diff options
-rw-r--r-- | CMakeLists.txt | 12 | ||||
-rw-r--r-- | contrib/kann/CMakeLists.txt | 22 | ||||
-rw-r--r-- | contrib/kann/LICENSE.txt | 24 | ||||
-rw-r--r-- | contrib/kann/kann.c | 977 | ||||
-rw-r--r-- | contrib/kann/kann.h | 235 | ||||
-rw-r--r-- | contrib/kann/kautodiff.c | 2396 | ||||
-rw-r--r-- | contrib/kann/kautodiff.h | 246 |
7 files changed, 3908 insertions, 4 deletions
diff --git a/CMakeLists.txt b/CMakeLists.txt index 80e00e67e..7e2bb0184 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -370,7 +370,7 @@ ENDFUNCTION(INSTALL_IF_NOT_EXISTS) MACRO(ProcessPackage PKG_NAME) CMAKE_PARSE_ARGUMENTS(PKG "OPTIONAL" "ROOT;INCLUDE" - "LIBRARY;INCLUDE_SUFFIXES;LIB_SUFFIXES;MODULES" ${ARGN}) + "LIBRARY;INCLUDE_SUFFIXES;LIB_SUFFIXES;MODULES;LIB_OUTPUT" ${ARGN}) IF(NOT PKG_LIBRARY) SET(PKG_LIBRARY "${PKG_NAME}") @@ -378,6 +378,9 @@ MACRO(ProcessPackage PKG_NAME) IF(NOT PKG_INCLUDE) SET(PKG_INCLUDE "${PKG_NAME}.h") ENDIF() + IF(NOT PKG_LIB_OUTPUT) + SET(PKG_LIB_OUTPUT RSPAMD_REQUIRED_LIBRARIES) + ENDIF() IF(NOT PKG_ROOT AND PKG_MODULES) PKG_SEARCH_MODULE(${PKG_NAME} ${PKG_MODULES}) @@ -406,7 +409,7 @@ MACRO(ProcessPackage PKG_NAME) FOREACH(_arg ${${_XPREFIX}_LDFLAGS_OTHER}) SET(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} ${_arg}") ENDFOREACH(_arg ${${_XPREFIX}_LDFLAGS_OTHER}) - LIST(APPEND RSPAMD_REQUIRED_LIBRARIES "${${_XPREFIX}_LIBRARIES}") + LIST(APPEND ${PKG_LIB_OUTPUT} "${${_XPREFIX}_LIBRARIES}") INCLUDE_DIRECTORIES(${${_XPREFIX}_INCLUDEDIR}) ELSE() IF(NOT ${PKG_NAME}_GUESSED) @@ -442,7 +445,7 @@ MACRO(ProcessPackage PKG_NAME) GET_FILENAME_COMPONENT(_lib_path "${_lib}" PATH) INCLUDE_DIRECTORIES("${_stripped_incl}") LINK_DIRECTORIES("${_lib_path}") - LIST(APPEND RSPAMD_REQUIRED_LIBRARIES ${_lib}) + LIST(APPEND ${PKG_LIB_OUTPUT} ${_lib}) SET(${PKG_NAME}_INCLUDE "${_stripped_incl}" CACHE INTERNAL "") SET(${PKG_NAME}_LIBRARY_PATH "${_lib_path}" CACHE INTERNAL "") SET(${PKG_NAME}_LIBRARY "${_lib}" CACHE INTERNAL "") @@ -455,7 +458,7 @@ MACRO(ProcessPackage PKG_NAME) MESSAGE(STATUS "Found package ${PKG_NAME} (cached)") INCLUDE_DIRECTORIES("${${PKG_NAME}_INCLUDE}") LINK_DIRECTORIES("${${PKG_NAME}_LIBRARY_PATH}") - LIST(APPEND RSPAMD_REQUIRED_LIBRARIES "${${PKG_NAME}_LIBRARY}") + LIST(APPEND ${PKG_LIB_OUTPUT} "${${PKG_NAME}_LIBRARY}") ENDIF() ENDIF(${PKG_NAME}_FOUND) @@ -1211,6 +1214,7 @@ ADD_SUBDIRECTORY(contrib/lua-lpeg) ADD_SUBDIRECTORY(contrib/linenoise) ADD_SUBDIRECTORY(contrib/t1ha) ADD_SUBDIRECTORY(contrib/libev) +ADD_SUBDIRECTORY(contrib/kann) IF (ENABLE_SNOWBALL MATCHES "ON") LIST(APPEND RSPAMD_REQUIRED_LIBRARIES stemmer) diff --git a/contrib/kann/CMakeLists.txt b/contrib/kann/CMakeLists.txt new file mode 100644 index 000000000..d7bd73d28 --- /dev/null +++ b/contrib/kann/CMakeLists.txt @@ -0,0 +1,22 @@ +SET(LIBKANNSRC kautodiff.c kann.c) + +IF(ENABLE_FULL_DEBUG MATCHES "OFF") + if ("${CMAKE_C_COMPILER_ID}" STREQUAL "Clang" OR "${CMAKE_C_COMPILER_ID}" STREQUAL "GNU") + SET(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -O3") + endif () +ENDIF() + +ADD_LIBRARY(rspamd-kann SHARED ${LIBKANNSRC}) + +ProcessPackage(BLAS OPTIONAL LIBRARY openblas blas + INCLUDE cblas.h INCLUDE_SUFFIXES include/openblas + include/blas + ROOT ${BLAS_ROOT_DIR} + LIB_OUTPUT BLAS_REQUIRED_LIBRARIES) +IF(WITH_BLAS) + MESSAGE(STATUS "Use openblas to accelerate kann") + TARGET_LINK_LIBRARIES(rspamd-kann ${BLAS_REQUIRED_LIBRARIES}) + ADD_DEFINITIONS(-DHAVE_CBLAS) +ENDIF(WITH_BLAS) + +INSTALL(TARGETS rspamd-kann LIBRARY DESTINATION ${RSPAMD_LIBDIR})
\ No newline at end of file diff --git a/contrib/kann/LICENSE.txt b/contrib/kann/LICENSE.txt new file mode 100644 index 000000000..8b2cf1141 --- /dev/null +++ b/contrib/kann/LICENSE.txt @@ -0,0 +1,24 @@ +The MIT License + +Copyright (c) 2018-2019 Dana-Farber Cancer Institute + 2016-2018 Broad Institute + +Permission is hereby granted, free of charge, to any person obtaining +a copy of this software and associated documentation files (the +"Software"), to deal in the Software without restriction, including +without limitation the rights to use, copy, modify, merge, publish, +distribute, sublicense, and/or sell copies of the Software, and to +permit persons to whom the Software is furnished to do so, subject to +the following conditions: + +The above copyright notice and this permission notice shall be +included in all copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS +BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN +ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. diff --git a/contrib/kann/kann.c b/contrib/kann/kann.c new file mode 100644 index 000000000..0af15fb2a --- /dev/null +++ b/contrib/kann/kann.c @@ -0,0 +1,977 @@ +#include <math.h> +#include <float.h> +#include <string.h> +#include <stdlib.h> +#include <assert.h> +#include <stdarg.h> +#include "kann.h" + +int kann_verbose = 3; + +/****************************************** + *** @@BASIC: fundamental KANN routines *** + ******************************************/ + +static void kad_ext_collate(int n, kad_node_t **a, float **_x, float **_g, float **_c) +{ + int i, j, k, l, n_var; + float *x, *g, *c; + n_var = kad_size_var(n, a); + x = *_x = (float*)realloc(*_x, n_var * sizeof(float)); + g = *_g = (float*)realloc(*_g, n_var * sizeof(float)); + c = *_c = (float*)realloc(*_c, kad_size_const(n, a) * sizeof(float)); + memset(g, 0, n_var * sizeof(float)); + for (i = j = k = 0; i < n; ++i) { + kad_node_t *v = a[i]; + if (kad_is_var(v)) { + l = kad_len(v); + memcpy(&x[j], v->x, l * sizeof(float)); + free(v->x); + v->x = &x[j]; + v->g = &g[j]; + j += l; + } else if (kad_is_const(v)) { + l = kad_len(v); + memcpy(&c[k], v->x, l * sizeof(float)); + free(v->x); + v->x = &c[k]; + k += l; + } + } +} + +static void kad_ext_sync(int n, kad_node_t **a, float *x, float *g, float *c) +{ + int i, j, k; + for (i = j = k = 0; i < n; ++i) { + kad_node_t *v = a[i]; + if (kad_is_var(v)) { + v->x = &x[j]; + v->g = &g[j]; + j += kad_len(v); + } else if (kad_is_const(v)) { + v->x = &c[k]; + k += kad_len(v); + } + } +} + +kann_t *kann_new(kad_node_t *cost, int n_rest, ...) +{ + kann_t *a; + int i, n_roots = 1 + n_rest, has_pivot = 0, has_recur = 0; + kad_node_t **roots; + va_list ap; + + if (cost->n_d != 0) return 0; + + va_start(ap, n_rest); + roots = (kad_node_t**)malloc((n_roots + 1) * sizeof(kad_node_t*)); + for (i = 0; i < n_rest; ++i) + roots[i] = va_arg(ap, kad_node_t*); + roots[i++] = cost; + va_end(ap); + + cost->ext_flag |= KANN_F_COST; + a = (kann_t*)calloc(1, sizeof(kann_t)); + a->v = kad_compile_array(&a->n, n_roots, roots); + + for (i = 0; i < a->n; ++i) { + if (a->v[i]->pre) has_recur = 1; + if (kad_is_pivot(a->v[i])) has_pivot = 1; + } + if (has_recur && !has_pivot) { /* an RNN that doesn't have a pivot; then add a pivot on top of cost and recompile */ + cost->ext_flag &= ~KANN_F_COST; + roots[n_roots-1] = cost = kad_avg(1, &cost), cost->ext_flag |= KANN_F_COST; + free(a->v); + a->v = kad_compile_array(&a->n, n_roots, roots); + } + kad_ext_collate(a->n, a->v, &a->x, &a->g, &a->c); + free(roots); + return a; +} + +kann_t *kann_clone(kann_t *a, int batch_size) +{ + kann_t *b; + b = (kann_t*)calloc(1, sizeof(kann_t)); + b->n = a->n; + b->v = kad_clone(a->n, a->v, batch_size); + kad_ext_collate(b->n, b->v, &b->x, &b->g, &b->c); + return b; +} + +kann_t *kann_unroll_array(kann_t *a, int *len) +{ + kann_t *b; + b = (kann_t*)calloc(1, sizeof(kann_t)); + b->x = a->x, b->g = a->g, b->c = a->c; /* these arrays are shared */ + b->v = kad_unroll(a->n, a->v, &b->n, len); + return b; +} + +kann_t *kann_unroll(kann_t *a, ...) +{ + kann_t *b; + va_list ap; + int i, n_pivots, *len; + n_pivots = kad_n_pivots(a->n, a->v); + len = (int*)calloc(n_pivots, sizeof(int)); + va_start(ap, a); + for (i = 0; i < n_pivots; ++i) len[i] = va_arg(ap, int); + va_end(ap); + b = kann_unroll_array(a, len); + free(len); + return b; +} + +void kann_delete_unrolled(kann_t *a) +{ + if (a && a->mt) kann_mt(a, 0, 0); + if (a && a->v) kad_delete(a->n, a->v); + free(a); +} + +void kann_delete(kann_t *a) +{ + if (a == 0) return; + free(a->x); free(a->g); free(a->c); + kann_delete_unrolled(a); +} + +static void kann_switch_core(kann_t *a, int is_train) +{ + int i; + for (i = 0; i < a->n; ++i) + if (a->v[i]->op == 12 && a->v[i]->n_child == 2) + *(int32_t*)a->v[i]->ptr = !!is_train; +} + +#define chk_flg(flag, mask) ((mask) == 0 || ((flag) & (mask))) +#define chk_lbl(label, query) ((query) == 0 || (label) == (query)) + +int kann_find(const kann_t *a, uint32_t ext_flag, int32_t ext_label) +{ + int i, k, r = -1; + for (i = k = 0; i < a->n; ++i) + if (chk_flg(a->v[i]->ext_flag, ext_flag) && chk_lbl(a->v[i]->ext_label, ext_label)) + ++k, r = i; + return k == 1? r : k == 0? -1 : -2; +} + +int kann_feed_bind(kann_t *a, uint32_t ext_flag, int32_t ext_label, float **x) +{ + int i, k; + if (x == 0) return 0; + for (i = k = 0; i < a->n; ++i) + if (kad_is_feed(a->v[i]) && chk_flg(a->v[i]->ext_flag, ext_flag) && chk_lbl(a->v[i]->ext_label, ext_label)) + a->v[i]->x = x[k++]; + return k; +} + +int kann_feed_dim(const kann_t *a, uint32_t ext_flag, int32_t ext_label) +{ + int i, k, n = 0; + for (i = k = 0; i < a->n; ++i) + if (kad_is_feed(a->v[i]) && chk_flg(a->v[i]->ext_flag, ext_flag) && chk_lbl(a->v[i]->ext_label, ext_label)) + ++k, n = a->v[i]->n_d > 1? kad_len(a->v[i]) / a->v[i]->d[0] : a->v[i]->n_d == 1? a->v[i]->d[0] : 1; + return k == 1? n : k == 0? -1 : -2; +} + +static float kann_cost_core(kann_t *a, int cost_label, int cal_grad) +{ + int i_cost; + float cost; + i_cost = kann_find(a, KANN_F_COST, cost_label); + assert(i_cost >= 0); + cost = *kad_eval_at(a->n, a->v, i_cost); + if (cal_grad) kad_grad(a->n, a->v, i_cost); + return cost; +} + +int kann_eval(kann_t *a, uint32_t ext_flag, int ext_label) +{ + int i, k; + for (i = k = 0; i < a->n; ++i) + if (chk_flg(a->v[i]->ext_flag, ext_flag) && chk_lbl(a->v[i]->ext_label, ext_label)) + ++k, a->v[i]->tmp = 1; + kad_eval_marked(a->n, a->v); + return k; +} + +void kann_rnn_start(kann_t *a) +{ + int i; + kann_set_batch_size(a, 1); + for (i = 0; i < a->n; ++i) { + kad_node_t *p = a->v[i]; + if (p->pre) { /* NB: BE CAREFUL of the interaction between kann_rnn_start() and kann_set_batch_size() */ + kad_node_t *q = p->pre; + if (q->x) memcpy(p->x, q->x, kad_len(p) * sizeof(float)); + else memset(p->x, 0, kad_len(p) * sizeof(float)); + if (q->n_child > 0) free(q->x); + q->x = p->x; + } + } +} + +void kann_rnn_end(kann_t *a) +{ + int i; + kad_ext_sync(a->n, a->v, a->x, a->g, a->c); + for (i = 0; i < a->n; ++i) + if (a->v[i]->pre && a->v[i]->pre->n_child > 0) + a->v[i]->pre->x = (float*)calloc(kad_len(a->v[i]->pre), sizeof(float)); +} + +static int kann_class_error_core(const kann_t *ann, int *base) +{ + int i, j, k, m, n, off, n_err = 0; + for (i = 0, *base = 0; i < ann->n; ++i) { + kad_node_t *p = ann->v[i]; + if (((p->op == 13 && (p->n_child == 2 || p->n_child == 3)) || (p->op == 22 && p->n_child == 2)) && p->n_d == 0) { /* ce_bin or ce_multi */ + kad_node_t *x = p->child[0], *t = p->child[1]; + n = t->d[t->n_d - 1], m = kad_len(t) / n; + for (j = off = 0; j < m; ++j, off += n) { + float t_sum = 0.0f, t_min = 1.0f, t_max = 0.0f, x_max = 0.0f, x_min = 1.0f; + int x_max_k = -1, t_max_k = -1; + for (k = 0; k < n; ++k) { + float xk = x->x[off+k], tk = t->x[off+k]; + t_sum += tk; + t_min = t_min < tk? t_min : tk; + x_min = x_min < xk? x_min : xk; + if (t_max < tk) t_max = tk, t_max_k = k; + if (x_max < xk) x_max = xk, x_max_k = k; + } + if (t_sum - 1.0f == 0 && t_min >= 0.0f && x_min >= 0.0f && x_max <= 1.0f) { + ++(*base); + n_err += (x_max_k != t_max_k); + } + } + } + } + return n_err; +} + +/************************* + * @@MT: multi-threading * + *************************/ + +#ifdef HAVE_PTHREAD +#include <pthread.h> + +struct mtaux_t; + +typedef struct { /* per-worker data */ + kann_t *a; + float cost; + int action; + pthread_t tid; + struct mtaux_t *g; +} mtaux1_t; + +typedef struct mtaux_t { /* cross-worker data */ + int n_threads, max_batch_size; + int cal_grad, cost_label, eval_out; + volatile int n_idle; /* we will be busy waiting on this, so volatile necessary */ + pthread_mutex_t mtx; + pthread_cond_t cv; + mtaux1_t *mt; +} mtaux_t; + +static void *mt_worker(void *data) /* pthread worker */ +{ + mtaux1_t *mt1 = (mtaux1_t*)data; + mtaux_t *mt = mt1->g; + for (;;) { + int action; + pthread_mutex_lock(&mt->mtx); + mt1->action = 0; + ++mt->n_idle; + while (mt1->action == 0) + pthread_cond_wait(&mt->cv, &mt->mtx); + action = mt1->action; + pthread_mutex_unlock(&mt->mtx); + if (action == -1) break; + + if (mt->eval_out) kann_eval(mt1->a, KANN_F_OUT, 0); + else mt1->cost = kann_cost_core(mt1->a, mt->cost_label, mt->cal_grad); + } + pthread_exit(0); +} + +static void mt_destroy(mtaux_t *mt) /* de-allocate an entire mtaux_t struct */ +{ + int i; + pthread_mutex_lock(&mt->mtx); + mt->n_idle = 0; + for (i = 1; i < mt->n_threads; ++i) mt->mt[i].action = -1; + pthread_cond_broadcast(&mt->cv); + pthread_mutex_unlock(&mt->mtx); + for (i = 1; i < mt->n_threads; ++i) pthread_join(mt->mt[i].tid, 0); + for (i = 0; i < mt->n_threads; ++i) kann_delete(mt->mt[i].a); + free(mt->mt); + pthread_cond_destroy(&mt->cv); + pthread_mutex_destroy(&mt->mtx); + free(mt); +} + +void kann_mt(kann_t *ann, int n_threads, int max_batch_size) +{ + mtaux_t *mt; + int i, k; + + if (n_threads <= 1) { + if (ann->mt) mt_destroy((mtaux_t*)ann->mt); + ann->mt = 0; + return; + } + if (n_threads > max_batch_size) n_threads = max_batch_size; + if (n_threads <= 1) return; + + mt = (mtaux_t*)calloc(1, sizeof(mtaux_t)); + mt->n_threads = n_threads, mt->max_batch_size = max_batch_size; + pthread_mutex_init(&mt->mtx, 0); + pthread_cond_init(&mt->cv, 0); + mt->mt = (mtaux1_t*)calloc(n_threads, sizeof(mtaux1_t)); + for (i = k = 0; i < n_threads; ++i) { + int size = (max_batch_size - k) / (n_threads - i); + mt->mt[i].a = kann_clone(ann, size); + mt->mt[i].g = mt; + k += size; + } + for (i = 1; i < n_threads; ++i) + pthread_create(&mt->mt[i].tid, 0, mt_worker, &mt->mt[i]); + while (mt->n_idle < n_threads - 1); /* busy waiting until all threads in sync */ + ann->mt = mt; +} + +static void mt_kickoff(kann_t *a, int cost_label, int cal_grad, int eval_out) +{ + mtaux_t *mt = (mtaux_t*)a->mt; + int i, j, k, B, n_var; + + B = kad_sync_dim(a->n, a->v, -1); /* get the current batch size */ + assert(B <= mt->max_batch_size); /* TODO: can be relaxed */ + n_var = kann_size_var(a); + + pthread_mutex_lock(&mt->mtx); + mt->cost_label = cost_label, mt->cal_grad = cal_grad, mt->eval_out = eval_out; + for (i = k = 0; i < mt->n_threads; ++i) { + int size = (B - k) / (mt->n_threads - i); + for (j = 0; j < a->n; ++j) + if (kad_is_feed(a->v[j])) + mt->mt[i].a->v[j]->x = &a->v[j]->x[k * kad_len(a->v[j]) / a->v[j]->d[0]]; + kad_sync_dim(mt->mt[i].a->n, mt->mt[i].a->v, size); /* TODO: we can point ->x to internal nodes, too */ + k += size; + memcpy(mt->mt[i].a->x, a->x, n_var * sizeof(float)); + mt->mt[i].action = 1; + } + mt->n_idle = 0; + pthread_cond_broadcast(&mt->cv); + pthread_mutex_unlock(&mt->mtx); +} + +float kann_cost(kann_t *a, int cost_label, int cal_grad) +{ + mtaux_t *mt = (mtaux_t*)a->mt; + int i, j, B, k, n_var; + float cost; + + if (mt == 0) return kann_cost_core(a, cost_label, cal_grad); + B = kad_sync_dim(a->n, a->v, -1); /* get the current batch size */ + n_var = kann_size_var(a); + + mt_kickoff(a, cost_label, cal_grad, 0); + mt->mt[0].cost = kann_cost_core(mt->mt[0].a, cost_label, cal_grad); + while (mt->n_idle < mt->n_threads - 1); /* busy waiting until all threads in sync */ + + memset(a->g, 0, n_var * sizeof(float)); /* TODO: check if this is necessary when cal_grad is false */ + for (i = k = 0, cost = 0.0f; i < mt->n_threads; ++i) { + int size = (B - k) / (mt->n_threads - i); + cost += mt->mt[i].cost * size / B; + kad_saxpy(n_var, (float)size / B, mt->mt[i].a->g, a->g); + k += size; + } + for (j = 0; j < a->n; ++j) { /* copy values back at recurrent nodes (needed by textgen; TODO: temporary solution) */ + kad_node_t *p = a->v[j]; + if (p->pre && p->n_d >= 2 && p->d[0] == B) { + for (i = k = 0; i < mt->n_threads; ++i) { + kad_node_t *q = mt->mt[i].a->v[j]; + memcpy(&p->x[k], q->x, kad_len(q) * sizeof(float)); + k += kad_len(q); + } + } + } + return cost; +} + +int kann_eval_out(kann_t *a) +{ + mtaux_t *mt = (mtaux_t*)a->mt; + int j, B, n_eval; + if (mt == 0) return kann_eval(a, KANN_F_OUT, 0); + B = kad_sync_dim(a->n, a->v, -1); /* get the current batch size */ + mt_kickoff(a, 0, 0, 1); + n_eval = kann_eval(mt->mt[0].a, KANN_F_OUT, 0); + while (mt->n_idle < mt->n_threads - 1); /* busy waiting until all threads in sync */ + for (j = 0; j < a->n; ++j) { /* copy output values back */ + kad_node_t *p = a->v[j]; + if (p->ext_flag & KANN_F_OUT) { + int i, t, k, d0 = p->d[0] / B, d1 = 1; /* for RNN, p->d[0] may equal unroll_len * batch_size */ + assert(p->d[0] % B == 0); + for (i = 1; i < p->n_d; ++i) d1 *= p->d[i]; + for (i = 0; i < d0; ++i) { + for (t = k = 0; t < mt->n_threads; ++t) { /* similar to the forward pass of kad_op_concat() */ + kad_node_t *q = mt->mt[t].a->v[j]; + int size = q->d[0] / d0; + memcpy(&p->x[(i * B + k) * d1], &q->x[i * size * d1], size * d1 * sizeof(float)); + k += size; + } + } + } + } + return n_eval; +} + +int kann_class_error(const kann_t *ann, int *base) +{ + mtaux_t *mt = (mtaux_t*)ann->mt; + int i, n_err = 0, b = 0; + if (mt == 0) return kann_class_error_core(ann, base); + for (i = 0; i < mt->n_threads; ++i) { + n_err += kann_class_error_core(mt->mt[i].a, &b); + *base += b; + } + return n_err; +} + +void kann_switch(kann_t *ann, int is_train) +{ + mtaux_t *mt = (mtaux_t*)ann->mt; + int i; + if (mt == 0) { + kann_switch_core(ann, is_train); + return; + } + for (i = 0; i < mt->n_threads; ++i) + kann_switch_core(mt->mt[i].a, is_train); +} +#else +void kann_mt(kann_t *ann, int n_threads, int max_batch_size) {} +float kann_cost(kann_t *a, int cost_label, int cal_grad) { return kann_cost_core(a, cost_label, cal_grad); } +int kann_eval_out(kann_t *a) { return kann_eval(a, KANN_F_OUT, 0); } +int kann_class_error(const kann_t *a, int *base) { return kann_class_error_core(a, base); } +void kann_switch(kann_t *ann, int is_train) { return kann_switch_core(ann, is_train); } +#endif + +/*********************** + *** @@IO: model I/O *** + ***********************/ + +#define KANN_MAGIC "KAN\1" + +void kann_save_fp(FILE *fp, kann_t *ann) +{ + kann_set_batch_size(ann, 1); + fwrite(KANN_MAGIC, 1, 4, fp); + kad_save(fp, ann->n, ann->v); + fwrite(ann->x, sizeof(float), kann_size_var(ann), fp); + fwrite(ann->c, sizeof(float), kann_size_const(ann), fp); +} + +void kann_save(const char *fn, kann_t *ann) +{ + FILE *fp; + fp = fn && strcmp(fn, "-")? fopen(fn, "wb") : stdout; + kann_save_fp(fp, ann); + fclose(fp); +} + +kann_t *kann_load_fp(FILE *fp) +{ + char magic[4]; + kann_t *ann; + int n_var, n_const; + + fread(magic, 1, 4, fp); + if (strncmp(magic, KANN_MAGIC, 4) != 0) { + fclose(fp); + return 0; + } + ann = (kann_t*)calloc(1, sizeof(kann_t)); + ann->v = kad_load(fp, &ann->n); + n_var = kad_size_var(ann->n, ann->v); + n_const = kad_size_const(ann->n, ann->v); + ann->x = (float*)malloc(n_var * sizeof(float)); + ann->g = (float*)calloc(n_var, sizeof(float)); + ann->c = (float*)malloc(n_const * sizeof(float)); + fread(ann->x, sizeof(float), n_var, fp); + fread(ann->c, sizeof(float), n_const, fp); + kad_ext_sync(ann->n, ann->v, ann->x, ann->g, ann->c); + return ann; +} + +kann_t *kann_load(const char *fn) +{ + FILE *fp; + kann_t *ann; + fp = fn && strcmp(fn, "-")? fopen(fn, "rb") : stdin; + ann = kann_load_fp(fp); + fclose(fp); + return ann; +} + +/********************************************** + *** @@LAYER: layers and model generation *** + **********************************************/ + +/********** General but more complex APIs **********/ + +kad_node_t *kann_new_leaf_array(int *offset, kad_node_p *par, uint8_t flag, float x0_01, int n_d, int32_t d[KAD_MAX_DIM]) +{ + int i, len, off = offset && par? *offset : -1; + kad_node_t *p; + + if (off >= 0 && par[off]) return par[(*offset)++]; + p = (kad_node_t*)calloc(1, sizeof(kad_node_t)); + p->n_d = n_d, p->flag = flag; + memcpy(p->d, d, n_d * sizeof(int32_t)); + len = kad_len(p); + p->x = (float*)calloc(len, sizeof(float)); + if (p->n_d <= 1) { + for (i = 0; i < len; ++i) + p->x[i] = x0_01; + } else { + double sdev_inv; + sdev_inv = 1.0 / sqrt((double)len / p->d[0]); + for (i = 0; i < len; ++i) + p->x[i] = (float)(kad_drand_normal(0) * sdev_inv); + } + if (off >= 0) par[off] = p, ++(*offset); + return p; +} + +kad_node_t *kann_new_leaf2(int *offset, kad_node_p *par, uint8_t flag, float x0_01, int n_d, ...) +{ + int32_t i, d[KAD_MAX_DIM]; + va_list ap; + va_start(ap, n_d); for (i = 0; i < n_d; ++i) d[i] = va_arg(ap, int); va_end(ap); + return kann_new_leaf_array(offset, par, flag, x0_01, n_d, d); +} + +kad_node_t *kann_layer_dense2(int *offset, kad_node_p *par, kad_node_t *in, int n1) +{ + int n0; + kad_node_t *w, *b; + n0 = in->n_d >= 2? kad_len(in) / in->d[0] : kad_len(in); + w = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n0); + b = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 1, n1); + return kad_add(kad_cmul(in, w), b); +} + +kad_node_t *kann_layer_dropout2(int *offset, kad_node_p *par, kad_node_t *t, float r) +{ + kad_node_t *x[2], *cr; + cr = kann_new_leaf2(offset, par, KAD_CONST, r, 0); + x[0] = t, x[1] = kad_dropout(t, cr); + return kad_switch(2, x); +} + +kad_node_t *kann_layer_layernorm2(int *offset, kad_node_t **par, kad_node_t *in) +{ + int n0; + kad_node_t *alpha, *beta; + n0 = in->n_d >= 2? kad_len(in) / in->d[0] : kad_len(in); + alpha = kann_new_leaf2(offset, par, KAD_VAR, 1.0f, 1, n0); + beta = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 1, n0); + return kad_add(kad_mul(kad_stdnorm(in), alpha), beta); +} + +static inline kad_node_t *cmul_norm2(int *offset, kad_node_t **par, kad_node_t *x, kad_node_t *w, int use_norm) +{ + return use_norm? kann_layer_layernorm2(offset, par, kad_cmul(x, w)) : kad_cmul(x, w); +} + +kad_node_t *kann_layer_rnn2(int *offset, kad_node_t **par, kad_node_t *in, kad_node_t *h0, int rnn_flag) +{ + int n0, n1 = h0->d[h0->n_d-1], use_norm = !!(rnn_flag & KANN_RNN_NORM); + kad_node_t *t, *w, *u, *b, *out; + + u = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n1); + b = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 1, n1); + t = cmul_norm2(offset, par, h0, u, use_norm); + if (in) { + n0 = in->n_d >= 2? kad_len(in) / in->d[0] : kad_len(in); + w = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n0); + t = kad_add(cmul_norm2(offset, par, in, w, use_norm), t); + } + out = kad_tanh(kad_add(t, b)); + out->pre = h0; + return out; +} + +kad_node_t *kann_layer_gru2(int *offset, kad_node_t **par, kad_node_t *in, kad_node_t *h0, int rnn_flag) +{ + int n0 = 0, n1 = h0->d[h0->n_d-1], use_norm = !!(rnn_flag & KANN_RNN_NORM); + kad_node_t *t, *r, *z, *w, *u, *b, *s, *out; + + if (in) n0 = in->n_d >= 2? kad_len(in) / in->d[0] : kad_len(in); + /* z = sigm(x_t * W_z + h_{t-1} * U_z + b_z) */ + u = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n1); + b = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 1, n1); + t = cmul_norm2(offset, par, h0, u, use_norm); + if (in) { + w = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n0); + t = kad_add(cmul_norm2(offset, par, in, w, use_norm), t); + } + z = kad_sigm(kad_add(t, b)); + /* r = sigm(x_t * W_r + h_{t-1} * U_r + b_r) */ + u = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n1); + b = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 1, n1); + t = cmul_norm2(offset, par, h0, u, use_norm); + if (in) { + w = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n0); + t = kad_add(cmul_norm2(offset, par, in, w, use_norm), t); + } + r = kad_sigm(kad_add(t, b)); + /* s = tanh(x_t * W_s + (h_{t-1} # r) * U_s + b_s) */ + u = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n1); + b = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 1, n1); + t = cmul_norm2(offset, par, kad_mul(r, h0), u, use_norm); + if (in) { + w = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n0); + t = kad_add(cmul_norm2(offset, par, in, w, use_norm), t); + } + s = kad_tanh(kad_add(t, b)); + /* h_t = z # h_{t-1} + (1 - z) # s */ + out = kad_add(kad_mul(kad_1minus(z), s), kad_mul(z, h0)); + out->pre = h0; + return out; +} + +/********** APIs without offset & par **********/ + +kad_node_t *kann_new_leaf(uint8_t flag, float x0_01, int n_d, ...) +{ + int32_t i, d[KAD_MAX_DIM]; + va_list ap; + va_start(ap, n_d); for (i = 0; i < n_d; ++i) d[i] = va_arg(ap, int); va_end(ap); + return kann_new_leaf_array(0, 0, flag, x0_01, n_d, d); +} + +kad_node_t *kann_new_scalar(uint8_t flag, float x) { return kann_new_leaf(flag, x, 0); } +kad_node_t *kann_new_weight(int n_row, int n_col) { return kann_new_leaf(KAD_VAR, 0.0f, 2, n_row, n_col); } +kad_node_t *kann_new_vec(int n, float x) { return kann_new_leaf(KAD_VAR, x, 1, n); } +kad_node_t *kann_new_bias(int n) { return kann_new_vec(n, 0.0f); } +kad_node_t *kann_new_weight_conv2d(int n_out, int n_in, int k_row, int k_col) { return kann_new_leaf(KAD_VAR, 0.0f, 4, n_out, n_in, k_row, k_col); } +kad_node_t *kann_new_weight_conv1d(int n_out, int n_in, int kernel_len) { return kann_new_leaf(KAD_VAR, 0.0f, 3, n_out, n_in, kernel_len); } + +kad_node_t *kann_layer_input(int n1) +{ + kad_node_t *t; + t = kad_feed(2, 1, n1), t->ext_flag |= KANN_F_IN; + return t; +} + +kad_node_t *kann_layer_dense(kad_node_t *in, int n1) { return kann_layer_dense2(0, 0, in, n1); } +kad_node_t *kann_layer_dropout(kad_node_t *t, float r) { return kann_layer_dropout2(0, 0, t, r); } +kad_node_t *kann_layer_layernorm(kad_node_t *in) { return kann_layer_layernorm2(0, 0, in); } + +kad_node_t *kann_layer_rnn(kad_node_t *in, int n1, int rnn_flag) +{ + kad_node_t *h0; + h0 = (rnn_flag & KANN_RNN_VAR_H0)? kad_var(0, 0, 2, 1, n1) : kad_const(0, 2, 1, n1); + h0->x = (float*)calloc(n1, sizeof(float)); + return kann_layer_rnn2(0, 0, in, h0, rnn_flag); +} + +kad_node_t *kann_layer_gru(kad_node_t *in, int n1, int rnn_flag) +{ + kad_node_t *h0; + h0 = (rnn_flag & KANN_RNN_VAR_H0)? kad_var(0, 0, 2, 1, n1) : kad_const(0, 2, 1, n1); + h0->x = (float*)calloc(n1, sizeof(float)); + return kann_layer_gru2(0, 0, in, h0, rnn_flag); +} + +static kad_node_t *kann_cmul_norm(kad_node_t *x, kad_node_t *w) +{ + return kann_layer_layernorm(kad_cmul(x, w)); +} + +kad_node_t *kann_layer_lstm(kad_node_t *in, int n1, int rnn_flag) +{ + int n0; + kad_node_t *i, *f, *o, *g, *w, *u, *b, *h0, *c0, *c, *out; + kad_node_t *(*cmul)(kad_node_t*, kad_node_t*) = (rnn_flag & KANN_RNN_NORM)? kann_cmul_norm : kad_cmul; + + n0 = in->n_d >= 2? kad_len(in) / in->d[0] : kad_len(in); + h0 = (rnn_flag & KANN_RNN_VAR_H0)? kad_var(0, 0, 2, 1, n1) : kad_const(0, 2, 1, n1); + h0->x = (float*)calloc(n1, sizeof(float)); + c0 = (rnn_flag & KANN_RNN_VAR_H0)? kad_var(0, 0, 2, 1, n1) : kad_const(0, 2, 1, n1); + c0->x = (float*)calloc(n1, sizeof(float)); + + /* i = sigm(x_t * W_i + h_{t-1} * U_i + b_i) */ + w = kann_new_weight(n1, n0); + u = kann_new_weight(n1, n1); + b = kann_new_bias(n1); + i = kad_sigm(kad_add(kad_add(cmul(in, w), cmul(h0, u)), b)); + /* f = sigm(x_t * W_f + h_{t-1} * U_f + b_f) */ + w = kann_new_weight(n1, n0); + u = kann_new_weight(n1, n1); + b = kann_new_vec(n1, 1.0f); /* see Jozefowicz et al on using a large bias */ + f = kad_sigm(kad_add(kad_add(cmul(in, w), cmul(h0, u)), b)); + /* o = sigm(x_t * W_o + h_{t-1} * U_o + b_o) */ + w = kann_new_weight(n1, n0); + u = kann_new_weight(n1, n1); + b = kann_new_bias(n1); + o = kad_sigm(kad_add(kad_add(cmul(in, w), cmul(h0, u)), b)); + /* g = tanh(x_t * W_g + h_{t-1} * U_g + b_g) */ + w = kann_new_weight(n1, n0); + u = kann_new_weight(n1, n1); + b = kann_new_bias(n1); + g = kad_tanh(kad_add(kad_add(cmul(in, w), cmul(h0, u)), b)); + /* c_t = c_{t-1} # f + g # i */ + c = kad_add(kad_mul(f, c0), kad_mul(g, i)); /* can't be kad_mul(c0, f)!!! */ + c->pre = c0; + /* h_t = tanh(c_t) # o */ + if (rnn_flag & KANN_RNN_NORM) c = kann_layer_layernorm(c); /* see Ba et al (2016) about how to apply layer normalization to LSTM */ + out = kad_mul(kad_tanh(c), o); + out->pre = h0; + return out; +} + +kad_node_t *kann_layer_conv2d(kad_node_t *in, int n_flt, int k_rows, int k_cols, int stride_r, int stride_c, int pad_r, int pad_c) +{ + kad_node_t *w; + w = kann_new_weight_conv2d(n_flt, in->d[1], k_rows, k_cols); + return kad_conv2d(in, w, stride_r, stride_c, pad_r, pad_c); +} + +kad_node_t *kann_layer_conv1d(kad_node_t *in, int n_flt, int k_size, int stride, int pad) +{ + kad_node_t *w; + w = kann_new_weight_conv1d(n_flt, in->d[1], k_size); + return kad_conv1d(in, w, stride, pad); +} + +kad_node_t *kann_layer_cost(kad_node_t *t, int n_out, int cost_type) +{ + kad_node_t *cost = 0, *truth = 0; + assert(cost_type == KANN_C_CEB || cost_type == KANN_C_CEM || cost_type == KANN_C_CEB_NEG || cost_type == KANN_C_MSE); + t = kann_layer_dense(t, n_out); + truth = kad_feed(2, 1, n_out), truth->ext_flag |= KANN_F_TRUTH; + if (cost_type == KANN_C_MSE) { + cost = kad_mse(t, truth); + } else if (cost_type == KANN_C_CEB) { + t = kad_sigm(t); + cost = kad_ce_bin(t, truth); + } else if (cost_type == KANN_C_CEB_NEG) { + t = kad_tanh(t); + cost = kad_ce_bin_neg(t, truth); + } else if (cost_type == KANN_C_CEM) { + t = kad_softmax(t); + cost = kad_ce_multi(t, truth); + } + t->ext_flag |= KANN_F_OUT, cost->ext_flag |= KANN_F_COST; + return cost; +} + +void kann_shuffle(int n, int *s) +{ + int i, j, t; + for (i = 0; i < n; ++i) s[i] = i; + for (i = n; i > 0; --i) { + j = (int)(i * kad_drand(0)); + t = s[j], s[j] = s[i-1], s[i-1] = t; + } +} + +/*************************** + *** @@MIN: minimization *** + ***************************/ + +#ifdef __SSE__ +#include <xmmintrin.h> + +void kann_RMSprop(int n, float h0, const float *h, float decay, const float *g, float *t, float *r) +{ + int i, n4 = n>>2<<2; + __m128 vh, vg, vr, vt, vd, vd1, tmp, vtiny; + vh = _mm_set1_ps(h0); + vd = _mm_set1_ps(decay); + vd1 = _mm_set1_ps(1.0f - decay); + vtiny = _mm_set1_ps(1e-6f); + for (i = 0; i < n4; i += 4) { + vt = _mm_loadu_ps(&t[i]); + vr = _mm_loadu_ps(&r[i]); + vg = _mm_loadu_ps(&g[i]); + if (h) vh = _mm_loadu_ps(&h[i]); + vr = _mm_add_ps(_mm_mul_ps(vd1, _mm_mul_ps(vg, vg)), _mm_mul_ps(vd, vr)); + _mm_storeu_ps(&r[i], vr); + tmp = _mm_sub_ps(vt, _mm_mul_ps(_mm_mul_ps(vh, _mm_rsqrt_ps(_mm_add_ps(vtiny, vr))), vg)); + _mm_storeu_ps(&t[i], tmp); + } + for (; i < n; ++i) { + r[i] = (1. - decay) * g[i] * g[i] + decay * r[i]; + t[i] -= (h? h[i] : h0) / sqrtf(1e-6f + r[i]) * g[i]; + } +} +#else +void kann_RMSprop(int n, float h0, const float *h, float decay, const float *g, float *t, float *r) +{ + int i; + for (i = 0; i < n; ++i) { + float lr = h? h[i] : h0; + r[i] = (1.0f - decay) * g[i] * g[i] + decay * r[i]; + t[i] -= lr / sqrtf(1e-6f + r[i]) * g[i]; + } +} +#endif + +float kann_grad_clip(float thres, int n, float *g) +{ + int i; + double s2 = 0.0; + for (i = 0; i < n; ++i) + s2 += g[i] * g[i]; + s2 = sqrt(s2); + if (s2 > thres) + for (i = 0, s2 = 1.0 / s2; i < n; ++i) + g[i] *= (float)s2; + return (float)s2 / thres; +} + +/**************************************************************** + *** @@XY: simpler API for network with a single input/output *** + ****************************************************************/ + +int kann_train_fnn1(kann_t *ann, float lr, int mini_size, int max_epoch, int max_drop_streak, float frac_val, int n, float **_x, float **_y) +{ + int i, j, *shuf, n_train, n_val, n_in, n_out, n_var, n_const, drop_streak = 0, min_set = 0; + float **x, **y, *x1, *y1, *r, min_val_cost = FLT_MAX, *min_x, *min_c; + + n_in = kann_dim_in(ann); + n_out = kann_dim_out(ann); + if (n_in < 0 || n_out < 0) return -1; + n_var = kann_size_var(ann); + n_const = kann_size_const(ann); + r = (float*)calloc(n_var, sizeof(float)); + shuf = (int*)malloc(n * sizeof(int)); + x = (float**)malloc(n * sizeof(float*)); + y = (float**)malloc(n * sizeof(float*)); + kann_shuffle(n, shuf); + for (j = 0; j < n; ++j) + x[j] = _x[shuf[j]], y[j] = _y[shuf[j]]; + n_val = (int)(n * frac_val); + n_train = n - n_val; + min_x = (float*)malloc(n_var * sizeof(float)); + min_c = (float*)malloc(n_const * sizeof(float)); + + x1 = (float*)malloc(n_in * mini_size * sizeof(float)); + y1 = (float*)malloc(n_out * mini_size * sizeof(float)); + kann_feed_bind(ann, KANN_F_IN, 0, &x1); + kann_feed_bind(ann, KANN_F_TRUTH, 0, &y1); + + for (i = 0; i < max_epoch; ++i) { + int n_proc = 0, n_train_err = 0, n_val_err = 0, n_train_base = 0, n_val_base = 0; + double train_cost = 0.0, val_cost = 0.0; + kann_shuffle(n_train, shuf); + kann_switch(ann, 1); + while (n_proc < n_train) { + int b, c, ms = n_train - n_proc < mini_size? n_train - n_proc : mini_size; + for (b = 0; b < ms; ++b) { + memcpy(&x1[b*n_in], x[shuf[n_proc+b]], n_in * sizeof(float)); + memcpy(&y1[b*n_out], y[shuf[n_proc+b]], n_out * sizeof(float)); + } + kann_set_batch_size(ann, ms); + train_cost += kann_cost(ann, 0, 1) * ms; + c = kann_class_error(ann, &b); + n_train_err += c, n_train_base += b; + kann_RMSprop(n_var, lr, 0, 0.9f, ann->g, ann->x, r); + n_proc += ms; + } + train_cost /= n_train; + kann_switch(ann, 0); + n_proc = 0; + while (n_proc < n_val) { + int b, c, ms = n_val - n_proc < mini_size? n_val - n_proc : mini_size; + for (b = 0; b < ms; ++b) { + memcpy(&x1[b*n_in], x[n_train+n_proc+b], n_in * sizeof(float)); + memcpy(&y1[b*n_out], y[n_train+n_proc+b], n_out * sizeof(float)); + } + kann_set_batch_size(ann, ms); + val_cost += kann_cost(ann, 0, 0) * ms; + c = kann_class_error(ann, &b); + n_val_err += c, n_val_base += b; + n_proc += ms; + } + if (n_val > 0) val_cost /= n_val; + if (kann_verbose >= 3) { + fprintf(stderr, "epoch: %d; training cost: %g", i+1, train_cost); + if (n_train_base) fprintf(stderr, " (class error: %.2f%%)", 100.0f * n_train_err / n_train); + if (n_val > 0) { + fprintf(stderr, "; validation cost: %g", val_cost); + if (n_val_base) fprintf(stderr, " (class error: %.2f%%)", 100.0f * n_val_err / n_val); + } + fputc('\n', stderr); + } + if (i >= max_drop_streak && n_val > 0) { + if (val_cost < min_val_cost) { + min_set = 1; + memcpy(min_x, ann->x, n_var * sizeof(float)); + memcpy(min_c, ann->c, n_const * sizeof(float)); + drop_streak = 0; + min_val_cost = (float)val_cost; + } else if (++drop_streak >= max_drop_streak) + break; + } + } + if (min_set) { + memcpy(ann->x, min_x, n_var * sizeof(float)); + memcpy(ann->c, min_c, n_const * sizeof(float)); + } + + free(min_c); free(min_x); free(y1); free(x1); free(y); free(x); free(shuf); free(r); + return i; +} + +float kann_cost_fnn1(kann_t *ann, int n, float **x, float **y) +{ + int n_in, n_out, n_proc = 0, mini_size = 64 < n? 64 : n; + float *x1, *y1; + double cost = 0.0; + + n_in = kann_dim_in(ann); + n_out = kann_dim_out(ann); + if (n <= 0 || n_in < 0 || n_out < 0) return 0.0; + + x1 = (float*)malloc(n_in * mini_size * sizeof(float)); + y1 = (float*)malloc(n_out * mini_size * sizeof(float)); + kann_feed_bind(ann, KANN_F_IN, 0, &x1); + kann_feed_bind(ann, KANN_F_TRUTH, 0, &y1); + kann_switch(ann, 0); + while (n_proc < n) { + int b, ms = n - n_proc < mini_size? n - n_proc : mini_size; + for (b = 0; b < ms; ++b) { + memcpy(&x1[b*n_in], x[n_proc+b], n_in * sizeof(float)); + memcpy(&y1[b*n_out], y[n_proc+b], n_out * sizeof(float)); + } + kann_set_batch_size(ann, ms); + cost += kann_cost(ann, 0, 0) * ms; + n_proc += ms; + } + free(y1); free(x1); + return (float)(cost / n); +} + +const float *kann_apply1(kann_t *a, float *x) +{ + int i_out; + i_out = kann_find(a, KANN_F_OUT, 0); + if (i_out < 0) return 0; + kann_set_batch_size(a, 1); + kann_feed_bind(a, KANN_F_IN, 0, &x); + kad_eval_at(a->n, a->v, i_out); + return a->v[i_out]->x; +} diff --git a/contrib/kann/kann.h b/contrib/kann/kann.h new file mode 100644 index 000000000..1605e5ea5 --- /dev/null +++ b/contrib/kann/kann.h @@ -0,0 +1,235 @@ +/* + The MIT License + + Copyright (c) 2018-2019 Dana-Farber Cancer Institute + 2016-2018 Broad Institute + + Permission is hereby granted, free of charge, to any person obtaining + a copy of this software and associated documentation files (the + "Software"), to deal in the Software without restriction, including + without limitation the rights to use, copy, modify, merge, publish, + distribute, sublicense, and/or sell copies of the Software, and to + permit persons to whom the Software is furnished to do so, subject to + the following conditions: + + The above copyright notice and this permission notice shall be + included in all copies or substantial portions of the Software. + + THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS + BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN + ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + SOFTWARE. +*/ + +#ifndef KANN_H +#define KANN_H + +#define KANN_VERSION "r536" + +#define KANN_F_IN 0x1 /* input */ +#define KANN_F_OUT 0x2 /* output */ +#define KANN_F_TRUTH 0x4 /* truth output */ +#define KANN_F_COST 0x8 /* final cost */ + +#define KANN_C_CEB 1 /* binary cross-entropy cost, used with sigmoid */ +#define KANN_C_CEM 2 /* multi-class cross-entropy cost, used with softmax */ +#define KANN_C_CEB_NEG 3 /* binary cross-enytopy-like cost, used with tanh */ +#define KANN_C_MSE 4 /* mean square error */ + +#define KANN_RNN_VAR_H0 0x1 /* take the initial hidden values as variables */ +#define KANN_RNN_NORM 0x2 /* apply layer normalization */ + +#include "kautodiff.h" + +typedef struct { + int n; /* number of nodes in the computational graph */ + kad_node_t **v; /* list of nodes */ + float *x, *g, *c; /* collated variable values, gradients and constant values */ + void *mt; /* auxiliary data for multi-threading; NULL if multi-threading disabled */ +} kann_t; + +extern int kann_verbose; + +#define kann_size_var(a) kad_size_var((a)->n, (a)->v) +#define kann_size_const(a) kad_size_const((a)->n, (a)->v) +#define kann_dim_in(a) kann_feed_dim((a), KANN_F_IN, 0) +#define kann_dim_out(a) kann_feed_dim((a), KANN_F_TRUTH, 0) +#define kann_srand(seed) kad_srand(0, (seed)) +#define kann_drand() kad_drand(0) +#define kann_set_batch_size(ann, B) kad_sync_dim((ann)->n, (ann)->v, (B)) + +#ifdef __cplusplus +extern "C" { +#endif + +/** + * Generate a network from a computational graph + * + * A network must have at least one scalar cost node (i.e. whose n_d==0). It + * may optionally contain other cost nodes or output nodes not leading to the + * primary cost node. + * + * @param cost cost node (must be a scalar, i.e. cost->n_d==0) + * @param n_rest number of other nodes without predecessors + * @param ... other nodes (of type kad_node_t*) without predecessors + * + * @return network on success, or NULL otherwise + */ +kann_t *kann_new(kad_node_t *cost, int n_rest, ...); + +/** + * Unroll an RNN + * + * @param a network + * @param len number of unrolls + * + * @return an unrolled network, or NULL if the network is not an RNN + */ +kann_t *kann_unroll(kann_t *a, ...); + +kann_t *kann_unroll_array(kann_t *a, int *len); +kann_t *kann_clone(kann_t *a, int batch_size); +void kann_delete(kann_t *a); /* delete a network generated by kann_new() or kann_layer_final() */ +void kann_delete_unrolled(kann_t *a); /* delete a network generated by kann_unroll() */ + +/** + * Enable/disable multi-threading (requiring pthread) + * + * KANN splits a mini-batch to $n_threads mini-mini-batches and puts each of + * them on one thread. So far, only kann_cost() takes the advantage of + * multi-threading. + * + * @param ann network + * @param n_threads number of threads; <=1 to completely disable multi-threading + * @param max_batch_size max mini-batch size; shall no smaller than n_threads + */ +void kann_mt(kann_t *ann, int n_threads, int max_batch_size); + +/** + * Bind float arrays to feed nodes + * + * @param a network + * @param ext_flag required external flags + * @param ext_label required external label + * @param x pointers (size equal to the number of matching feed nodes) + * + * @return number of matching feed nodes + */ +int kann_feed_bind(kann_t *a, uint32_t ext_flag, int32_t ext_label, float **x); + +/** + * Compute the cost and optionally gradients + * + * @param a network + * @param cost_label required external label + * @param cal_grad whether to compute gradients + * + * @return cost + */ +float kann_cost(kann_t *a, int cost_label, int cal_grad); + +int kann_eval(kann_t *a, uint32_t ext_flag, int ext_label); +int kann_eval_out(kann_t *a); +int kann_class_error(const kann_t *ann, int *base); + +/** + * Find a node + * + * @param a network + * @param ext_flag required external flags; set to 0 to match all flags + * @param ext_label required external label + * + * @return >=0 if found; -1 if not found; -2 if found multiple + */ +int kann_find(const kann_t *a, uint32_t ext_flag, int32_t ext_label); + +/** + * Get the size of a feed node, assuming mini-batch size 1 + * + * @param a network + * @param ext_flag required external flags + * @param ext_label required external label + * + * @return size>=0; -1 if not found; -2 if found multiple + */ +int kann_feed_dim(const kann_t *a, uint32_t ext_flag, int32_t ext_label); + +/** + * Get an RNN ready for continuous feeding + * + * @param a network + */ +void kann_rnn_start(kann_t *a); + +void kann_rnn_end(kann_t *a); + +/** + * Switch between training and prediction networks (effective only when there are switch nodes) + * + * @param a network + * @param is_train 0 for prediction network and non-zero for training net + */ +void kann_switch(kann_t *a, int is_train); + +/** + * RMSprop update + * + * @param n number of variables + * @param h0 learning rate + * @param h per-variable learning rate; NULL if not applicable + * @param decay RMSprop decay; use 0.9 if unsure + * @param g gradient, of size n + * @param t variables to change + * @param r memory, of size n + */ +void kann_RMSprop(int n, float h0, const float *h, float decay, const float *g, float *t, float *r); + +void kann_shuffle(int n, int *s); +float kann_grad_clip(float thres, int n, float *g); + +/* common layers */ +kad_node_t *kann_layer_input(int n1); +kad_node_t *kann_layer_dense(kad_node_t *in, int n1); +kad_node_t *kann_layer_dropout(kad_node_t *t, float r); +kad_node_t *kann_layer_layernorm(kad_node_t *in); +kad_node_t *kann_layer_rnn(kad_node_t *in, int n1, int rnn_flag); +kad_node_t *kann_layer_lstm(kad_node_t *in, int n1, int rnn_flag); +kad_node_t *kann_layer_gru(kad_node_t *in, int n1, int rnn_flag); +kad_node_t *kann_layer_conv2d(kad_node_t *in, int n_flt, int k_rows, int k_cols, int stride_r, int stride_c, int pad_r, int pad_c); +kad_node_t *kann_layer_conv1d(kad_node_t *in, int n_flt, int k_size, int stride, int pad); +kad_node_t *kann_layer_cost(kad_node_t *t, int n_out, int cost_type); + +kad_node_t *kann_new_leaf(uint8_t flag, float x0_01, int n_d, ...); /* flag can be KAD_CONST or KAD_VAR */ +kad_node_t *kann_new_scalar(uint8_t flag, float x); +kad_node_t *kann_new_weight(int n_row, int n_col); +kad_node_t *kann_new_bias(int n); +kad_node_t *kann_new_weight_conv2d(int n_out, int n_in, int k_row, int k_col); +kad_node_t *kann_new_weight_conv1d(int n_out, int n_in, int kernel_len); + +kad_node_t *kann_new_leaf2(int *offset, kad_node_p *par, uint8_t flag, float x0_01, int n_d, ...); +kad_node_t *kann_layer_dense2(int *offset, kad_node_p *par, kad_node_t *in, int n1); +kad_node_t *kann_layer_dropout2(int *offset, kad_node_p *par, kad_node_t *t, float r); +kad_node_t *kann_layer_layernorm2(int *offset, kad_node_t **par, kad_node_t *in); +kad_node_t *kann_layer_rnn2(int *offset, kad_node_t **par, kad_node_t *in, kad_node_t *h0, int rnn_flag); +kad_node_t *kann_layer_gru2(int *offset, kad_node_t **par, kad_node_t *in, kad_node_t *h0, int rnn_flag); + +/* operations on network with a single input node and a single output node */ +int kann_train_fnn1(kann_t *ann, float lr, int mini_size, int max_epoch, int max_drop_streak, float frac_val, int n, float **_x, float **_y); +float kann_cost_fnn1(kann_t *a, int n, float **x, float **y); +const float *kann_apply1(kann_t *a, float *x); + +/* model I/O */ +void kann_save_fp(FILE *fp, kann_t *ann); +void kann_save(const char *fn, kann_t *ann); +kann_t *kann_load_fp(FILE *fp); +kann_t *kann_load(const char *fn); + +#ifdef __cplusplus +} +#endif + +#endif diff --git a/contrib/kann/kautodiff.c b/contrib/kann/kautodiff.c new file mode 100644 index 000000000..f303a723f --- /dev/null +++ b/contrib/kann/kautodiff.c @@ -0,0 +1,2396 @@ +#include <stdlib.h> +#include <assert.h> +#include <stdarg.h> +#include <string.h> +#include <float.h> +#include <math.h> +#include "kautodiff.h" + +typedef struct { + uint64_t s[2]; + double n_gset; + int n_iset; + volatile int lock; +} kad_rng_t; + +/********************** + * Graph construction * + **********************/ + +static inline kad_node_t *kad_new_core(int n_d, int op, int n_child) +{ + kad_node_t *s; + if (n_d >= KAD_MAX_DIM) return 0; + s = (kad_node_t*)calloc(1, sizeof(kad_node_t)); + s->n_d = n_d, s->op = op, s->n_child = n_child; + if (s->n_child) s->child = (kad_node_t**)calloc(s->n_child, sizeof(kad_node_t*)); + return s; +} + +static inline kad_node_t *kad_vleaf(uint8_t flag, float *x, float *g, int n_d, va_list ap) +{ + int i; + kad_node_t *p; + if (n_d > KAD_MAX_DIM) return 0; + p = (kad_node_t*)calloc(1, sizeof(kad_node_t)); + p->n_d = n_d; + for (i = 0; i < n_d; ++i) + p->d[i] = va_arg(ap, int32_t); + p->x = x, p->g = g, p->flag = flag; + return p; +} + +kad_node_t *kad_const(float *x, int n_d, ...) +{ + kad_node_t *p; + va_list ap; + va_start(ap, n_d); p = kad_vleaf(KAD_CONST, x, 0, n_d, ap); va_end(ap); + return p; +} + +kad_node_t *kad_feed(int n_d, ...) +{ + kad_node_t *p; + va_list ap; + va_start(ap, n_d); p = kad_vleaf(0, 0, 0, n_d, ap); va_end(ap); + return p; +} + +kad_node_t *kad_var(float *x, float *g, int n_d, ...) +{ + kad_node_t *p; + va_list ap; + va_start(ap, n_d); p = kad_vleaf(KAD_VAR, x, g, n_d, ap); va_end(ap); + return p; +} + +static inline kad_node_t *kad_finalize_node(kad_node_t *s) /* a helper function */ +{ + int i; + if (kad_op_list[s->op](s, KAD_SYNC_DIM) < 0) { /* check dimension */ + if (s->ptr) free(s->ptr); + free(s->child); free(s); + return 0; + } + for (i = 0; i < s->n_child; ++i) + if (kad_is_back(s->child[i])) + break; + if (i < s->n_child) s->flag |= KAD_VAR; + return s; +} + +/********** Simple arithmetic **********/ + +static inline kad_node_t *kad_op2_core(int op, kad_node_t *x, kad_node_t *y) +{ + kad_node_t *s; + s = kad_new_core(0, op, 2); + s->child[0] = x, s->child[1] = y; + return kad_finalize_node(s); +} + +static inline kad_node_t *kad_op1_core(int op, kad_node_t *x) +{ + kad_node_t *s; + s = kad_new_core(0, op, 1); + s->child[0] = x; + return kad_finalize_node(s); +} + +#define KAD_FUNC_OP2(fname, op) kad_node_t *fname(kad_node_t *x, kad_node_t *y) { return kad_op2_core((op), x, y); } + +KAD_FUNC_OP2(kad_add, 1) +KAD_FUNC_OP2(kad_sub, 23) +KAD_FUNC_OP2(kad_mul, 2) +KAD_FUNC_OP2(kad_cmul, 3) +KAD_FUNC_OP2(kad_matmul, 9) +KAD_FUNC_OP2(kad_ce_multi, 13) +KAD_FUNC_OP2(kad_ce_bin, 22) +KAD_FUNC_OP2(kad_ce_bin_neg, 4) +KAD_FUNC_OP2(kad_mse, 29) + +#define KAD_FUNC_OP1(fname, op) kad_node_t *fname(kad_node_t *x) { return kad_op1_core((op), x); } + +KAD_FUNC_OP1(kad_log, 27) +KAD_FUNC_OP1(kad_exp, 33) +KAD_FUNC_OP1(kad_sin, 34) +KAD_FUNC_OP1(kad_square, 5) +KAD_FUNC_OP1(kad_sigm, 6) +KAD_FUNC_OP1(kad_tanh, 7) +KAD_FUNC_OP1(kad_relu, 8) +KAD_FUNC_OP1(kad_1minus, 11) +KAD_FUNC_OP1(kad_softmax, 14) +KAD_FUNC_OP1(kad_stdnorm, 32) + +kad_node_t *kad_ce_multi_weighted(kad_node_t *pred, kad_node_t *truth, kad_node_t *weight) +{ + kad_node_t *s; + s = kad_new_core(0, 13, 3); + s->child[0] = pred, s->child[1] = truth, s->child[2] = weight; + return kad_finalize_node(s); +} + +/********** Convolution **********/ + +/* compute output dimension and padding sizes on both sides */ +static inline int conv_find_par(int in_size, int kernel_size, int stride, int pad0, int *new_pad0, int *new_pad1) +{ + int out_size, pad_both; + /* key equation: out_size = (in_size - kernel_size + pad_both) / stride + 1 */ + if (pad0 == KAD_PAD_SAME && stride == 1) out_size = in_size; + else out_size = (in_size - kernel_size + (pad0 > 0? pad0 : 0) + stride - 1) / stride + 1; + pad_both = (out_size - 1) * stride + kernel_size - in_size; + *new_pad0 = pad_both / 2; + *new_pad1 = pad_both - *new_pad0; + return out_size; +} + +typedef struct { + int kernel_size, stride, pad[2]; +} conv_conf_t; + +static inline conv_conf_t *conv2d_gen_aux(int in_row, int in_col, int kernel_r, int kernel_c, int stride_r, int stride_c, int top_pad, int left_pad) +{ + conv_conf_t *cnn; + cnn = (conv_conf_t*)calloc(2, sizeof(conv_conf_t)); + cnn[0].kernel_size = kernel_r, cnn[0].stride = stride_r; + cnn[1].kernel_size = kernel_c, cnn[1].stride = stride_c; + conv_find_par(in_row, kernel_r, stride_r, top_pad, &cnn[0].pad[0], &cnn[0].pad[1]); + conv_find_par(in_col, kernel_c, stride_c, left_pad, &cnn[1].pad[0], &cnn[1].pad[1]); + return cnn; +} + +kad_node_t *kad_conv2d(kad_node_t *x, kad_node_t *w, int stride_r, int stride_c, int top_pad, int left_pad) +{ + kad_node_t *s; + if (x->n_d != 4 || w->n_d != 4) return 0; + s = kad_new_core(0, 16, 2); + s->child[0] = x, s->child[1] = w; + s->ptr = conv2d_gen_aux(x->d[2], x->d[3], w->d[2], w->d[3], stride_r, stride_c, top_pad, left_pad); + s->ptr_size = sizeof(conv_conf_t) * 2; + return kad_finalize_node(s); +} + +kad_node_t *kad_max2d(kad_node_t *x, int kernel_r, int kernel_c, int stride_r, int stride_c, int top_pad, int left_pad) +{ + kad_node_t *s; + if (x->n_d != 4) return 0; + s = kad_new_core(0, 17, 1); + s->child[0] = x; + s->ptr = conv2d_gen_aux(x->d[2], x->d[3], kernel_r, kernel_c, stride_r, stride_c, top_pad, left_pad); + s->ptr_size = sizeof(conv_conf_t) * 2; + return kad_finalize_node(s); +} + +static inline conv_conf_t *conv1d_gen_aux(int in_col, int kernel_c, int stride_c, int left_pad) +{ + conv_conf_t *cnn; + cnn = (conv_conf_t*)calloc(1, sizeof(conv_conf_t)); + cnn->kernel_size = kernel_c, cnn->stride = stride_c; + conv_find_par(in_col, kernel_c, stride_c, left_pad, &cnn->pad[0], &cnn->pad[1]); + return cnn; +} + +kad_node_t *kad_conv1d(kad_node_t *x, kad_node_t *w, int stride, int left_pad) +{ + kad_node_t *s; + if (x->n_d != 3 || w->n_d != 3) return 0; + s = kad_new_core(0, 18, 2); + s->child[0] = x, s->child[1] = w; + s->ptr = conv1d_gen_aux(x->d[2], w->d[2], stride, left_pad); + s->ptr_size = sizeof(conv_conf_t); + return kad_finalize_node(s); +} + +kad_node_t *kad_max1d(kad_node_t *x, int kernel_size, int stride, int left_pad) +{ + kad_node_t *s; + if (x->n_d != 3) return 0; + s = kad_new_core(0, 19, 1); + s->child[0] = x; + s->ptr = conv1d_gen_aux(x->d[2], kernel_size, stride, left_pad); + s->ptr_size = sizeof(conv_conf_t); + return kad_finalize_node(s); +} + +kad_node_t *kad_avg1d(kad_node_t *x, int kernel_size, int stride, int left_pad) +{ + kad_node_t *s; + if (x->n_d != 3) return 0; + s = kad_new_core(0, 28, 1); + s->child[0] = x; + s->ptr = conv1d_gen_aux(x->d[2], kernel_size, stride, left_pad); + s->ptr_size = sizeof(conv_conf_t); + return kad_finalize_node(s); +} + +/********** Multi-node pooling **********/ + +static kad_node_t *kad_pooling_general(int op, int n, kad_node_t **x) +{ + int i; + kad_node_t *s; + s = kad_new_core(0, op, n); + s->flag |= KAD_POOL; + for (i = 0; i < n; ++i) + s->child[i] = x[i]; + return kad_finalize_node(s); +} + +kad_node_t *kad_avg(int n, kad_node_t **x) { return kad_pooling_general(10, n, x); } +kad_node_t *kad_max(int n, kad_node_t **x) { return kad_pooling_general(21, n, x); } +kad_node_t *kad_stack(int n, kad_node_t **x) { return kad_pooling_general(35, n, x); } + +kad_node_t *kad_select(int n, kad_node_t **x, int which) +{ + kad_node_t *s; + int32_t i, *aux; + aux = (int32_t*)calloc(1, 4); + *aux = which; + s = kad_new_core(0, 12, n); + for (i = 0; i < n; ++i) s->child[i] = x[i]; + s->flag |= KAD_POOL, s->ptr = aux, s->ptr_size = 4; + return kad_finalize_node(s); +} + +/********** Dimension reduction **********/ + +static kad_node_t *kad_reduce_general(int op, kad_node_t *x, int axis) +{ + kad_node_t *s; + int32_t *aux; + aux = (int32_t*)malloc(4); + aux[0] = axis; + s = kad_new_core(0, op, 1); + s->child[0] = x; + s->ptr = aux, s->ptr_size = 4; + return kad_finalize_node(s); +} + +kad_node_t *kad_reduce_sum(kad_node_t *x, int axis) { return kad_reduce_general(25, x, axis); } +kad_node_t *kad_reduce_mean(kad_node_t *x, int axis) { return kad_reduce_general(26, x, axis); } + +/********** Sampling related **********/ + +kad_node_t *kad_dropout(kad_node_t *x, kad_node_t *y) +{ + kad_node_t *z; + z = kad_op2_core(15, x, y); + z->ptr = kad_rng(), z->ptr_size = sizeof(kad_rng_t); + return z; +} + +kad_node_t *kad_sample_normal(kad_node_t *x) +{ + kad_node_t *z; + z = kad_op1_core(24, x); + z->ptr = kad_rng(), z->ptr_size = sizeof(kad_rng_t); + return z; +} + +/********** Miscellaneous **********/ + +kad_node_t *kad_slice(kad_node_t *x, int axis, int start, int end) +{ + kad_node_t *s; + int32_t *aux; + if (end < start || start < 0) return 0; + aux = (int32_t*)malloc(3 * 4); + aux[0] = axis, aux[1] = start, aux[2] = end; + s = kad_new_core(0, 20, 1); + s->child[0] = x; + s->ptr = aux, s->ptr_size = 3 * 4; + return kad_finalize_node(s); +} + +kad_node_t *kad_concat_array(int axis, int n, kad_node_t **p) +{ + kad_node_t *s; + int32_t i, *aux; + aux = (int32_t*)malloc(4); + aux[0] = axis; + s = kad_new_core(0, 31, n); + for (i = 0; i < n; ++i) + s->child[i] = p[i]; + s->ptr = aux, s->ptr_size = 4; + return kad_finalize_node(s); +} + +kad_node_t *kad_concat(int axis, int n, ...) +{ + int i; + kad_node_t **p, *s; + va_list ap; + p = (kad_node_t**)malloc(n * sizeof(kad_node_t*)); + va_start(ap, n); + for (i = 0; i < n; ++i) p[i] = va_arg(ap, kad_node_p); + va_end(ap); + s = kad_concat_array(axis, n, p); + free(p); + return s; +} + +kad_node_t *kad_reshape(kad_node_t *x, int n_d, int *d) +{ + kad_node_t *s; + int32_t i, *aux = 0; + if (n_d > 0) { + aux = (int32_t*)malloc(n_d * 4); + for (i = 0; i < n_d; ++i) aux[i] = d? d[i] : -1; + } + s = kad_new_core(0, 30, 1); + s->child[0] = x, s->ptr = aux, s->ptr_size = n_d * 4; + return kad_finalize_node(s); +} + +kad_node_t *kad_reverse(kad_node_t *x, int axis) +{ + kad_node_t *s; + int32_t *aux; + aux = (int32_t*)malloc(4); + *aux = axis; + s = kad_new_core(0, 36, 1); + s->child[0] = x, s->ptr = aux, s->ptr_size = 4; + return kad_finalize_node(s); +} + +kad_node_t *kad_switch(int n, kad_node_t **p) +{ + kad_node_t *s; + int32_t i, *aux; + aux = (int32_t*)calloc(1, 4); + s = kad_new_core(0, 12, n); + for (i = 0; i < n; ++i) + s->child[i] = p[i]; + s->ptr = aux, s->ptr_size = 4; + return kad_finalize_node(s); +} + +/*********************** + * Graph linearization * + ***********************/ + +static void kad_mark_back(int n, kad_node_t **v) +{ + int i, j; + for (i = 0; i < n; ++i) { + if (v[i]->n_child == 0) continue; + for (j = 0; j < v[i]->n_child; ++j) + if (kad_is_back(v[i]->child[j])) + break; + if (j < v[i]->n_child) v[i]->flag |= KAD_VAR; + else v[i]->flag &= ~KAD_VAR; + } +} + +static void kad_allocate_internal(int n, kad_node_t **v) +{ + int i; + kad_mark_back(n, v); + for (i = 0; i < n; ++i) { + kad_node_t *p = v[i]; + if (p->n_child == 0) continue; + p->x = (float*)realloc(p->x, kad_len(p) * sizeof(float)); + if (kad_is_back(p)) { + p->g = (float*)realloc(p->g, kad_len(p) * sizeof(float)); + kad_op_list[p->op](p, KAD_ALLOC); + } + } +} + +int kad_sync_dim(int n, kad_node_t **v, int batch_size) +{ + int i, req_alloc = 0, req_sync = 0, old_size = 0; + for (i = 0; i < n; ++i) { + if (kad_is_feed(v[i])) { + old_size = v[i]->d[0]; /* TODO: check if all feeds have the same batch size */ + if (batch_size > 0 && v[i]->d[0] != batch_size) + v[i]->d[0] = batch_size, req_sync = 1; + } else if (v[i]->n_child > 0 && req_sync) + kad_op_list[v[i]->op](v[i], KAD_SYNC_DIM); + } + if (old_size < batch_size) req_alloc = 1; + for (i = 0; i < n; ++i) + if (v[i]->n_child > 0 && v[i]->x == 0) req_alloc = 1; + if (req_alloc) kad_allocate_internal(n, v); + return batch_size > 0? batch_size : old_size; +} + +#define kvec_t(type) struct { size_t n, m; type *a; } + +#define kv_pop(v) ((v).a[--(v).n]) + +#define kv_push(type, v, x) do { \ + if ((v).n == (v).m) { \ + (v).m = (v).m? (v).m<<1 : 2; \ + (v).a = (type*)realloc((v).a, sizeof(type) * (v).m); \ + } \ + (v).a[(v).n++] = (x); \ + } while (0) + +/* IMPORTANT: kad_node_t::tmp MUST BE set to zero before calling this function */ +kad_node_t **kad_compile_array(int *n_node, int n_roots, kad_node_t **roots) +{ + int i; + kvec_t(kad_node_p) stack = {0,0,0}, a = {0,0,0}; + + /* generate kad_node_t::tmp, the count of the parent nodes; shifted by 1; lowest bit to detect fake roots */ + for (i = 0; i < n_roots; ++i) { + roots[i]->tmp = 1; /* mark the root */ + kv_push(kad_node_p, stack, roots[i]); + } + while (stack.n) { + kad_node_t *p = kv_pop(stack); + for (i = 0; i < p->n_child; ++i) { + kad_node_t *q = p->child[i]; + if (q->tmp == 0) kv_push(kad_node_p, stack, q); + q->tmp += 1<<1; + } + } + + /* topological sorting (Kahn's algorithm) */ + for (i = 0; i < n_roots; ++i) + if (roots[i]->tmp>>1 == 0) /* if roots[i]->tmp>>1 != 0, it is not a real root */ + kv_push(kad_node_p, stack, roots[i]); + while (stack.n) { + kad_node_t *p = kv_pop(stack); + kv_push(kad_node_p, a, p); + for (i = 0; i < p->n_child; ++i) { + p->child[i]->tmp -= 1<<1; + if (p->child[i]->tmp>>1 == 0) + kv_push(kad_node_p, stack, p->child[i]); + } + } + free(stack.a); + for (i = 0; i < (int)a.n; ++i) { /* check cycles; no cycles if constructed with kad_add() etc */ + assert(a.a[i]->tmp>>1 == 0); + a.a[i]->tmp = 0; + } + + /* reverse */ + for (i = 0; i < (int)a.n>>1; ++i) { /* reverse a.a[] */ + kad_node_p t; + t = a.a[i], a.a[i] = a.a[a.n-1-i], a.a[a.n-1-i] = t; + } + kad_allocate_internal(a.n, a.a); + + *n_node = a.n; + return a.a; +} + +kad_node_t **kad_compile(int *n_node, int n_roots, ...) +{ + int i; + kad_node_t **roots, **ret; + va_list ap; + + roots = (kad_node_t**)malloc(n_roots * sizeof(kad_node_t*)); + va_start(ap, n_roots); + for (i = 0; i < n_roots; ++i) roots[i] = va_arg(ap, kad_node_p); + va_end(ap); + ret = kad_compile_array(n_node, n_roots, roots); + free(roots); + return ret; +} + +/************************************ + * Miscellaneous on compiled graphs * + ************************************/ + +void kad_delete(int n, kad_node_t **a) +{ + int i; + for (i = 0; i < n; ++i) { + kad_node_t *p = a[i]; + if (p->n_child) { + free(p->x); free(p->g); + } + free(p->child); free(p->ptr); free(p->gtmp); free(p); + } + free(a); +} + +int kad_size_var(int n, kad_node_t *const* v) +{ + int c, i; + for (i = c = 0; i < n; ++i) + if (kad_is_var(v[i])) + c += kad_len(v[i]); + return c; +} + +int kad_size_const(int n, kad_node_t *const* v) +{ + int c, i; + for (i = c = 0; i < n; ++i) + if (kad_is_const(v[i])) + c += kad_len(v[i]); + return c; +} + +/********************************** + * Computate values and gradients * + **********************************/ + +static void kad_propagate_marks(int n, kad_node_t **a) +{ + int i, j; + for (i = n - 1; i >= 0; --i) { + kad_node_t *p = a[i]; + if (p->tmp > 0) { + if (kad_is_switch(p)) { + int32_t *aux = (int32_t*)p->ptr; + if (p->child[*aux]->tmp == 0) + p->child[*aux]->tmp = 1; + } else { + for (j = 0; j < p->n_child; ++j) + if (p->child[j]->tmp == 0) + p->child[j]->tmp = 1; + } + } + } +} + +void kad_eval_marked(int n, kad_node_t **a) +{ + int i; + kad_propagate_marks(n, a); + for (i = 0; i < n; ++i) + if (a[i]->n_child && a[i]->tmp > 0) + kad_op_list[a[i]->op](a[i], KAD_FORWARD); + for (i = 0; i < n; ++i) a[i]->tmp = 0; +} + +const float *kad_eval_at(int n, kad_node_t **a, int from) +{ + int i; + if (from < 0 || from >= n) from = n - 1; + for (i = 0; i < n; ++i) a[i]->tmp = (i == from); + kad_eval_marked(n, a); + return a[from]->x; +} + +void kad_grad(int n, kad_node_t **a, int from) +{ + int i; + if (from < 0 || from >= n) from = n - 1; + assert(a[from]->n_d == 0); + for (i = 0; i < n; ++i) a[i]->tmp = (i == from); + kad_propagate_marks(n, a); + for (i = 0; i <= from; ++i) /* set all grandients to zero */ + if (a[i]->g && a[i]->tmp > 0) + memset(a[i]->g, 0, kad_len(a[i]) * sizeof(float)); + for (i = from, a[i]->g[0] = 1.0f; i >= 0; --i) /* backprop */ + if (a[i]->n_child && a[i]->tmp > 0) + kad_op_list[a[i]->op](a[i], KAD_BACKWARD); + for (i = 0; i <= from; ++i) a[i]->tmp = 0; +} + +/*********************** + * Load and save graph * + ***********************/ + +static void kad_save1(FILE *fp, const kad_node_t *p) +{ + fwrite(&p->ext_label, 4, 1, fp); + fwrite(&p->ext_flag, 4, 1, fp); + fwrite(&p->flag, 1, 1, fp); + fwrite(&p->n_child, 4, 1, fp); + if (p->n_child) { + int32_t j, pre = p->pre? p->pre->tmp : -1; + fwrite(&p->op, 2, 1, fp); + for (j = 0; j < p->n_child; ++j) + fwrite(&p->child[j]->tmp, 4, 1, fp); + fwrite(&pre, 4, 1, fp); + fwrite(&p->ptr_size, 4, 1, fp); + if (p->ptr_size > 0 && p->ptr) + fwrite(p->ptr, p->ptr_size, 1, fp); + } else { + fwrite(&p->n_d, 1, 1, fp); + if (p->n_d) fwrite(p->d, 4, p->n_d, fp); + } +} + +static kad_node_t *kad_load1(FILE *fp, kad_node_t **node) +{ + kad_node_t *p; + p = (kad_node_t*)calloc(1, sizeof(kad_node_t)); + fread(&p->ext_label, 4, 1, fp); + fread(&p->ext_flag, 4, 1, fp); + fread(&p->flag, 1, 1, fp); + fread(&p->n_child, 4, 1, fp); + if (p->n_child) { + int32_t j, k; + p->child = (kad_node_t**)calloc(p->n_child, sizeof(kad_node_t*)); + fread(&p->op, 2, 1, fp); + for (j = 0; j < p->n_child; ++j) { + fread(&k, 4, 1, fp); + p->child[j] = node? node[k] : 0; + } + fread(&k, 4, 1, fp); + if (k >= 0) p->pre = node[k]; + fread(&p->ptr_size, 4, 1, fp); + if (p->ptr_size > 0) { + p->ptr = malloc(p->ptr_size); + fread(p->ptr, p->ptr_size, 1, fp); + } + } else { + fread(&p->n_d, 1, 1, fp); + if (p->n_d) fread(p->d, 4, p->n_d, fp); + } + return p; +} + +int kad_save(FILE *fp, int n_node, kad_node_t **node) +{ + int32_t i, k = n_node; + fwrite(&k, 4, 1, fp); + for (i = 0; i < n_node; ++i) node[i]->tmp = i; + for (i = 0; i < n_node; ++i) kad_save1(fp, node[i]); + for (i = 0; i < n_node; ++i) node[i]->tmp = 0; + return 0; +} + +kad_node_t **kad_load(FILE *fp, int *_n_node) +{ + int32_t i, n_node; + kad_node_t **node; + fread(&n_node, 4, 1, fp); + node = (kad_node_t**)malloc(n_node * sizeof(kad_node_t*)); + for (i = 0; i < n_node; ++i) { + kad_node_t *p; + p = node[i] = kad_load1(fp, node); + if (p->n_child) { + kad_op_list[p->op](p, KAD_ALLOC); + kad_op_list[p->op](p, KAD_SYNC_DIM); + } + } + *_n_node = n_node; + kad_mark_back(n_node, node); + return node; +} + +/*************** + * Graph clone * + ***************/ + +static inline kad_node_t *kad_dup1(const kad_node_t *p) +{ + kad_node_t *q; + q = (kad_node_t*)malloc(sizeof(kad_node_t)); + memcpy(q, p, sizeof(kad_node_t)); + q->pre = 0, q->tmp = 0, q->gtmp = 0; + if (p->ptr && p->ptr_size > 0) { + if (kad_use_rng(p) && !(p->flag & KAD_SHARE_RNG) && p->ptr_size == sizeof(kad_rng_t)) { + q->ptr = kad_rng(); /* each time step uses a different RNG */ + } else { + q->ptr = malloc(p->ptr_size); + memcpy(q->ptr, p->ptr, p->ptr_size); + } + } + if (q->n_child) { + q->x = q->g = 0; + q->child = (kad_node_t**)calloc(q->n_child, sizeof(kad_node_t*)); + } + return q; +} + +kad_node_t **kad_clone(int n, kad_node_t **v, int batch_size) +{ + int i, j; + kad_node_t **u; + u = (kad_node_t**)calloc(n, sizeof(kad_node_t*)); + for (i = 0; i < n; ++i) v[i]->tmp = i; + for (i = 0; i < n; ++i) { + kad_node_t *p = v[i], *q; + q = u[i] = kad_dup1(p); + if (p->pre) q->pre = u[p->pre->tmp]; + if (p->n_child) { + for (j = 0; j < p->n_child; ++j) + q->child[j] = u[p->child[j]->tmp]; + } else if (!kad_is_feed(p)) { + q->x = (float*)malloc(kad_len(p) * sizeof(float)); + memcpy(q->x, p->x, kad_len(p) * sizeof(float)); + q->g = 0; + } + } + for (i = 0; i < n; ++i) v[i]->tmp = 0; + kad_sync_dim(n, u, batch_size); /* this will allocate x[] and g[] at internal nodes */ + return u; +} + +/************** + * Unroll RNN * + **************/ + +typedef struct { + int32_t n, m; + kad_node_t **v; +} nodes_t; + +static inline void push_nodes(nodes_t *w, kad_node_t *p) +{ + if (w->n == w->m) { + w->m = w->m? w->m<<1 : 16; + w->v = (kad_node_t**)realloc(w->v, w->m * sizeof(kad_node_t*)); + } + w->v[w->n++] = p; +} + +static void kad_unroll_helper(int n_v, kad_node_t **v, int i_pivot, kad_node_t **t, int len, nodes_t *w) +{ + int i, j, l; + uint8_t *flag; + kad_node_t **aux; + + assert(kad_is_pivot(v[i_pivot]) && t[i_pivot] == 0); + t[i_pivot] = kad_dup1(v[i_pivot]); + t[i_pivot]->n_child = len; + t[i_pivot]->child = (kad_node_t**)realloc(t[i_pivot]->child, len * sizeof(kad_node_t*)); + + flag = (uint8_t*)calloc(n_v, 1); + for (i = i_pivot, flag[i] = 16; i >= 0; --i) { + if (i < i_pivot && kad_is_pivot(v[i])) continue; /* don't trespass other pivots */ + if (flag[i]&16) /* flag 16: nodes to unroll */ + for (j = 0; j < v[i]->n_child; ++j) + flag[v[i]->child[j]->tmp] = 16; + } + for (i = 0; i < i_pivot; ++i) { + if (!