, - max_epoch = rule.train.max_iterations, - cb = train_cb, - pca = (set.ann or {}).pca - }) - - if not ret then - rspamd_logger.errx(rspamd_config, "cannot train ann %s:%s: %s", - rule.prefix, set.name, err) - - return nil - end - - if not seen_nan then - local out = train_ann:save() - return out - else - return nil - end - end - - set.learning_spawned = true - - local function redis_save_cb(err) - if err then - rspamd_logger.errx(rspamd_config, 'cannot save ANN %s:%s to redis key %s: %s', - rule.prefix, set.name, ann_key, err) - lua_redis.redis_make_request_taskless(ev_base, - rspamd_config, - rule.redis, - nil, - false, -- is write - gen_unlock_cb(rule, set, ann_key), --callback - 'HDEL', -- command - {ann_key, 'lock'} - ) - else - rspamd_logger.infox(rspamd_config, 'saved ANN %s:%s to redis: %s', - rule.prefix, set.name, set.ann.redis_key) - end - end - - local function ann_trained(err, data) - set.learning_spawned = false - if err then - rspamd_logger.errx(rspamd_config, 'cannot train ANN %s:%s : %s', - rule.prefix, set.name, err) - lua_redis.redis_make_request_taskless(ev_base, - rspamd_config, - rule.redis, - nil, - true, -- is write - gen_unlock_cb(rule, set, ann_key), --callback - 'HDEL', -- command - {ann_key, 'lock'} - ) - else - local ann_data = rspamd_util.zstd_compress(data) - local pca_data - - fill_set_ann(set, ann_key) - if set.ann.pca then - pca_data = rspamd_util.zstd_compress(set.ann.pca:save()) - end - -- Deserialise ANN from the child process - ann_trained = rspamd_kann.load(data) - local version = (set.ann.version or 0) + 1 - set.ann.version = version - set.ann.ann = ann_trained - set.ann.symbols = set.symbols - set.ann.redis_key = new_ann_key(rule, set, version) - - local profile = { - symbols = set.symbols, - digest = set.digest, - redis_key = set.ann.redis_key, - version = version - } - - local ucl = require "ucl" - local profile_serialized = ucl.to_format(profile, 'json-compact', true) - - rspamd_logger.infox(rspamd_config, - 'trained ANN %s:%s, %s bytes (%s compressed); %s rows in pca (%sb compressed); redis key: %s (old key %s)', - rule.prefix, set.name, - #data, #ann_data, - #(set.ann.pca or {}), #(pca_data or {}), - set.ann.redis_key, ann_key) - - lua_redis.exec_redis_script(redis_save_unlock_id, - {ev_base = ev_base, is_write = true}, - redis_save_cb, - {profile.redis_key, - redis_ann_prefix(rule, set.name), - ann_data, - profile_serialized, - tostring(rule.ann_expire), - tostring(os.time()), - ann_key, -- old key to unlock... - pca_data - }) - end - end - - if rule.max_inputs then - fill_set_ann(set, ann_key) - -- Train PCA in the main process, presumably it is not that long - set.ann.pca = learn_pca(inputs, rule.max_inputs) - end - - worker:spawn_process{ - func = train, - on_complete = ann_trained, - proctitle = string.format("ANN train for %s/%s", rule.prefix, set.name), - } - end - -- Spawn learn and register lock extension - set.learning_spawned = true - register_lock_extender(rule, set, ev_base, ann_key) -end - -- Utility to extract and split saved training vectors to a table of tables local function process_training_vectors(data) return fun.totable(fun.map(function(tok) @@ -909,14 +332,16 @@ local function do_train_ann(worker, ev_base, rule, set, ann_key) rule.redis, nil, true, -- is write - gen_unlock_cb(rule, set, ann_key), --callback + neural_common.gen_unlock_cb(rule, set, ann_key), --callback 'HDEL', -- command {ann_key, 'lock'} ) else -- Decompress and convert to numbers each training vector ham_elts = process_training_vectors(data) - spawn_train(worker, ev_base, rule, set, ann_key, ham_elts, spam_elts) + neural_common.spawn_train({worker = worker, ev_base = ev_base, + rule = rule, set = set, ann_key = ann_key, ham_vec = ham_elts, + spam_vec = spam_elts}) end end @@ -931,7 +356,7 @@ local function do_train_ann(worker, ev_base, rule, set, ann_key) rule.redis, nil, true, -- is write - gen_unlock_cb(rule, set, ann_key), --callback + neural_common.gen_unlock_cb(rule, set, ann_key), --callback 'HDEL', -- command {ann_key, 'lock'} ) @@ -987,7 +412,7 @@ local function do_train_ann(worker, ev_base, rule, set, ann_key) -- Call Redis script that tries to acquire a lock -- This script returns either a boolean or a pair {'lock_time', 'hostname'} when -- ANN is locked by another host (or a process, meh) - lua_redis.exec_redis_script(redis_maybe_lock_id, + lua_redis.exec_redis_script(neural_common.redis_script_id.maybe_lock, {ev_base = ev_base, is_write = true}, redis_lock_cb, { @@ -1376,7 +801,7 @@ local function cleanup_anns(rule, cfg, ev_base) end if type(set) == 'table' then - lua_redis.exec_redis_script(redis_maybe_invalidate_id, + lua_redis.exec_redis_script(neural_common.redis_script_id.maybe_invalidate, {ev_base = ev_base, is_write = true}, invalidate_cb, {set.prefix, tostring(settings.max_profiles)}) @@ -1411,7 +836,7 @@ local function ann_push_vector(task) end for _,rule in pairs(settings.rules) do - local set = get_rule_settings(task, rule) + local set = neural_common.get_rule_settings(task, rule) if set then ann_push_task_result(rule, task, verdict, score, set) @@ -1423,155 +848,20 @@ local function ann_push_vector(task) end --- This function is used to adjust profiles and allowed setting ids for each rule --- It must be called when all settings are already registered (e.g. at post-init for config) -local function process_rules_settings() - local function process_settings_elt(rule, selt) - local profile = rule.profile[selt.name] - if profile then - -- Use static user defined profile - -- Ensure that we have an array... - lua_util.debugm(N, rspamd_config, "use static profile for %s (%s): %s", - rule.prefix, selt.name, profile) - if not profile[1] then profile = lua_util.keys(profile) end - selt.symbols = profile - else - lua_util.debugm(N, rspamd_config, "use dynamic cfg based profile for %s (%s)", - rule.prefix, selt.name) - end - - local function filter_symbols_predicate(sname) - if settings.blacklisted_symbols and settings.blacklisted_symbols[sname] then - return false - end - local fl = rspamd_config:get_symbol_flags(sname) - if fl then - fl = lua_util.list_to_hash(fl) - - return not (fl.nostat or fl.idempotent or fl.skip or fl.composite) - end - - return false - end - - -- Generic stuff - table.sort(fun.totable(fun.filter(filter_symbols_predicate, selt.symbols))) - - selt.digest = lua_util.table_digest(selt.symbols) - selt.prefix = redis_ann_prefix(rule, selt.name) - - lua_redis.register_prefix(selt.prefix, N, - string.format('NN prefix for rule "%s"; settings id "%s"', - rule.prefix, selt.name), { - persistent = true, - type = 'zlist', - }) - -- Versions - lua_redis.register_prefix(selt.prefix .. '_\\d+', N, - string.format('NN storage for rule "%s"; settings id "%s"', - rule.prefix, selt.name), { - persistent = true, - type = 'hash', - }) - lua_redis.register_prefix(selt.prefix .. '_\\d+_spam', N, - string.format('NN learning set (spam) for rule "%s"; settings id "%s"', - rule.prefix, selt.name), { - persistent = true, - type = 'list', - }) - lua_redis.register_prefix(selt.prefix .. '_\\d+_ham', N, - string.format('NN learning set (spam) for rule "%s"; settings id "%s"', - rule.prefix, selt.name), { - persistent = true, - type = 'list', - }) - end - - for k,rule in pairs(settings.rules) do - if not rule.allowed_settings then - rule.allowed_settings = {} - elseif rule.allowed_settings == 'all' then - -- Extract all settings ids - rule.allowed_settings = lua_util.keys(lua_settings.all_settings()) - end - - -- Convert to a map <setting_id> -> true - rule.allowed_settings = lua_util.list_to_hash(rule.allowed_settings) - - -- Check if we can work without settings - if k == 'default' or type(rule.default) ~= 'boolean' then - rule.default = true - end - - rule.settings = {} - - if rule.default then - local default_settings = { - symbols = lua_settings.default_symbols(), - name = 'default' - } - - process_settings_elt(rule, default_settings) - rule.settings[-1] = default_settings -- Magic constant, but OK as settings are positive int32 - end - - -- Now, for each allowed settings, we store sorted symbols + digest - -- We set table rule.settings[id] -> { name = name, symbols = symbols, digest = digest } - for s,_ in pairs(rule.allowed_settings) do - -- Here, we have a name, set of symbols and - local settings_id = s - if type(settings_id) ~= 'number' then - settings_id = lua_settings.numeric_settings_id(s) - end - local selt = lua_settings.settings_by_id(settings_id) - - local nelt = { - symbols = selt.symbols, -- Already sorted - name = selt.name - } - - process_settings_elt(rule, nelt) - for id,ex in pairs(rule.settings) do - if type(ex) == 'table' then - if nelt and lua_util.distance_sorted(ex.symbols, nelt.symbols) == 0 then - -- Equal symbols, add reference - lua_util.debugm(N, rspamd_config, - 'added reference from settings id %s to %s; same symbols', - nelt.name, ex.name) - rule.settings[settings_id] = id - nelt = nil - end - end - end - - if nelt then - rule.settings[settings_id] = nelt - lua_util.debugm(N, rspamd_config, 'added new settings id %s(%s) to %s', - nelt.name, settings_id, rule.prefix) - end - end - end -end - -redis_params = lua_redis.parse_redis_server('neural') - -if not redis_params then - redis_params = lua_redis.parse_redis_server('fann_redis') -end - -- Initialization part -if not (module_config and type(module_config) == 'table') or not redis_params then +if not (neural_common.module_config and type(neural_common.module_config) == 'table') + or not neural_common.redis_params then rspamd_logger.infox(rspamd_config, 'Module is unconfigured') lua_util.disable_module(N, "redis") return end -local rules = module_config['rules'] +local rules = neural_common.module_config['rules'] if not rules then -- Use legacy configuration rules = {} - rules['default'] = module_config + rules['default'] = neural_common.module_config end local id = rspamd_config:register_symbol({ @@ -1582,8 +872,7 @@ local id = rspamd_config:register_symbol({ callback = ann_scores_filter }) -settings = lua_util.override_defaults(settings, module_config) -settings.rules = {} -- Reset unless validated further in the cycle +neural_common.settings.rules = {} -- Reset unless validated further in the cycle if settings.blacklisted_symbols and settings.blacklisted_symbols[1] then -- Transform to hash for simplicity @@ -1593,7 +882,7 @@ end -- Check all rules for k,r in pairs(rules) do local rule_elt = lua_util.override_defaults(default_options, r) - rule_elt['redis'] = redis_params + rule_elt['redis'] = neural_common.redis_params rule_elt['anns'] = {} -- Store ANNs here if not rule_elt.prefix then @@ -1651,11 +940,12 @@ rspamd_config:register_symbol({ callback = ann_push_vector }) +-- We also need to deal with settings +rspamd_config:add_post_init(neural_common.process_rules_settings) + -- Add training scripts for _,rule in pairs(settings.rules) do - load_scripts(rule.redis) - -- We also need to deal with settings - rspamd_config:add_post_init(process_rules_settings) + neural_common.load_scripts(rule.redis) -- This function will check ANNs in Redis when a worker is loaded rspamd_config:add_on_load(function(cfg, ev_base, worker) if worker:is_scanner() then |