(flag[i]&16)) continue; + if (kad_is_var(v[i]) || kad_is_const(v[i]) || kad_is_pivot(v[i])) flag[i] |= 1; /* external nodes that should not be duplicated */ + if (v[i]->pre) flag[v[i]->pre->tmp] |= 2; + } + flag[v[i_pivot]->child[0]->tmp] |= 4; + aux = (kad_node_t**)calloc(n_v, sizeof(kad_node_t*)); + for (l = 0; l < len; ++l) { + for (i = 0; i < i_pivot; ++i) { + if (!(flag[i]&16) || ((flag[i]&3) && t[i])) continue; + t[i] = kad_dup1(v[i]); + if (v[i]->n_child) + for (j = 0; j < v[i]->n_child; ++j) + t[i]->child[j] = t[v[i]->child[j]->tmp]; + if (flag[i]&4) t[i_pivot]->child[l] = t[i]; + if (l == 0 && (flag[i]&2)) aux[i] = t[i]; + if (v[i]->pre) { + t[v[i]->pre->tmp] = t[i]; + if (l == len - 1) t[i]->pre = aux[v[i]->pre->tmp]; /* this forms a cycle! */ + } + push_nodes(w, t[i]); + } + } + push_nodes(w, t[i_pivot]); + free(aux); free(flag); +} + +int kad_n_pivots(int n_v, kad_node_t **v) +{ + int i, n_pivots = 0; + for (i = 0; i < n_v; ++i) + if (kad_is_pivot(v[i])) ++n_pivots; + return n_pivots; +} + +kad_node_t **kad_unroll(int n_v, kad_node_t **v, int *new_n, int *len) +{ + int i, j, n_pivots = 0; + kad_node_t **t; + nodes_t w = {0,0,0}; + + t = (kad_node_t**)calloc(n_v, sizeof(kad_node_t*)); + n_pivots = kad_n_pivots(n_v, v); + for (i = 0; i < n_v; ++i) v[i]->tmp = i; + if (n_pivots) { + int k, *i_pivots; + i_pivots = (int*)calloc(n_pivots, sizeof(int)); + for (i = k = 0; i < n_v; ++i) /* collect pivots */ + if (kad_is_pivot(v[i])) i_pivots[k++] = i; + for (i = 0; i < n_pivots; ++i) /* unroll each pivot, from the lowest to the highest */ + kad_unroll_helper(n_v, v, i_pivots[i], t, len[i], &w); + free(i_pivots); + } + for (i = 0; i < n_v; ++i) { /* copy over the rest of nodes */ + if (t[i]) continue; + t[i] = kad_dup1(v[i]); + if (v[i]->n_child) + for (j = 0; j < v[i]->n_child; ++j) + t[i]->child[j] = t[v[i]->child[j]->tmp]; + push_nodes(&w, t[i]); + } + free(t); + for (i = 0; i < n_v; ++i) v[i]->tmp = 0; + for (i = 0; i < w.n; ++i) /* stack may change the output dimension */ + if (w.v[i]->n_child > 0) + kad_op_list[w.v[i]->op](w.v[i], KAD_SYNC_DIM); + kad_allocate_internal(w.n, w.v); + *new_n = w.n; + return w.v; +} + +/******************************** + * Vector and matrix operations * + ********************************/ + +#ifdef __SSE__ +#include <xmmintrin.h> + +static inline float kad_sdot(int n, const float *x, const float *y) /* BLAS sdot using SSE */ +{ + int i, n8 = n>>3<<3; + __m128 vs1, vs2; + float s, t[4]; + vs1 = _mm_setzero_ps(); + vs2 = _mm_setzero_ps(); + for (i = 0; i < n8; i += 8) { + __m128 vx1, vx2, vy1, vy2; + vx1 = _mm_loadu_ps(&x[i]); + vx2 = _mm_loadu_ps(&x[i+4]); + vy1 = _mm_loadu_ps(&y[i]); + vy2 = _mm_loadu_ps(&y[i+4]); + vs1 = _mm_add_ps(vs1, _mm_mul_ps(vx1, vy1)); + vs2 = _mm_add_ps(vs2, _mm_mul_ps(vx2, vy2)); + } + for (s = 0.; i < n; ++i) s += x[i] * y[i]; + _mm_storeu_ps(t, vs1); + s += t[0] + t[1] + t[2] + t[3]; + _mm_storeu_ps(t, vs2); + s += t[0] + t[1] + t[2] + t[3]; + return s; +} +static inline void kad_saxpy_inlined(int n, float a, const float *x, float *y) /* BLAS saxpy using SSE */ +{ + int i, n8 = n>>3<<3; + __m128 va; + va = _mm_set1_ps(a); + for (i = 0; i < n8; i += 8) { + __m128 vx1, vx2, vy1, vy2, vt1, vt2; + vx1 = _mm_loadu_ps(&x[i]); + vx2 = _mm_loadu_ps(&x[i+4]); + vy1 = _mm_loadu_ps(&y[i]); + vy2 = _mm_loadu_ps(&y[i+4]); + vt1 = _mm_add_ps(_mm_mul_ps(va, vx1), vy1); + vt2 = _mm_add_ps(_mm_mul_ps(va, vx2), vy2); + _mm_storeu_ps(&y[i], vt1); + _mm_storeu_ps(&y[i+4], vt2); + } + for (; i < n; ++i) y[i] += a * x[i]; +} +#else +static inline float kad_sdot(int n, const float *x, const float *y) /* BLAS sdot */ +{ + int i; + float s = 0.; + for (i = 0; i < n; ++i) s += x[i] * y[i]; + return s; +} +static inline void kad_saxpy_inlined(int n, float a, const float *x, float *y) // BLAS saxpy +{ + int i; + for (i = 0; i < n; ++i) y[i] += a * x[i]; +} +#endif + +void kad_vec_mul_sum(int n, float *a, const float *b, const float *c) +{ + int i; + for (i = 0; i < n; ++i) a[i] += b[i] * c[i]; +} + +void kad_saxpy(int n, float a, const float *x, float *y) { kad_saxpy_inlined(n, a, x, y); } + +#ifdef HAVE_CBLAS +#include "cblas.h" +void kad_sgemm_simple(int trans_A, int trans_B, int M, int N, int K, const float *A, const float *B, float *C) +{ + cblas_sgemm(CblasRowMajor, trans_A? CblasTrans : CblasNoTrans, trans_B? CblasTrans : CblasNoTrans, M, N, K, 1.0f, A, trans_A? M : K, B, trans_B? K : N, 1.0f, C, N); +} +#else +void kad_sgemm_simple(int trans_A, int trans_B, int M, int N, int K, const float *A, const float *B, float *C) /* simplified BLAS sgemm */ +{ + static const int x = 16; + int i, j, k; + if (!trans_A && trans_B) { + for (i = 0; i < M; i += x) + for (j = 0; j < N; j += x) { + int ii, ie = M < i + x? M : i + x; + int jj, je = N < j + x? N : j + x; + for (ii = i; ii < ie; ++ii) { /* loop tiling */ + const float *aii = A + ii * K, *bjj; + float *cii = C + ii * N; + for (jj = j, bjj = B + j * K; jj < je; ++jj, bjj += K) + cii[jj] += kad_sdot(K, aii, bjj); + } + } + } else if (!trans_A && !trans_B) { + for (i = 0; i < M; ++i) + for (k = 0; k < K; ++k) + kad_saxpy_inlined(N, A[i*K+k], &B[k*N], &C[i*N]); + } else if (trans_A && !trans_B) { + for (k = 0; k < K; ++k) + for (i = 0; i < M; ++i) + kad_saxpy_inlined(N, A[k*M+i], &B[k*N], &C[i*N]); + } else abort(); /* not implemented for (trans_A && trans_B) */ +} +#endif + +/*************************** + * Random number generator * + ***************************/ + +static kad_rng_t kad_rng_dat = { {0x50f5647d2380309dULL, 0x91ffa96fc4c62cceULL}, 0.0, 0, 0 }; + +static inline uint64_t kad_splitmix64(uint64_t x) +{ + uint64_t z = (x += 0x9E3779B97F4A7C15ULL); + z = (z ^ (z >> 30)) * 0xBF58476D1CE4E5B9ULL; + z = (z ^ (z >> 27)) * 0x94D049BB133111EBULL; + return z ^ (z >> 31); +} + +static inline uint64_t kad_xoroshiro128plus_next(kad_rng_t *r) +{ + const uint64_t s0 = r->s[0]; + uint64_t s1 = r->s[1]; + const uint64_t result = s0 + s1; + s1 ^= s0; + r->s[0] = (s0 << 55 | s0 >> 9) ^ s1 ^ (s1 << 14); + r->s[1] = s0 << 36 | s0 >> 28; + return result; +} + +static inline void kad_xoroshiro128plus_jump(kad_rng_t *r) +{ + static const uint64_t JUMP[] = { 0xbeac0467eba5facbULL, 0xd86b048b86aa9922ULL }; + uint64_t s0 = 0, s1 = 0; + int i, b; + for (i = 0; i < 2; ++i) + for (b = 0; b < 64; b++) { + if (JUMP[i] & 1ULL << b) + s0 ^= r->s[0], s1 ^= r->s[1]; + kad_xoroshiro128plus_next(r); + } + r->s[0] = s0, r->s[1] = s1; +} + +void kad_srand(void *d, uint64_t seed) +{ + kad_rng_t *r = d? (kad_rng_t*)d : &kad_rng_dat; + r->n_gset = 0.0, r->n_iset = 0; + r->s[0] = kad_splitmix64(seed); + r->s[1] = kad_splitmix64(r->s[0]); +} + +void *kad_rng(void) +{ + kad_rng_t *r; + r = (kad_rng_t*)calloc(1, sizeof(kad_rng_t)); + kad_xoroshiro128plus_jump(&kad_rng_dat); + r->s[0] = kad_rng_dat.s[0], r->s[1] = kad_rng_dat.s[1]; + return r; +} + +uint64_t kad_rand(void *d) { return kad_xoroshiro128plus_next(d? (kad_rng_t*)d : &kad_rng_dat); } + +double kad_drand(void *d) +{ + union { uint64_t i; double d; } u; + u.i = 0x3FFULL << 52 | kad_xoroshiro128plus_next(d? (kad_rng_t*)d : &kad_rng_dat) >> 12; + return u.d - 1.0; +} + +double kad_drand_normal(void *d) +{ + kad_rng_t *r = d? (kad_rng_t*)d : &kad_rng_dat; + if (r->n_iset == 0) { + double fac, rsq, v1, v2; + do { + v1 = 2.0 * kad_drand(d) - 1.0; + v2 = 2.0 * kad_drand(d) - 1.0; + rsq = v1 * v1 + v2 * v2; + } while (rsq >= 1.0 || rsq == 0.0); + fac = sqrt(-2.0 * log(rsq) / rsq); + r->n_gset = v1 * fac; + r->n_iset = 1; + return v2 * fac; + } else { + r->n_iset = 0; + return r->n_gset; + } +} + +/************* + * Operators * + *************/ + +static inline void kad_copy_dim1(kad_node_t *dst, const kad_node_t *src) /* set the dimension/shape of dst to src */ +{ + dst->n_d = src->n_d; + if (src->n_d) memcpy(dst->d, src->d, src->n_d * sizeof(int)); +} + +/********** Arithmetic operations **********/ + +int kad_op_add(kad_node_t *p, int action) +{ + int i, n0, n1; + kad_node_t *q[2]; + + q[0] = p->child[0], n0 = kad_len(q[0]); + q[1] = p->child[1], n1 = kad_len(q[1]); + if (action == KAD_SYNC_DIM) { + if (n0 % n1 != 0) return -1; + kad_copy_dim1(p, q[0]); + } else if (action == KAD_FORWARD) { + assert(n0 >= n1); + memcpy(p->x, q[0]->x, n0 * sizeof(float)); + for (i = 0; i < n0; i += n1) + kad_saxpy(n1, 1.0f, q[1]->x, p->x + i); + } else if (action == KAD_BACKWARD) { + if (kad_is_back(q[0])) kad_saxpy(n0, 1.0f, p->g, q[0]->g); + if (kad_is_back(q[1])) + for (i = 0; i < n0; i += n1) + kad_saxpy(n1, 1.0f, p->g + i, q[1]->g); + } + return 0; +} + +int kad_op_sub(kad_node_t *p, int action) +{ + int i, n0, n1; + kad_node_t *q[2]; + + q[0] = p->child[0], n0 = kad_len(q[0]); + q[1] = p->child[1], n1 = kad_len(q[1]); + if (action == KAD_SYNC_DIM) { + if (n0 % n1 != 0) return -1; + kad_copy_dim1(p, q[0]); + } else if (action == KAD_FORWARD) { + assert(n0 >= n1); + memcpy(p->x, q[0]->x, n0 * sizeof(float)); + for (i = 0; i < n0; i += n1) + kad_saxpy(n1, -1.0f, q[1]->x, p->x + i); + } else if (action == KAD_BACKWARD) { + if (kad_is_back(q[0])) kad_saxpy(n0, 1.0f, p->g, q[0]->g); + if (kad_is_back(q[1])) + for (i = 0; i < n0; i += n1) + kad_saxpy(n1, -1.0f, p->g + i, q[1]->g); + } + return 0; +} + +int kad_op_mul(kad_node_t *p, int action) +{ + int i, n0, n1; + kad_node_t *q[2]; + + q[0] = p->child[0], n0 = kad_len(q[0]); + q[1] = p->child[1], n1 = kad_len(q[1]); + if (action == KAD_SYNC_DIM) { + if (n0 % n1 != 0) return -1; + kad_copy_dim1(p, q[0]); + } else if (action == KAD_FORWARD) { + assert(n0 >= n1); + memset(p->x, 0, n0 * sizeof(float)); + if (q[0]->x != 0 && q[1]->x != 0) + for (i = 0; i < n0; i += n1) /* TODO: optimize when n1==1 */ + kad_vec_mul_sum(n1, p->x + i, q[0]->x + i, q[1]->x); + } else if (action == KAD_BACKWARD) { + if (kad_is_back(q[0]) && q[1]->x) + for (i = 0; i < n0; i += n1) + kad_vec_mul_sum(n1, q[0]->g + i, p->g + i, q[1]->x); + if (kad_is_back(q[1]) && q[0]->x) + for (i = 0; i < n0; i += n1) + kad_vec_mul_sum(n1, q[1]->g, p->g + i, q[0]->x + i); + } + return 0; +} + +int kad_op_cmul(kad_node_t *p, int action) +{ + int i, n_a_row, n_b_row, n_col, n_a_col = 1, n_b_col = 1; + kad_node_t *q[2]; + + q[0] = p->child[0], q[1] = p->child[1]; + n_col = q[0]->d[q[0]->n_d - 1] > q[1]->d[q[1]->n_d - 1]? q[0]->d[q[0]->n_d - 1] : q[1]->d[q[1]->n_d - 1]; + for (i = q[0]->n_d - 1; i >= 0; --i) if (n_a_col < n_col) n_a_col *= q[0]->d[i]; + for (i = q[1]->n_d - 1; i >= 0; --i) if (n_b_col < n_col) n_b_col *= q[1]->d[i]; + n_a_row = kad_len(q[0]) / n_a_col, n_b_row = kad_len(q[1]) / n_b_col; + if (action == KAD_SYNC_DIM) { + if (n_a_col != n_b_col) return -1; + p->n_d = 2, p->d[0] = n_a_row, p->d[1] = n_b_row; + } else if (action == KAD_FORWARD) { + memset(p->x, 0, n_a_row * n_b_row * sizeof(float)); + if (q[0]->x && q[1]->x) + kad_sgemm_simple(0, 1, n_a_row, n_b_row, n_col, q[0]->x, q[1]->x, p->x); /* Y = X * trans(W) */ + } else if (action == KAD_BACKWARD) { + if (kad_is_back(q[0]) && q[1]->x) + kad_sgemm_simple(0, 0, n_a_row, n_col, n_b_row, p->g, q[1]->x, q[0]->g); /* G_x <- G_y * W */ + if (kad_is_back(q[1]) && q[0]->x) + kad_sgemm_simple(1, 0, n_b_row, n_col, n_a_row, p->g, q[0]->x, q[1]->g); /* G_w <- trans(G_y) * X */ + } + return 0; +} + +int kad_op_matmul(kad_node_t *p, int action) /* TODO: matmul and cmul have different broadcasting rules */ +{ + int n_a_row, n_b_row, n_a_col, n_b_col; + kad_node_t *q[2]; + + q[0] = p->child[0]; + q[1] = p->child[1]; + n_a_row = q[0]->n_d == 1? 1 : q[0]->d[0]; + n_b_row = q[1]->n_d == 1? 1 : q[1]->d[0]; + n_a_col = kad_len(q[0]) / n_a_row; + n_b_col = kad_len(q[1]) / n_b_row; + if (action == KAD_SYNC_DIM) { + if (n_a_col != n_b_row) return -1; + p->n_d = 2, p->d[0] = n_a_row, p->d[1] = n_b_col; + } else if (action == KAD_FORWARD) { + memset(p->x, 0, n_a_row * n_b_col * sizeof(float)); + if (q[0]->x && q[1]->x) + kad_sgemm_simple(0, 0, n_a_row, n_b_col, n_a_col, q[0]->x, q[1]->x, p->x); /* Y = X * W */ + } else if (action == KAD_BACKWARD) { + if (kad_is_back(q[0]) && q[1]->x) + kad_sgemm_simple(0, 1, n_a_row, n_a_col, n_b_col, p->g, q[1]->x, q[0]->g); /* G_x <- G_y * trans(W) */ + if (kad_is_back(q[1]) && q[0]->x) + kad_sgemm_simple(1, 0, n_b_row, n_b_col, n_a_row, q[0]->x, p->g, q[1]->g); /* G_y <- trans(A) * G_y */ + } + return 0; +} + +int kad_op_square(kad_node_t *p, int action) +{ + int i, n; + kad_node_t *q = p->child[0]; + n = kad_len(q); + if (action == KAD_SYNC_DIM) { + kad_copy_dim1(p, q); + } else if (action == KAD_FORWARD) { + for (i = 0; i < n; ++i) + p->x[i] = q->x[i] * q->x[i]; + } else if (action == KAD_BACKWARD && kad_is_back(q)) { + for (i = 0; i < n; ++i) + q->g[i] += p->g[i] * (q->x[i] + q->x[i]); + } + return 0; +} + +int kad_op_1minus(kad_node_t *p, int action) +{ + int i, n; + kad_node_t *q = p->child[0]; + n = kad_len(q); + if (action == KAD_SYNC_DIM) { + kad_copy_dim1(p, q); + } else if (action == KAD_FORWARD) { + for (i = 0; i < n; ++i) p->x[i] = 1.0f - q->x[i]; + } else if (action == KAD_BACKWARD && kad_is_back(q)) { + kad_saxpy(n, -1.0f, p->g, q->g); + } + return 0; +} + +int kad_op_exp(kad_node_t *p, int action) +{ + int i, n; + kad_node_t *q = p->child[0]; + n = kad_len(q); + if (action == KAD_SYNC_DIM) { + kad_copy_dim1(p, q); + } else if (action == KAD_FORWARD) { + for (i = 0; i < n; ++i) p->x[i] = expf(q->x[i]); + } else if (action == KAD_BACKWARD && kad_is_back(q)) { + for (i = 0; i < n; ++i) + q->g[i] += p->g[i] * p->x[i]; + } + return 0; +} + +int kad_op_log(kad_node_t *p, int action) +{ + int i, n; + kad_node_t *q = p->child[0]; + n = kad_len(q); + if (action == KAD_SYNC_DIM) { + kad_copy_dim1(p, q); + } else if (action == KAD_FORWARD) { + for (i = 0; i < n; ++i) p->x[i] = logf(q->x[i]); + } else if (action == KAD_BACKWARD && kad_is_back(q)) { + for (i = 0; i < n; ++i) + q->g[i] += p->g[i] / q->x[i]; + } + return 0; +} + +int kad_op_reduce_sum(kad_node_t *p, int action) +{ + kad_node_t *q = p->child[0]; + int i, j, k, axis, d0, d1; + + assert(p->ptr); + axis = *(int32_t*)p->ptr; + if (axis < 0 || axis >= q->n_d) return -1; + for (i = 0, d0 = 1; i < axis; ++i) d0 *= q->d[i]; + for (i = axis + 1, d1 = 1; i < q->n_d; ++i) d1 *= q->d[i]; + if (action == KAD_SYNC_DIM) { + p->n_d = q->n_d - 1; + for (i = j = 0; i < q->n_d; ++i) + if (i != axis) p->d[j++] = q->d[i]; + } else if (action == KAD_FORWARD) { + memset(p->x, 0, kad_len(p) * sizeof(float)); + for (i = 0; i < d0; ++i) + for (j = 0; j < q->d[axis]; ++j) + for (k = 0; k < d1; ++k) + p->x[i * d1 + k] += q->x[(i * q->d[axis] + j) * d1 + k]; + } else if (action == KAD_BACKWARD && kad_is_back(q)) { + for (i = 0; i < d0; ++i) + for (j = 0; j < q->d[axis]; ++j) + for (k = 0; k < d1; ++k) + q->g[(i * q->d[axis] + j) * d1 + k] += p->g[i * d1 + k]; + } + return 0; +} + +int kad_op_reduce_mean(kad_node_t *p, int action) +{ + kad_node_t *q = p->child[0]; + int i, j, k, axis, d0, d1; + + assert(p->ptr); + axis = *(int32_t*)p->ptr; + if (axis < 0 || axis >= q->n_d) return -1; + for (i = 0, d0 = 1; i < axis; ++i) d0 *= q->d[i]; + for (i = axis + 1, d1 = 1; i < q->n_d; ++i) d1 *= q->d[i]; + if (action == KAD_SYNC_DIM) { + p->n_d = q->n_d - 1; + for (i = j = 0; i < q->n_d; ++i) + if (i != axis) p->d[j++] = q->d[i]; + } else if (action == KAD_FORWARD) { + float t = 1.0f / q->d[axis]; + memset(p->x, 0, kad_len(p) * sizeof(float)); + for (i = 0; i < d0; ++i) + for (j = 0; j < q->d[axis]; ++j) + for (k = 0; k < d1; ++k) + p->x[i * d1 + k] += t * q->x[(i * q->d[axis] + j) * d1 + k]; + } else if (action == KAD_BACKWARD && kad_is_back(q)) { + float t = 1.0f / q->d[axis]; + for (i = 0; i < d0; ++i) + for (j = 0; j < q->d[axis]; ++j) + for (k = 0; k < d1; ++k) + q->g[(i * q->d[axis] + j) * d1 + k] += t * p->g[i * d1 + k]; + } + return 0; +} + +/********** Miscellaneous **********/ + +int kad_op_dropout(kad_node_t *p, int action) +{ + int i, n; + kad_node_t *q = p->child[0]; + assert(p->child[1]->n_d == 0); + n = kad_len(q); + if (action == KAD_SYNC_DIM) { + kad_copy_dim1(p, q); + } else if (action == KAD_ALLOC) { + if (kad_is_back(p->child[0])) + p->gtmp = realloc(p->gtmp, n); + } else if (action == KAD_FORWARD) { + float r = kad_is_const(q) || kad_is_var(q)? 0.0f : *p->child[1]->x, z = 1.0f / (1.0f - r); + uint8_t *flag = (uint8_t*)p->gtmp; + for (i = 0; i < n; ++i) { + int kept = (kad_drand(p->ptr) >= r); + p->x[i] = kept? q->x[i] * z : 0.0f; + if (flag) flag[i] = kept; + } + } else if (action == KAD_BACKWARD && kad_is_back(p->child[0])) { + float r = kad_is_const(q) || kad_is_var(q)? 0.0f : *p->child[1]->x, z = 1.0f / (1.0f - r); + uint8_t *flag = (uint8_t*)p->gtmp; + for (i = 0; i < n; ++i) + if (flag[i]) q->g[i] += z * p->g[i]; + } + return 0; +} + +int kad_op_sample_normal(kad_node_t *p, int action) /* not tested */ +{ + int i, n; + kad_node_t *q = p->child[0]; + n = kad_len(q); + if (action == KAD_SYNC_DIM) { + kad_copy_dim1(p, q); + } else if (action == KAD_ALLOC) { + if (kad_is_back(p->child[0])) + p->gtmp = realloc(p->gtmp, n * sizeof(float)); + } else if (action == KAD_FORWARD) { + float *r = (float*)p->gtmp; + for (i = 0; i < n; ++i) { + float z; + z = (float)kad_drand_normal(p->ptr); + p->x[i] = q->x[i] * z; + if (r) r[i] = z; + } + } else if (action == KAD_BACKWARD && kad_is_back(p->child[0])) { + float *r = (float*)p->gtmp; + for (i = 0; i < n; ++i) + q->g[i] += p->g[i] * r[i]; + } + return 0; +} + +int kad_op_slice(kad_node_t *p, int action) +{ + kad_node_t *q = p->child[0]; + int32_t *aux, *range; + int i, axis, d0, d1; + + assert(p->ptr); + aux = (int32_t*)p->ptr, axis = aux[0], range = aux + 1; + if (axis < 0 || axis >= q->n_d) return -1; + for (i = 0, d0 = 1; i < axis; ++i) d0 *= q->d[i]; + for (i = axis + 1, d1 = 1; i < q->n_d; ++i) d1 *= q->d[i]; + if (action == KAD_SYNC_DIM) { + if (range[0] >= range[1] || range[0] < 0 || range[1] > q->d[axis]) return -1; + kad_copy_dim1(p, q); + p->d[axis] = range[1] - range[0]; + } else if (action == KAD_FORWARD) { + for (i = 0; i < d0; ++i) + memcpy(&p->x[i * p->d[axis] * d1], &q->x[(i * q->d[axis] + range[0]) * d1], (range[1] - range[0]) * d1 * sizeof(float)); + } else if (action == KAD_BACKWARD && kad_is_back(q)) { + for (i = 0; i < d0; ++i) + kad_saxpy((range[1] - range[0]) * d1, 1.0f, &p->g[i * p->d[axis] * d1], &q->g[(i * q->d[axis] + range[0]) * d1]); + } + return 0; +} + +int kad_op_concat(kad_node_t *p, int action) +{ + kad_node_t *q = p->child[0]; + int32_t *aux; + int i, j, k, axis, d0, d1; + + assert(p->ptr); + aux = (int32_t*)p->ptr, axis = aux[0]; + for (i = 0, d0 = 1; i < axis; ++i) d0 *= q->d[i]; + for (i = axis + 1, d1 = 1; i < q->n_d; ++i) d1 *= q->d[i]; + if (action == KAD_SYNC_DIM) { + for (i = 1; i < p->n_child; ++i) { + if (p->child[i]->n_d != q->n_d) return -1; + for (j = 0; j < q->n_d; ++j) + if (j != axis && q->d[j] != p->child[i]->d[j]) return -1; + } + kad_copy_dim1(p, q); + for (i = 1; i < p->n_child; ++i) + p->d[axis] += p->child[i]->d[axis]; + } else if (action == KAD_FORWARD) { + for (i = 0; i < d0; ++i) + for (j = k = 0; j < p->n_child; ++j) { + q = p->child[j]; + memcpy(&p->x[(i * p->d[axis] + k) * d1], &q->x[i * q->d[axis] * d1], q->d[axis] * d1 * sizeof(float)); + k += q->d[axis]; + } + } else if (action == KAD_BACKWARD) { + for (i = 0; i < d0; ++i) + for (j = k = 0; j < p->n_child; ++j) { + q = p->child[j]; + if (!kad_is_back(q)) continue; + kad_saxpy(q->d[axis] * d1, 1.0f, &p->g[(i * p->d[axis] + k) * d1], &q->g[i * q->d[axis] * d1]); + k += q->d[axis]; + } + } + return 0; +} + +int kad_op_reshape(kad_node_t *p, int action) +{ + kad_node_t *q = p->child[0]; + + if (action == KAD_SYNC_DIM) { + if (p->ptr) { + int32_t *aux = (int32_t*)p->ptr; + int i, len = 1, n_missing = 0; + p->n_d = p->ptr_size / 4; + for (i = 0; i < p->n_d; ++i) p->d[i] = aux[i]; + for (i = 0; i < p->n_d; ++i) + if (p->d[i] <= 0) ++n_missing; + else len *= p->d[i]; + if (n_missing == 0 && len != kad_len(q)) return -1; + if (n_missing > 1) { /* attempt to infer missing dimensions except the last one */ + for (i = 0; i < p->n_d; ++i) + if (p->d[i] <= 0 && i < q->n_d) { + p->d[i] = q->d[i], len *= p->d[i]; + if (--n_missing == 1) break; + } + if (n_missing > 1) return -1; + } + if (n_missing == 1) { /* infer the last missing dimension */ + if (kad_len(q) % len != 0) return -1; + for (i = 0; i < p->n_d; ++i) + if (p->d[i] <= 0) p->d[i] = kad_len(q) / len; + } + } else kad_copy_dim1(p, q); + } else if (action == KAD_FORWARD) { + memcpy(p->x, q->x, kad_len(p) * sizeof(float)); + } else if (action == KAD_BACKWARD && kad_is_back(q)) { + kad_saxpy(kad_len(p), 1.0f, p->g, q->g); + } + return 0; +} + +int kad_op_reverse(kad_node_t *p, int action) +{ + kad_node_t *q = p->child[0]; + int axis, i, j, n, d0, d1; + + axis = p->ptr? *(int32_t*)p->ptr : 0; + if (axis < 0) axis += q->n_d; + assert(axis >= 0 && axis < q->n_d); + for (i = 0, d0 = 1; i < axis; ++i) d0 *= q->d[i]; + n = q->d[axis]; + for (i = axis + 1, d1 = 1; i < q->n_d; ++i) d1 *= q->d[i]; + if (action == KAD_SYNC_DIM) { + kad_copy_dim1(p, q); + } else if (action == KAD_FORWARD) { + for (i = 0; i < d0; ++i) + for (j = 0; j < n; ++j) + memcpy(&p->x[(i * n + n - 1 - j) * d1], &q->x[(i * n + j) * d1], d1 * sizeof(float)); + } else if (action == KAD_BACKWARD && kad_is_back(q)) { + for (i = 0; i < d0; ++i) + for (j = 0; j < n; ++j) + kad_saxpy(d1, 1.0f, &p->g[(i * n + n - 1 - j) * d1], &q->g[(i * n + j) * d1]); + } + return 0; +} + +/********** Cost functions **********/ + +int kad_op_mse(kad_node_t *p, int action) +{ + kad_node_t *y1 = p->child[0]; /* test */ + kad_node_t *y0 = p->child[1]; /* truth */ + int i, n; + + n = kad_len(y0); + if (action == KAD_SYNC_DIM) { + if (n != kad_len(y1)) return -1; + p->n_d = 0; + } else if (action == KAD_FORWARD) { + double cost = 0.0; + for (i = 0; i < n; ++i) + cost += (y1->x[i] - y0->x[i]) * (y1->x[i] - y0->x[i]); + p->x[0] = (float)(cost / n); + } else if (action == KAD_BACKWARD && kad_is_back(y1)) { + float t = 2.0f * p->g[0] / n; + for (i = 0; i < n; ++i) + y1->g[i] += t * (y1->x[i] - y0->x[i]); + } + return 0; +} + +int kad_op_ce_bin(kad_node_t *p, int action) +{ + static const float tiny = 1e-9f; + kad_node_t *y1 = p->child[0]; /* test */ + kad_node_t *y0 = p->child[1]; /* truth */ + int i, n; + + n = kad_len(y0); + if (action == KAD_SYNC_DIM) { + if (n != kad_len(y1)) return -1; + p->n_d = 0; + } else if (action == KAD_FORWARD) { + double cost = 0.0; + for (i = 0; i < n; ++i) { + if (y0->x[i] > 0.0f) + cost += y0->x[i] * log(y0->x[i] / (y1->x[i] > tiny? y1->x[i] : tiny)); + if (1.0f - y0->x[i] > 0.0f) + cost += (1.0f - y0->x[i]) * log((1.0f - y0->x[i]) / (1.0f - y1->x[i] > tiny? 1.0f - y1->x[i] : tiny)); + } + p->x[0] = (float)(cost / n); + } else if (action == KAD_BACKWARD && kad_is_back(y1)) { + float t = p->g[0] / n; + for (i = 0; i < n; ++i) { + if (y0->x[i] > 0.0f) + y1->g[i] -= t * y0->x[i] / (y1->x[i] > tiny? y1->x[i] : tiny); + if (1.0f - y0->x[i] > 0.0f) + y1->g[i] += t * (1.0f - y0->x[i]) / (1.0f - y1->x[i] > tiny? 1.0f - y1->x[i] : tiny); + } + } + return 0; +} + +int kad_op_ce_bin_neg(kad_node_t *p, int action) +{ + static const float tiny = 1e-9f; + kad_node_t *y1 = p->child[0]; /* test */ + kad_node_t *y0 = p->child[1]; /* truth */ + int i, n; + + n = kad_len(y0); + if (action == KAD_SYNC_DIM) { + if (n != kad_len(y1)) return -1; + p->n_d = 0; + } else if (action == KAD_FORWARD) { + double cost = 0.0; + for (i = 0; i < n; ++i) { + if (1.0f + y0->x[i] > 0.0f) + cost += .5f * (1.0f + y0->x[i]) * log((1.0f + y0->x[i]) / (1.0f + y1->x[i] > tiny? 1.0f + y1->x[i] : tiny)); + if (1.0f - y0->x[i] > 0.0f) + cost += .5f * (1.0f - y0->x[i]) * log((1.0f - y0->x[i]) / (1.0f - y1->x[i] > tiny? 1.0f - y1->x[i] : tiny)); + } + p->x[0] = (float)(cost / n); + } else if (action == KAD_BACKWARD && kad_is_back(y1)) { + float t = p->g[0] / n; + for (i = 0; i < n; ++i) { + if (1.0f + y0->x[i] > 0.0f) + y1->g[i] -= .5f * t * (1.0f + y0->x[i]) / (1.0f + y1->x[i] > tiny? 1.0f + y1->x[i] : tiny); + if (1.0f - y0->x[i] > 0.0f) + y1->g[i] += .5f * t * (1.0f - y0->x[i]) / (1.0f - y1->x[i] > tiny? 1.0f - y1->x[i] : tiny); + } + } + return 0; +} + +int kad_op_ce_multi(kad_node_t *p, int action) +{ + static const float tiny = 1e-9f; + kad_node_t *y1 = p->child[0]; /* test */ + kad_node_t *y0 = p->child[1]; /* truth */ + kad_node_t *c = 0; + int i, j, n1, d0; + + n1 = y0->d[y0->n_d - 1]; + d0 = kad_len(y0) / n1; + if (p->n_child == 3) { + c = p->child[2]; + assert(c->n_d == 1 && c->d[0] == n1); + } + if (action == KAD_SYNC_DIM) { + if (kad_len(y0) != kad_len(y1) || y0->d[y0->n_d - 1] != y1->d[y1->n_d - 1]) return -1; + p->n_d = 0; + } else if (action == KAD_FORWARD) { + double cost = 0.0; + if (c == 0) { + for (j = 0; j < d0; ++j) { + float *x1 = &y1->x[j * n1], *x0 = &y0->x[j * n1]; + for (i = 0; i < n1; ++i) + if (x0[i] > 0.0f) + cost += x0[i] * log(x0[i] / (x1[i] > tiny? x1[i] : tiny)); + } + } else { + for (j = 0; j < d0; ++j) { + float *x1 = &y1->x[j * n1], *x0 = &y0->x[j * n1]; + for (i = 0; i < n1; ++i) + if (x0[i] > 0.0f) + cost += c->x[i] * x0[i] * log(x0[i] / (x1[i] > tiny? x1[i] : tiny)); + } + } + p->x[0] = (float)(cost / d0); + } else if (action == KAD_BACKWARD && kad_is_back(y1)) { + float t = p->g[0] / d0; + if (c == 0) { + for (j = 0; j < d0; ++j) { + float *g = &y1->g[j * n1], *x1 = &y1->x[j * n1], *x0 = &y0->x[j * n1]; + for (i = 0; i < n1; ++i) + g[i] -= t * x0[i] / (x1[i] > tiny? x1[i] : tiny); + } + } else { + for (j = 0; j < d0; ++j) { + float *g = &y1->g[j * n1], *x1 = &y1->x[j * n1], *x0 = &y0->x[j * n1]; + for (i = 0; i < n1; ++i) + g[i] -= t * c->x[i] * x0[i] / (x1[i] > tiny? x1[i] : tiny); + } + } + } + return 0; +} + +/********** Normalization **********/ + +int kad_op_stdnorm(kad_node_t *p, int action) +{ + int i, j, n, m; + kad_node_t *q = p->child[0]; + assert(q->n_d > 0); + n = q->d[q->n_d - 1]; + m = kad_len(q) / n; + if (action == KAD_SYNC_DIM) { + kad_copy_dim1(p, q); + } else if (action == KAD_ALLOC) { + p->gtmp = realloc(p->gtmp, m * sizeof(float)); + } else if (action == KAD_FORWARD) { + float *si = (float*)p->gtmp; + for (j = 0; j < m; ++j) { + float *px = &p->x[j * n], *qx = &q->x[j * n]; + float avg, std_inv; + double s; + for (i = 0, s = 0.0; i < n; ++i) s += qx[i]; + avg = (float)(s / n); + for (i = 0; i < n; ++i) px[i] = qx[i] - avg; + for (i = 0, s = 0.0; i < n; ++i) s += px[i] * px[i]; + std_inv = s == 0.0? 1.0f : (float)(1.0 / sqrt(s / n)); + for (i = 0; i < n; ++i) px[i] *= std_inv; + si[j] = std_inv; + } + } else if (action == KAD_BACKWARD && kad_is_back(q)) { + float *si = (float*)p->gtmp; + for (j = 0; j < m; ++j) { + float *pg = &p->g[j * n], *qg = &q->g[j * n], *px = &p->x[j * n], std_inv = si[j]; + double s, t; + for (i = 0, s = t = 0.0; i < n; ++i) + s += pg[i], t += px[i] * pg[i]; + s /= n, t /= n; + for (i = 0; i < n; ++i) + qg[i] += std_inv * (pg[i] - s - px[i] * t); + } + } + return 0; +} + +/********** Activation functions **********/ + +int kad_op_sigm(kad_node_t *p, int action) +{ + int i, n; + kad_node_t *q = p->child[0]; + n = kad_len(q); + if (action == KAD_SYNC_DIM) { + kad_copy_dim1(p, q); + } else if (action == KAD_FORWARD) { + for (i = 0; i < n; ++i) + p->x[i] = 1.0f / (1.0f + expf(-q->x[i])); + } else if (action == KAD_BACKWARD && kad_is_back(q)) { + for (i = 0; i < n; ++i) + q->g[i] += p->g[i] * (p->x[i] * (1.0f - p->x[i])); + } + return 0; +} + +int kad_op_tanh(kad_node_t *p, int action) +{ + int i, n; + kad_node_t *q = p->child[0]; + n = kad_len(q); + if (action == KAD_SYNC_DIM) { + kad_copy_dim1(p, q); + } else if (action == KAD_FORWARD) { + for (i = 0; i < n; ++i) { + if (q->x[i] < -20.0f) p->x[i] = -1.0f; + else { + float y; + y = expf(-2.0f * q->x[i]); + p->x[i] = (1.0f - y) / (1.0f + y); + } + } + } else if (action == KAD_BACKWARD && kad_is_back(q)) { + for (i = 0; i < n; ++i) + q->g[i] += p->g[i] * (1.0f - p->x[i] * p->x[i]); + } + return 0; +} + +int kad_op_relu(kad_node_t *p, int action) +{ + int i, n; + kad_node_t *q = p->child[0]; + n = kad_len(q); + if (action == KAD_SYNC_DIM) { + kad_copy_dim1(p, q); + } else if (action == KAD_FORWARD) { + for (i = 0; i < n; ++i) + p->x[i] = q->x[i] > 0.0f? q->x[i] : 0.0f; + } else if (action == KAD_BACKWARD && kad_is_back(q)) { + for (i = 0; i < n; ++i) + if (q->x[i] > 0.0f) + q->g[i] += p->g[i]; + } + return 0; +} + +int kad_op_sin(kad_node_t *p, int action) +{ + int i, n; + kad_node_t *q = p->child[0]; + n = kad_len(q); + if (action == KAD_SYNC_DIM) { + kad_copy_dim1(p, q); + } else if (action == KAD_FORWARD) { + for (i = 0; i < n; ++i) p->x[i] = sinf(q->x[i]); + } else if (action == KAD_BACKWARD && kad_is_back(q)) { + for (i = 0; i < n; ++i) + q->g[i] += p->g[i] * cosf(q->x[i]); + } + return 0; +} + +int kad_op_softmax(kad_node_t *p, int action) +{ + int i, j, n1, d0; + kad_node_t *q = p->child[0]; + + n1 = q->d[q->n_d - 1]; + d0 = kad_len(q) / n1; + if (action == KAD_SYNC_DIM) { + kad_copy_dim1(p, q); + } else if (action == KAD_FORWARD) { + for (j = 0; j < d0; ++j) { + float s, max, *x = &q->x[j * n1], *y = &p->x[j * n1]; + for (i = 0, max = -FLT_MAX; i < n1; ++i) + max = max > x[i]? max : x[i]; + for (i = 0, s = 0.0f; i < n1; ++i) { + y[i] = expf(x[i] - max); + s += y[i]; + } + for (i = 0, s = 1.0f / s; i < n1; ++i) y[i] *= s; + } + } else if (action == KAD_BACKWARD && kad_is_back(q)) { + for (j = 0; j < d0; ++j) { + float s, *g = &p->g[j * n1], *y = &p->x[j * n1], *h = &q->g[j * n1]; + for (i = 0, s = 0.0f; i < n1; ++i) + s += g[i] * y[i]; + for (i = 0; i < n1; ++i) + h[i] += y[i] * (g[i] - s); + } + } + return 0; +} + +/********** Multi-node pooling **********/ + +int kad_op_avg(kad_node_t *p, int action) +{ + int i, n; + float tmp; + kad_node_t *q; + + assert(p->n_child > 0); + tmp = 1.0f / p->n_child; + q = p->child[0]; + n = kad_len(q); + if (action == KAD_SYNC_DIM) { + for (i = 1; i < p->n_child; ++i) + if (kad_len(p->child[i]) != n) return -1; + kad_copy_dim1(p, q); + } else if (action == KAD_FORWARD) { + memcpy(p->x, q->x, n * sizeof(float)); + for (i = 1; i < p->n_child; ++i) + kad_saxpy(n, 1.0f, p->child[i]->x, p->x); + for (i = 0; i < n; ++i) p->x[i] *= tmp; + } else if (action == KAD_BACKWARD) { + for (i = 0; i < p->n_child; ++i) + if (kad_is_back(p->child[i])) + kad_saxpy(n, tmp, p->g, p->child[i]->g); + } + return 0; +} + +int kad_op_max(kad_node_t *p, int action) +{ + int i, n; + kad_node_t *q = p->child[0]; + n = kad_len(q); + if (action == KAD_SYNC_DIM) { + int *max_j; + for (i = 1; i < p->n_child; ++i) + if (kad_len(p->child[i]) != n) return -1; + kad_copy_dim1(p, q); + max_j = (int*)calloc(n, sizeof(int)); + p->gtmp = max_j; + } else if (action == KAD_FORWARD) { + int j, *max_j = (int*)p->gtmp; + memset(max_j, 0, n * sizeof(int)); + memcpy(p->x, q->x, n * sizeof(float)); + for (j = 1; j < p->n_child; ++j) + for (i = 0, q = p->child[j]; i < n; ++i) + if (q->x[i] > p->x[i]) p->x[i] = q->x[i], max_j[i] = j; + } else if (action == KAD_BACKWARD) { + int *max_j = (int*)p->gtmp; + for (i = 0; i < n; ++i) + p->child[max_j[i]]->g[i] += p->g[i]; + } + return 0; +} + +int kad_op_stack(kad_node_t *p, int action) /* TODO: allow axis, as in TensorFlow */ +{ + int i, n, axis = 0; + kad_node_t *q; + + assert(p->n_child > 0); + q = p->child[0]; + n = kad_len(q); + if (action == KAD_SYNC_DIM) { + for (i = 1; i < p->n_child; ++i) + if (kad_len(p->child[i]) != n) return -1; + p->n_d = q->n_d + 1; + for (i = 0; i < axis; ++i) p->d[i] = q->d[i]; + p->d[axis] = p->n_child; + for (; i < q->n_d; ++i) p->d[i+1] = q->d[i]; + } else if (action == KAD_FORWARD) { /* TODO: doesn't work when axis != 0 */ + for (i = 0; i < p->n_child; ++i) + memcpy(&p->x[i * n], p->child[i]->x, n * sizeof(float)); + } else if (action == KAD_BACKWARD) { + for (i = 0; i < p->n_child; ++i) + if (kad_is_back(p->child[i])) + kad_saxpy(n, 1.0f, &p->g[i * n], p->child[i]->g); + } + return 0; +} + +int kad_op_select(kad_node_t *p, int action) +{ + kad_node_t *q; + int i, n, which; + + which = *(int32_t*)p->ptr; + if (which < 0) which += p->n_child; + assert(which >= 0 && which < p->n_child); + q = p->child[which]; + n = kad_len(q); + if (action == KAD_SYNC_DIM) { + for (i = 0; i < p->n_child; ++i) + if (p->child[i]->n_d != q->n_d || kad_len(p->child[i]) != n) + break; + if (i < p->n_child) return -1; + kad_copy_dim1(p, q); + } else if (action == KAD_FORWARD) { + memcpy(p->x, q->x, n * sizeof(float)); + } else if (action == KAD_BACKWARD && kad_is_back(q)) { + kad_saxpy(n, 1.0f, p->g, q->g); + } + return 0; +} + +/********** 2D convolution **********/ + +static void conv_rot180(int d0, int d1, float *x) /* rotate/reverse a weight martix */ +{ + int i, j; + for (i = 0; i < d0; ++i) { + float tmp, *xi = &x[i * d1]; + for (j = 0; j < d1>>1; ++j) + tmp = xi[j], xi[j] = xi[d1-1-j], xi[d1-1-j] = tmp; + } +} + +static void conv2d_move_1to3(int d[4], const float *x, float *y) /* convert the NCHW shape to the NHWC shape */ +{ + int i, j, k, l; + for (i = 0; i < d[0]; ++i) + for (j = 0; j < d[1]; ++j) + for (k = 0; k < d[2]; ++k) { + int ik = (i * d[2] + k) * d[3], ijk = ((i * d[1] + j) * d[2] + k) * d[3]; + for (l = 0; l < d[3]; ++l) + y[(ik + l) * d[1] + j] = x[ijk + l]; + } +} + +static void conv2d_add_3to1(int d[4], const float *y, float *x) /* convert the NHWC shape back to NCHW and add to another NCHW-shaped array */ +{ + int i, j, k, l; + for (i = 0; i < d[0]; ++i) + for (j = 0; j < d[1]; ++j) + for (k = 0; k < d[2]; ++k) { + int ik = (i * d[2] + k) * d[3], ijk = ((i * d[1] + j) * d[2] + k) * d[3]; + for (l = 0; l < d[3]; ++l) + x[ijk + l] += y[(ik + l) * d[1] + j]; + } +} + +#define conv_out_size(in_size, aux) (((in_size) - (aux)->kernel_size + (aux)->pad[0] + (aux)->pad[1]) / (aux)->stride + 1) + +#define process_row_for(_xx, _ww, _yy, _wn, _pn, _stride, _pad, _t) do { \ + int j, l; \ + if (_stride > 1) { \ + for (l = 0; l < _wn; ++l) { \ + const float *xl = &_xx[l - _pad]; \ + for (j = 0; j < _pn; ++j, xl += _stride) _t[j] = *xl; \ + kad_saxpy(_pn, _ww[l], _t, _yy); \ + } \ + } else for (l = 0; l < _wn; ++l) kad_saxpy(_pn, _ww[l], &_xx[l - _pad], _yy); \ +} while (0) + +#define process_row_back_x(_xx, _ww, _yy, _wn, _pn, _stride, _pad, _t) do { \ + int j, l; \ + if (_stride > 1) { \ + for (l = 0; l < _wn; ++l) { \ + float *xl = &_xx[l - _pad]; \ + memset(_t, 0, _pn * sizeof(float)); \ + kad_saxpy(_pn, _ww[l], _yy, _t); \ + for (j = 0; j < _pn; ++j, xl += _stride) *xl += _t[j]; \ + } \ + } else for (l = 0; l < _wn; ++l) kad_saxpy(_pn, _ww[l], _yy, &_xx[l - _pad]); \ +} while (0) + +#define process_row_back_w(_xx, _ww, _yy, _wn, _pn, _stride, _pad, _t) do { \ + int j, l; \ + if (_stride > 1) { \ + for (l = 0; l < _wn; ++l) { \ + const float *xl = &_xx[l - _pad]; \ + for (j = 0; j < _pn; ++j, xl += _stride) _t[j] = *xl; \ + _ww[l] += kad_sdot(_pn, _yy, _t); \ + } \ + } else for (l = 0; l < _wn; ++l) _ww[l] += kad_sdot(_pn, _yy, &_xx[l - _pad]); \ +} while (0) + +/* Forward and backward passes are implemented with two different algorithms. + * The first is faster for small kernels with few input channels; otherwise the + * second algorithm is faster. Both algorithms should produce identical + * results, up to the precision of "float". + */ +int kad_op_conv2d(kad_node_t *p, int action) /* in the number-channel-height-width (NCHW) shape */ +{ +#define conv2d_loop1(_x, _w, _y, _tmp, _row_func) do { /* for the NCHW shape */ \ + int n, c1, c0, i, k, ii; \ + for (n = 0; n < q->d[0]; ++n) /* mini-batch */ \ + for (c1 = 0; c1 < w->d[0]; ++c1) /* output channel */ \ + for (c0 = 0; c0 < w->d[1]; ++c0) /* input channel */ \ + for (k = 0; k < w->d[2]; ++k) { /* kernel row */ \ + float *_ww = &(_w)[((c1 * w->d[1] + c0) * w->d[2] + k) * w->d[3]]; \ + for (i = 0, ii = k - aux[0].pad[0]; i < p->d[2] && ii >= 0 && ii < q->d[2]; ++i, ii += aux[0].stride) { /* output row */ \ + float *_xx = &(_x)[((n * q->d[1] + c0) * q->d[2] + ii) * q->d[3]]; \ + float *_yy = &(_y)[((n * p->d[1] + c1) * p->d[2] + i) * p->d[3]]; \ + if (x_padded) { \ + memcpy(x_padded + aux[1].pad[0], _xx, q->d[3] * sizeof(float)); \ + _xx = x_padded + aux[1].pad[0]; \ + } \ + _row_func(_xx, _ww, _yy, w->d[3], p->d[3], aux[1].stride, aux[1].pad[0], (_tmp)); \ + } /* ~i */ \ + } /* ~k, c0, c1, n */ \ + } while (0) + +#define conv2d_loop2(_x, _w, _y, _code) do { /* for the NHWC shape */ \ + int n, c1, i, j, k, ii, j_skip = aux[1].stride * q->d[1], m = w->d[3] * w->d[1]; \ + for (n = 0; n < q->d[0]; ++n) /* mini-batch */ \ + for (c1 = 0; c1 < w->d[0]; ++c1) /* output channel */ \ + for (k = 0; k < w->d[2]; ++k) { /* kernel row */ \ + float *_ww = &(_w)[(c1 * w->d[2] + k) * m]; \ + for (i = 0, ii = k - aux[0].pad[0]; i < p->d[2] && ii >= 0 && ii < q->d[2]; ++i, ii += aux[0].stride) { /* output and input row */ \ + float *_xx = &(_x)[(n * q->d[2] + ii) * q->d[3] * q->d[1]]; \ + float *_yy = &(_y)[((n * p->d[1] + c1) * p->d[2] + i) * p->d[3]]; \ + if (x_padded) { \ + memcpy(x_padded + aux[1].pad[0] * q->d[1], _xx, q->d[3] * q->d[1] * sizeof(float)); \ + _xx = x_padded; \ + } \ + for (j = 0; j < p->d[3]; ++j, _xx += j_skip, ++_yy) _code; /* output and input column */ \ + } /* ~i */ \ + } /* ~k, c1, n */ \ + } while (0) + + conv_conf_t *aux = (conv_conf_t*)p->ptr; + kad_node_t *q = p->child[0], *w = p->child[1]; + float *t = 0, *q1 = 0, *w1 = 0, *x_padded = 0; + int algo_switch = 0; + + if (action == KAD_FORWARD || action == KAD_BACKWARD) { /* allocate working space */ + if (w->d[3] * w->d[1] < 16) { + t = (float*)malloc(p->d[3] * sizeof(float)); + x_padded = aux[1].pad[0] + aux[1].pad[1] > 0? (float*)calloc(q->d[3] + aux[1].pad[0] + aux[1].pad[1], sizeof(float)) : 0; + } else { + q1 = (float*)malloc(kad_len(q) * sizeof(float)); + w1 = (float*)malloc(kad_len(w) * sizeof(float)); + x_padded = aux[1].pad[0] + aux[1].pad[1] > 0? (float*)calloc((q->d[3] + aux[1].pad[0] + aux[1].pad[1]) * q->d[1], sizeof(float)) : 0; + algo_switch = 1; + } + } + if (action == KAD_SYNC_DIM) { + if (q->n_d != 4 || w->n_d != 4) return -1; + if (q->d[1] != w->d[1]) return -1; /* unmatched input channels */ + p->n_d = 4; + p->d[0] = q->d[0], p->d[1] = w->d[0], p->d[2] = conv_out_size(q->d[2], &aux[0]), p->d[3] = conv_out_size(q->d[3], &aux[1]); + } else if (action == KAD_FORWARD) { + conv_rot180(w->d[0] * w->d[1], w->d[2] * w->d[3], w->x); + memset(p->x, 0, kad_len(p) * sizeof(float)); + if (!algo_switch) { /* this is the first algorithm */ + conv2d_loop1(q->x, w->x, p->x, t, process_row_for); + } else { /* this is the second algorithm */ + conv2d_move_1to3(q->d, q->x, q1); + conv2d_move_1to3(w->d, w->x, w1); + conv2d_loop2(q1, w1, p->x, (*_yy += kad_sdot(m, _ww, _xx))); + } + conv_rot180(w->d[0] * w->d[1], w->d[2] * w->d[3], w->x); + } else if (action == KAD_BACKWARD) { + if (kad_is_back(p->child[0])) { /* backprop to the input array */ + conv_rot180(w->d[0] * w->d[1], w->d[2] * w->d[3], w->x); + if (!algo_switch) { + conv2d_loop1(q->g, w->x, p->g, t, process_row_back_x); + } else { + memset(q1, 0, kad_len(q) * sizeof(float)); + conv2d_move_1to3(w->d, w->x, w1); + conv2d_loop2(q1, w1, p->g, kad_saxpy(m, *_yy, _ww, _xx)); + conv2d_add_3to1(q->d, q1, q->g); + } + conv_rot180(w->d[0] * w->d[1], w->d[2] * w->d[3], w->x); + } + if (kad_is_back(p->child[1])) { /* backprop to the weight matrix */ + conv_rot180(w->d[0] * w->d[1], w->d[2] * w->d[3], w->g); + if (!algo_switch) { + conv2d_loop1(q->x, w->g, p->g, t, process_row_back_w); + } else { + conv2d_move_1to3(q->d, q->x, q1); + memset(w1, 0, kad_len(w) * sizeof(float)); + conv2d_loop2(q1, w1, p->g, kad_saxpy(m, *_yy, _xx, _ww)); + conv2d_add_3to1(w->d, w1, w->g); + } + conv_rot180(w->d[0] * w->d[1], w->d[2] * w->d[3], w->g); + } + } + free(t); free(q1); free(w1); free(x_padded); + return 0; +} + +int kad_op_max2d(kad_node_t *p, int action) +{ + conv_conf_t *aux = (conv_conf_t*)p->ptr; + kad_node_t *q = p->child[0]; + if (action == KAD_SYNC_DIM) { + if (q->n_d != 4) return -1; + p->n_d = 4; + p->d[0] = q->d[0], p->d[1] = q->d[1], p->d[2] = conv_out_size(q->d[2], &aux[0]), p->d[3] = conv_out_size(q->d[3], &aux[1]); + } else if (action == KAD_ALLOC) { + p->gtmp = realloc(p->gtmp, kad_len(p) * sizeof(int)); + } else if (action == KAD_FORWARD) { + int rest = 1, len, t, i; + int *f = (int*)p->gtmp; + len = kad_len(p); + for (i = 0; i < len; ++i) p->x[i] = -FLT_MAX; + for (i = 0; i < p->n_d - 2; ++i) rest *= p->d[i]; + for (t = 0; t < rest; ++t) { + int i, j, k, l, p_row = p->d[p->n_d - 2], p_col = p->d[p->n_d - 1]; + for (i = 0; i < p_row; ++i) { + int u = (t * p_row + i) * p_col; + for (k = 0; k < aux[0].kernel_size; ++k) { + int v, v0, v_end, ii = i * aux[0].stride + k - aux[0].pad[0]; + if (ii < 0 || ii >= q->d[p->n_d - 2]) continue; + v0 = (t * q->d[p->n_d - 2] + ii) * q->d[p->n_d - 1]; + v_end = v0 + q->d[p->n_d - 1]; + for (l = 0; l < aux[1].kernel_size; ++l) + for (j = 0, v = v0 + (l > aux[1].pad[0]? l - aux[1].pad[0] : 0); j < p_col && v < v_end; ++j, v += aux[1].stride) + if (p->x[u + j] < q->x[v]) + p->x[u + j] = q->x[v], f[u + j] = v; + } /* ~k */ + } /* ~i */ + } + } else if (action == KAD_BACKWARD) { + int i, len, *f = (int*)p->gtmp; + len = kad_len(p); + for (i = 0; i < len; ++i) q->g[f[i]] += p->g[i]; + } + return 0; +} + +/********** 1D convolution **********/ + +static void conv1d_move_1to2(int d[3], const float *x, float *y) +{ + int i, j, k; + for (k = 0; k < d[0]; ++k) + for (j = 0; j < d[1]; ++j) + for (i = 0; i < d[2]; ++i) + y[(k * d[2] + i) * d[1] + j] = x[(k * d[1] + j) * d[2] + i]; +} + +static void conv1d_add_2to1(int d[3], const float *y, float *x) +{ + int i, j, k; + for (k = 0; k < d[0]; ++k) + for (j = 0; j < d[1]; ++j) + for (i = 0; i < d[2]; ++i) + x[(k * d[1] + j) * d[2] + i] += y[(k * d[2] + i) * d[1] + j]; +} + +int kad_op_conv1d(kad_node_t *p, int action) /* in the number-channel-width (NCW) shape */ +{ +#define conv1d_loop1(_x, _w, _y, _tmp, _row_func) do { /* for the NCW shape */ \ + int n, c1, c0; \ + for (n = 0; n < q->d[0]; ++n) /* mini-batch */ \ + for (c1 = 0; c1 < w->d[0]; ++c1) /* output channel */ \ + for (c0 = 0; c0 < w->d[1]; ++c0) { /* input channel */ \ + float *_ww = &(_w)[(c1 * w->d[1] + c0) * w->d[2]]; \ + float *_xx = &(_x)[(n * q->d[1] + c0) * q->d[2]]; \ + float *_yy = &(_y)[(n * p->d[1] + c1) * p->d[2]]; \ + if (x_padded) { \ + memcpy(x_padded + aux->pad[0], _xx, q->d[2] * sizeof(float)); \ + _xx = x_padded + aux->pad[0]; \ + } \ + _row_func(_xx, _ww, _yy, w->d[2], p->d[2], aux->stride, aux->pad[0], (_tmp)); \ + } /* ~c0, c1, n */ \ + } while (0) + +#define conv1d_loop2(_x, _w, _y, _code) do { /* for the NWC shape */ \ + int n, c1, j, j_skip = aux->stride * q->d[1], m = w->d[2] * w->d[1]; \ + for (n = 0; n < q->d[0]; ++n) /* mini-batch */ \ + for (c1 = 0; c1 < w->d[0]; ++c1) { /* output channel */ \ + float *_ww = &(_w)[c1 * m]; \ + float *_xx = &(_x)[n * q->d[1] * q->d[2]]; \ + float *_yy = &(_y)[(n * p->d[1] + c1) * p->d[2]]; \ + if (x_padded) { \ + memcpy(x_padded + aux->pad[0] * q->d[1], _xx, q->d[2] * q->d[1] * sizeof(float)); \ + _xx = x_padded; \ + } \ + for (j = 0; j < p->d[2]; ++j, _xx += j_skip, ++_yy) _code; \ + } /* ~c1, n */ \ + } while (0) + + conv_conf_t *aux = (conv_conf_t*)p->ptr; + kad_node_t *q = p->child[0], *w = p->child[1]; + float *t = 0, *q1 = 0, *w1 = 0, *x_padded = 0; + int algo_switch = 0; + + if (action == KAD_FORWARD || action == KAD_BACKWARD) { /* allocate working space */ + if (w->d[2] * w->d[1] < 32) { + t = (float*)malloc(p->d[2] * sizeof(float)); + x_padded = aux->pad[0] + aux->pad[1] > 0? (float*)calloc(q->d[2] + aux->pad[0] + aux->pad[1], sizeof(float)) : 0; + } else { + q1 = (float*)malloc(kad_len(q) * sizeof(float)); + w1 = (float*)malloc(kad_len(w) * sizeof(float)); + x_padded = aux->pad[0] + aux->pad[1] > 0? (float*)calloc((q->d[2] + aux->pad[0] + aux->pad[1]) * q->d[1], sizeof(float)) : 0; + algo_switch = 1; + } + } + if (action == KAD_SYNC_DIM) { + if (q->n_d != 3 || w->n_d != 3) return -1; + if (q->d[1] != w->d[1]) return -1; /* unmatched input channels */ + p->n_d = 3; + p->d[0] = q->d[0], p->d[1] = w->d[0], p->d[2] = conv_out_size(q->d[2], aux); + } else if (action == KAD_FORWARD) { + conv_rot180(w->d[0] * w->d[1], w->d[2], w->x); + memset(p->x, 0, kad_len(p) * sizeof(float)); + if (!algo_switch) { /* this is the first algorithm */ + conv1d_loop1(q->x, w->x, p->x, t, process_row_for); + } else { /* this is the second algorithm */ + conv1d_move_1to2(q->d, q->x, q1); + conv1d_move_1to2(w->d, w->x, w1); + conv1d_loop2(q1, w1, p->x, (*_yy += kad_sdot(m, _ww, _xx))); + } + conv_rot180(w->d[0] * w->d[1], w->d[2], w->x); + } else if (action == KAD_BACKWARD) { + if (kad_is_back(p->child[0])) { /* backprop to the input array */ + conv_rot180(w->d[0] * w->d[1], w->d[2], w->x); + if (!algo_switch) { + conv1d_loop1(q->g, w->x, p->g, t, process_row_back_x); + } else { + memset(q1, 0, kad_len(q) * sizeof(float)); + conv1d_move_1to2(w->d, w->x, w1); + conv1d_loop2(q1, w1, p->g, kad_saxpy(m, *_yy, _ww, _xx)); + conv1d_add_2to1(q->d, q1, q->g); + } + conv_rot180(w->d[0] * w->d[1], w->d[2], w->x); + } + if (kad_is_back(p->child[1])) { /* backprop to the weight matrix */ + conv_rot180(w->d[0] * w->d[1], w->d[2], w->g); + if (!algo_switch) { + conv1d_loop1(q->x, w->g, p->g, t, process_row_back_w); + } else { + conv1d_move_1to2(q->d, q->x, q1); + memset(w1, 0, kad_len(w) * sizeof(float)); + conv1d_loop2(q1, w1, p->g, kad_saxpy(m, *_yy, _xx, _ww)); + conv1d_add_2to1(w->d, w1, w->g); + } + conv_rot180(w->d[0] * w->d[1], w->d[2], w->g); + } + } + free(t); free(q1); free(w1); free(x_padded); + return 0; +} + +int kad_op_max1d(kad_node_t *p, int action) +{ + conv_conf_t *aux = (conv_conf_t*)p->ptr; + kad_node_t *q = p->child[0]; + if (action == KAD_SYNC_DIM) { + if (q->n_d != 3) return -1; + p->n_d = 3; + p->d[0] = q->d[0], p->d[1] = q->d[1], p->d[2] = conv_out_size(q->d[2], aux); + } else if (action == KAD_ALLOC) { + p->gtmp = realloc(p->gtmp, kad_len(p) * sizeof(int)); + } else if (action == KAD_FORWARD) { + int rest = 1, len, t, i; + int *f = (int*)p->gtmp; + len = kad_len(p); + for (i = 0; i < len; ++i) p->x[i] = -FLT_MAX; + for (i = 0; i < p->n_d - 1; ++i) rest *= p->d[i]; + for (t = 0; t < rest; ++t) { + int j, l, p_width = p->d[p->n_d - 1]; + int u = t * p_width, v, v0 = t * q->d[p->n_d - 1], v_end = v0 + q->d[p->n_d - 1]; + for (l = 0; l < aux->kernel_size; ++l) + for (j = 0, v = v0 + (l > aux->pad[0]? l - aux->pad[0] : 0); j < p_width && v < v_end; ++j, v += aux->stride) + if (p->x[u + j] < q->x[v]) + p->x[u + j] = q->x[v], f[u + j] = v; + } + } else if (action == KAD_BACKWARD) { + int i, len, *f = (int*)p->gtmp; + len = kad_len(p); + for (i = 0; i < len; ++i) q->g[f[i]] += p->g[i]; + } + return 0; +} + +int kad_op_avg1d(kad_node_t *p, int action) +{ + conv_conf_t *aux = (conv_conf_t*)p->ptr; + kad_node_t *q = p->child[0]; + if (action == KAD_SYNC_DIM) { + if (q->n_d != 3) return -1; + p->n_d = 3; + p->d[0] = q->d[0], p->d[1] = q->d[1], p->d[2] = conv_out_size(q->d[2], aux); + } else if (action == KAD_ALLOC) { + p->gtmp = realloc(p->gtmp, kad_len(p) * sizeof(int)); + } else if (action == KAD_FORWARD) { + int rest = 1, len, t, i; + int *f = (int*)p->gtmp; + len = kad_len(p); + for (i = 0; i < len; ++i) p->x[i] = 0.0f, f[i] = 0; + for (i = 0; i < p->n_d - 1; ++i) rest *= p->d[i]; + for (t = 0; t < rest; ++t) { + int j, l, p_width = p->d[p->n_d - 1]; + int u = t * p_width, v, v0 = t * q->d[p->n_d - 1], v_end = v0 + q->d[p->n_d - 1]; + for (l = 0; l < aux->kernel_size; ++l) + for (j = 0, v = v0 + (l > aux->pad[0]? l - aux->pad[0] : 0); j < p_width && v < v_end; ++j, v += aux->stride) + p->x[u + j] += q->x[v], ++f[u + j]; + } + for (i = 0; i < len; ++i) p->x[i] /= f[i]; + } else if (action == KAD_BACKWARD) { + int rest = 1, t, i; + int *f = (int*)p->gtmp; + for (i = 0; i < p->n_d - 1; ++i) rest *= p->d[i]; + for (t = 0; t < rest; ++t) { + int j, l, p_width = p->d[p->n_d - 1]; + int u = t * p_width, v, v0 = t * q->d[p->n_d - 1], v_end = v0 + q->d[p->n_d - 1]; + for (l = 0; l < aux->kernel_size; ++l) + for (j = 0, v = v0 + (l > aux->pad[0]? l - aux->pad[0] : 0); j < p_width && v < v_end; ++j, v += aux->stride) + q->g[v] += p->g[u + j] / f[u + j]; + } + } + return 0; +} + +/********** List of operators **********/ + +kad_op_f kad_op_list[KAD_MAX_OP] = { + 0, + kad_op_add, /* 1: element-wise addition */ + kad_op_mul, /* 2: element-wise multiplication */ + kad_op_cmul, /* 3: column multiplication */ + kad_op_ce_bin_neg, /* 4: binary cross-entropy for (-1,1) */ + kad_op_square, /* 5: square */ + kad_op_sigm, /* 6: sigmoid */ + kad_op_tanh, /* 7: tanh */ + kad_op_relu, /* 8: ReLU */ + kad_op_matmul, /* 9: matrix multiplication */ + kad_op_avg, /* 10: general average pooling (not for ConvNet) */ + kad_op_1minus, /* 11: 1-x */ + kad_op_select, /* 12: choose between one of the children */ + kad_op_ce_multi, /* 13: multi-class cross-entropy */ + kad_op_softmax, /* 14: softmax */ + kad_op_dropout, /* 15: dropout */ + kad_op_conv2d, /* 16: 2D convolution */ + kad_op_max2d, /* 17: 2D max pooling (for 2D ConvNet) */ + kad_op_conv1d, /* 18: 1D convolution */ + kad_op_max1d, /* 19: 1D max pooling (for 1D ConvNet) */ + kad_op_slice, /* 20: slice data at a dimension */ + kad_op_max, /* 21: general max pooling */ + kad_op_ce_bin, /* 22: binary cross-entropy for (0,1) */ + kad_op_sub, /* 23: element-wise subtraction */ + kad_op_sample_normal, /* 24: sample from a normal distribution */ + kad_op_reduce_sum, /* 25 */ + kad_op_reduce_mean, /* 26 */ + kad_op_log, /* 27: log() */ + kad_op_avg1d, /* 28: 1D average pooling (for 1D ConvNet) */ + kad_op_mse, /* 29: mean square error */ + kad_op_reshape, /* 30 */ + kad_op_concat, /* 31 */ + kad_op_stdnorm, /* 32: layer normalization */ + kad_op_exp, /* 33: exp() */ + kad_op_sin, /* 34: sin() */ + kad_op_stack, /* 35: tf.stack, but on the first axis only */ + kad_op_reverse /* 36: tf.reverse, but on one axis only */ +}; + +char *kad_op_name[KAD_MAX_OP] = { + 0, "add", "mul", "cmul", "ce_bin_neg", "square", "sigm", "tanh", "relu", "matmul", "avg", "1minus", "select", "ce_multi", "softmax", + "dropout", "conv2d", "max2d", "conv1d", "max1d", "slice", "max", "ce_bin", "sub", "sample_normal", "reduce_sum", "reduce_mean", "log", + "avg1d", "mse", "reshape", "concat", "stdnorm", "exp", "sin", "stack", "reverse" +}; + +/************************** + *** Debugging routines *** + **************************/ + +void kad_trap_fe(void) +{ +#ifdef __SSE__ + _MM_SET_EXCEPTION_MASK(_MM_GET_EXCEPTION_MASK() & ~(_MM_MASK_INVALID | _MM_MASK_DIV_ZERO)); +#endif +} + +void kad_print_graph(FILE *fp, int n, kad_node_t **v) +{ + int i, j; + for (i = 0; i < n; ++i) v[i]->tmp = i; + for (i = 0; i < n; ++i) { + kad_node_t *p = v[i]; + fprintf(fp, "%d\t%x:%x\t%d\t", i, p->flag, p->ext_flag, p->ext_label); + if (p->pre) fprintf(fp, "%d\t", p->pre->tmp); + else fprintf(fp, ".\t"); + fputs("[", fp); + for (j = 0; j < p->n_d; ++j) { + if (j) fputc(',', fp); + fprintf(fp, "%d", p->d[j]); + } + fprintf(fp, "]\t"); + if (p->n_child) { + fprintf(fp, "%s(", kad_op_name[p->op]); + for (j = 0; j < p->n_child; ++j) { + if (j) fputc(',', fp); + fprintf(fp, "$%d", p->child[j]->tmp); + } + fprintf(fp, ")"); + } else fprintf(fp, "%s", kad_is_feed(p)? "feed" : kad_is_var(p)? "var" : kad_is_const(p)? "const" : "N/A"); + fputc('\n', fp); + } + for (i = 0; i < n; ++i) v[i]->tmp = 0; +} + +static void kad_add_delta(int n, kad_node_t **a, float c, float *delta) +{ + int i, k; + for (i = k = 0; i < n; ++i) + if (kad_is_var(a[i])) { + kad_saxpy(kad_len(a[i]), c, &delta[k], a[i]->x); + k += kad_len(a[i]); + } +} + +void kad_check_grad(int n, kad_node_t **a, int from) +{ + const float eps = 1e-5f, rel = 1e-7f / eps; + int i, k, n_var; + float *g0, *delta, f0, f_minus, f_plus, s0, s1, rel_err, p_m_err; + n_var = kad_size_var(n, a); + g0 = (float*)calloc(n_var, sizeof(float)); + f0 = *kad_eval_at(n, a, from); + kad_grad(n, a, from); + for (i = k = 0; i < n; ++i) + if (kad_is_var(a[i])) { + memcpy(&g0[k], a[i]->g, kad_len(a[i]) * sizeof(float)); + k += kad_len(a[i]); + } + delta = (float*)calloc(n_var, sizeof(float)); + for (k = 0; k < n_var; ++k) delta[k] = (float)kad_drand(0) * eps; + kad_add_delta(n, a, 1.0f, delta); + f_plus = *kad_eval_at(n, a, from); + kad_add_delta(n, a, -2.0f, delta); + f_minus = *kad_eval_at(n, a, from); + kad_add_delta(n, a, 1.0f, delta); + s0 = kad_sdot(n_var, g0, delta); + s1 = .5f * (f_plus - f_minus); + fprintf(stderr, "Gradient check -- %g <=> %g @ %g -- ", s0/eps, s1/eps, f0); + if (fabs(s1) >= rel * eps) { + rel_err = fabsf(fabsf(s0) - fabsf(s1)) / (fabsf(s0) + fabsf(s1)); + p_m_err = fabsf(f_plus + f_minus - 2.0f * f0) / fabsf(f_plus - f_minus); + fprintf(stderr, "rel_err:%g p_m_err:%g -- ", rel_err, p_m_err); + if (rel_err >= rel && rel_err > p_m_err) fprintf(stderr, "failed\n"); + else fprintf(stderr, "passed\n"); + } else fprintf(stderr, "skipped\n"); + free(delta); free(g0); +} diff --git a/contrib/kann/kautodiff.h b/contrib/kann/kautodiff.h new file mode 100644 index 000000000..a2c648835 --- /dev/null +++ b/contrib/kann/kautodiff.h @@ -0,0 +1,246 @@ +/* + The MIT License + + Copyright (c) 2018-2019 Dana-Farber Cancer Institute + 2016-2018 Broad Institute + + Permission is hereby granted, free of charge, to any person obtaining + a copy of this software and associated documentation files (the + "Software"), to deal in the Software without restriction, including + without limitation the rights to use, copy, modify, merge, publish, + distribute, sublicense, and/or sell copies of the Software, and to + permit persons to whom the Software is furnished to do so, subject to + the following conditions: + + The above copyright notice and this permission notice shall be + included in all copies or substantial portions of the Software. + + THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS + BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN + ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + SOFTWARE. +*/ + +#ifndef KANN_AUTODIFF_H +#define KANN_AUTODIFF_H + +#define KAD_VERSION "r544" + +#include <stdio.h> +#include <stdint.h> + +#ifdef __STRICT_ANSI__ +#define inline +#endif + +#define KAD_MAX_DIM 4 /* max dimension */ +#define KAD_MAX_OP 64 /* max number of operators */ + +/* A computational graph is a directed acyclic graph. In the graph, an external + * node represents a variable, a constant or a feed; an internal node + * represents an operator; an edge from node v to w indicates v is an operand + * of w. + */ + +#define KAD_VAR 0x1 +#define KAD_CONST 0x2 +#define KAD_POOL 0x4 +#define KAD_SHARE_RNG 0x10 /* with this flag on, different time step shares the same RNG status after unroll */ + +#define kad_is_back(p) ((p)->flag & KAD_VAR) +#define kad_is_ext(p) ((p)->n_child == 0) +#define kad_is_var(p) (kad_is_ext(p) && kad_is_back(p)) +#define kad_is_const(p) (kad_is_ext(p) && ((p)->flag & KAD_CONST)) +#define kad_is_feed(p) (kad_is_ext(p) && !kad_is_back(p) && !((p)->flag & KAD_CONST)) +#define kad_is_pivot(p) ((p)->n_child == 1 && ((p)->flag & KAD_POOL)) +#define kad_is_switch(p) ((p)->op == 12 && !((p)->flag & KAD_POOL)) +#define kad_use_rng(p) ((p)->op == 15 || (p)->op == 24) + +#define kad_eval_enable(p) ((p)->tmp = 1) +#define kad_eval_disable(p) ((p)->tmp = -1) + +/* a node in the computational graph */ +typedef struct kad_node_t { + uint8_t n_d; /* number of dimensions; no larger than KAD_MAX_DIM */ + uint8_t flag; /* type of the node; see KAD_F_* for valid flags */ + uint16_t op; /* operator; kad_op_list[op] is the actual function */ + int32_t n_child; /* number of operands/child nodes */ + int32_t tmp; /* temporary field; MUST BE zero before calling kad_compile() */ + int32_t ptr_size; /* size of ptr below */ + int32_t d[KAD_MAX_DIM]; /* dimensions */ + int32_t ext_label; /* labels for external uses (not modified by the kad_* APIs) */ + uint32_t ext_flag; /* flags for external uses (not modified by the kad_* APIs) */ + float *x; /* value; allocated for internal nodes */ + float *g; /* gradient; allocated for internal nodes */ + void *ptr; /* for special operators that need additional parameters (e.g. conv2d) */ + void *gtmp; /* temporary data generated at the forward pass but used at the backward pass */ + struct kad_node_t **child; /* operands/child nodes */ + struct kad_node_t *pre; /* usually NULL; only used for RNN */ +} kad_node_t, *kad_node_p; + +#ifdef __cplusplus +extern "C" { +#endif + +/** + * Compile/linearize a computational graph + * + * @param n_node number of nodes (out) + * @param n_roots number of nodes without predecessors + * @param roots list of nodes without predecessors + * + * @return list of nodes, of size *n_node + */ +kad_node_t **kad_compile_array(int *n_node, int n_roots, kad_node_t **roots); + +kad_node_t **kad_compile(int *n_node, int n_roots, ...); /* an alternative API to above */ +void kad_delete(int n, kad_node_t **a); /* deallocate a compiled/linearized graph */ + +/** + * Compute the value at a node + * + * @param n number of nodes + * @param a list of nodes + * @param from compute the value at this node, 0<=from<n + * + * @return a pointer to the value (pointing to kad_node_t::x, so don't call + * free() on it!) + */ +const float *kad_eval_at(int n, kad_node_t **a, int from); + +void kad_eval_marked(int n, kad_node_t **a); +int kad_sync_dim(int n, kad_node_t **v, int batch_size); + +/** + * Compute gradient + * + * @param n number of nodes + * @param a list of nodes + * @param from the function node; must be a scalar (compute \nabla a[from]) + */ +void kad_grad(int n, kad_node_t **a, int from); + +/** + * Unroll a recurrent computation graph + * + * @param n_v number of nodes + * @param v list of nodes + * @param new_n number of nodes in the unrolled graph (out) + * @param len how many times to unroll, one for each pivot + * + * @return list of nodes in the unrolled graph + */ +kad_node_t **kad_unroll(int n_v, kad_node_t **v, int *new_n, int *len); +int kad_n_pivots(int n_v, kad_node_t **v); + +kad_node_t **kad_clone(int n, kad_node_t **v, int batch_size); + +/* define a variable, a constant or a feed (placeholder in TensorFlow) */ +kad_node_t *kad_var(float *x, float *g, int n_d, ...); /* a variable; gradients to be computed; not unrolled */ +kad_node_t *kad_const(float *x, int n_d, ...); /* a constant; no gradients computed; not unrolled */ +kad_node_t *kad_feed(int n_d, ...); /* an input/output; no gradients computed; unrolled */ + +/* operators taking two operands */ +kad_node_t *kad_add(kad_node_t *x, kad_node_t *y); /* f(x,y) = x + y (generalized element-wise addition; f[i*n+j]=x[i*n+j]+y[j], n=kad_len(y), 0<j<n, 0<i<kad_len(x)/n) */ +kad_node_t *kad_sub(kad_node_t *x, kad_node_t *y); /* f(x,y) = x - y (generalized element-wise subtraction) */ +kad_node_t *kad_mul(kad_node_t *x, kad_node_t *y); /* f(x,y) = x * y (generalized element-wise product) */ + +kad_node_t *kad_matmul(kad_node_t *x, kad_node_t *y); /* f(x,y) = x * y (general matrix product) */ +kad_node_t *kad_cmul(kad_node_t *x, kad_node_t *y); /* f(x,y) = x * y^T (column-wise matrix product; i.e. y is transposed) */ + +/* loss functions; output scalar */ +kad_node_t *kad_mse(kad_node_t *x, kad_node_t *y); /* mean square error */ +kad_node_t *kad_ce_multi(kad_node_t *x, kad_node_t *y); /* multi-class cross-entropy; x is the preidction and y is the truth */ +kad_node_t *kad_ce_bin(kad_node_t *x, kad_node_t *y); /* binary cross-entropy for (0,1) */ +kad_node_t *kad_ce_bin_neg(kad_node_t *x, kad_node_t *y); /* binary cross-entropy for (-1,1) */ +kad_node_t *kad_ce_multi_weighted(kad_node_t *pred, kad_node_t *truth, kad_node_t *weight); + +#define KAD_PAD_NONE 0 /* use the smallest zero-padding */ +#define KAD_PAD_SAME (-2) /* output to have the same dimension as input */ + +kad_node_t *kad_conv2d(kad_node_t *x, kad_node_t *w, int r_stride, int c_stride, int r_pad, int c_pad); /* 2D convolution with weight matrix flipped */ +kad_node_t *kad_max2d(kad_node_t *x, int kernel_h, int kernel_w, int r_stride, int c_stride, int r_pad, int c_pad); /* 2D max pooling */ +kad_node_t *kad_conv1d(kad_node_t *x, kad_node_t *w, int stride, int pad); /* 1D convolution with weight flipped */ +kad_node_t *kad_max1d(kad_node_t *x, int kernel_size, int stride, int pad); /* 1D max pooling */ +kad_node_t *kad_avg1d(kad_node_t *x, int kernel_size, int stride, int pad); /* 1D average pooling */ + +kad_node_t *kad_dropout(kad_node_t *x, kad_node_t *r); /* dropout at rate r */ +kad_node_t *kad_sample_normal(kad_node_t *x); /* f(x) = x * r, where r is drawn from a standard normal distribution */ + +/* operators taking one operand */ +kad_node_t *kad_square(kad_node_t *x); /* f(x) = x^2 (element-wise square) */ +kad_node_t *kad_sigm(kad_node_t *x); /* f(x) = 1/(1+exp(-x)) (element-wise sigmoid) */ +kad_node_t *kad_tanh(kad_node_t *x); /* f(x) = (1-exp(-2x)) / (1+exp(-2x)) (element-wise tanh) */ +kad_node_t *kad_relu(kad_node_t *x); /* f(x) = max{0,x} (element-wise rectifier, aka ReLU) */ +kad_node_t *kad_softmax(kad_node_t *x);/* f_i(x_1,...,x_n) = exp(x_i) / \sum_j exp(x_j) (softmax: tf.nn.softmax(x,dim=-1)) */ +kad_node_t *kad_1minus(kad_node_t *x); /* f(x) = 1 - x */ +kad_node_t *kad_exp(kad_node_t *x); /* f(x) = exp(x) */ +kad_node_t *kad_log(kad_node_t *x); /* f(x) = log(x) */ +kad_node_t *kad_sin(kad_node_t *x); /* f(x) = sin(x) */ + +kad_node_t *kad_stdnorm(kad_node_t *x); /* layer normalization; applied to the last dimension */ + +/* operators taking an indefinite number of operands (e.g. pooling) */ +kad_node_t *kad_avg(int n, kad_node_t **x); /* f(x_1,...,x_n) = \sum_i x_i/n (mean pooling) */ +kad_node_t *kad_max(int n, kad_node_t **x); /* f(x_1,...,x_n) = max{x_1,...,x_n} (max pooling) */ +kad_node_t *kad_stack(int n, kad_node_t **x); /* f(x_1,...,x_n) = [x_1,...,x_n] (stack pooling) */ +kad_node_t *kad_select(int n, kad_node_t **x, int which); /* f(x_1,...,x_n;i) = x_i (select pooling; -1 for the last) */ + +/* dimension reduction */ +kad_node_t *kad_reduce_sum(kad_node_t *x, int axis); /* tf.reduce_sum(x, axis) */ +kad_node_t *kad_reduce_mean(kad_node_t *x, int axis); /* tf.reduce_mean(x, axis) */ + +/* special operators */ +kad_node_t *kad_slice(kad_node_t *x, int axis, int start, int end); /* take a slice on the axis-th dimension */ +kad_node_t *kad_concat(int axis, int n, ...); /* concatenate on the axis-th dimension */ +kad_node_t *kad_concat_array(int axis, int n, kad_node_t **p); /* the array version of concat */ +kad_node_t *kad_reshape(kad_node_t *x, int n_d, int *d); /* reshape; similar behavior to TensorFlow's reshape() */ +kad_node_t *kad_reverse(kad_node_t *x, int axis); +kad_node_t *kad_switch(int n, kad_node_t **p); /* manually (as a hyperparameter) choose one input, default to 0 */ + +/* miscellaneous operations on a compiled graph */ +int kad_size_var(int n, kad_node_t *const* v); /* total size of all variables */ +int kad_size_const(int n, kad_node_t *const* v); /* total size of all constants */ + +/* graph I/O */ +int kad_save(FILE *fp, int n_node, kad_node_t **node); +kad_node_t **kad_load(FILE *fp, int *_n_node); + +/* random number generator */ +void *kad_rng(void); +void kad_srand(void *d, uint64_t seed); +uint64_t kad_rand(void *d); +double kad_drand(void *d); +double kad_drand_normal(void *d); +void kad_saxpy(int n, float a, const float *x, float *y); + +/* debugging routines */ +void kad_trap_fe(void); /* abort on divide-by-zero and NaN */ +void kad_print_graph(FILE *fp, int n, kad_node_t **v); +void kad_check_grad(int n, kad_node_t **a, int from); + +#ifdef __cplusplus +} +#endif + +#define KAD_ALLOC 1 +#define KAD_FORWARD 2 +#define KAD_BACKWARD 3 +#define KAD_SYNC_DIM 4 + +typedef int (*kad_op_f)(kad_node_t*, int); +extern kad_op_f kad_op_list[KAD_MAX_OP]; +extern char *kad_op_name[KAD_MAX_OP]; + +static inline int kad_len(const kad_node_t *p) /* calculate the size of p->x */ +{ + int n = 1, i; + for (i = 0; i < p->n_d; ++i) n *= p->d[i]; + return n; +} + +#endif |