summaryrefslogtreecommitdiffstats
path: root/contrib/ankerl/unordered_dense.h
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/ankerl/unordered_dense.h')
-rw-r--r--contrib/ankerl/unordered_dense.h1199
1 files changed, 1199 insertions, 0 deletions
diff --git a/contrib/ankerl/unordered_dense.h b/contrib/ankerl/unordered_dense.h
new file mode 100644
index 000000000..9ae108173
--- /dev/null
+++ b/contrib/ankerl/unordered_dense.h
@@ -0,0 +1,1199 @@
+///////////////////////// ankerl::unordered_dense::{map, set} /////////////////////////
+
+// A fast & densely stored hashmap and hashset based on robin-hood backward shift deletion.
+// Version 1.0.2
+// https://github.com/martinus/unordered_dense
+//
+// Licensed under the MIT License <http://opensource.org/licenses/MIT>.
+// SPDX-License-Identifier: MIT
+// Copyright (c) 2022 Martin Leitner-Ankerl <martin.ankerl@gmail.com>
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+// SOFTWARE.
+
+#ifndef ANKERL_UNORDERED_DENSE_H
+#define ANKERL_UNORDERED_DENSE_H
+
+// see https://semver.org/spec/v2.0.0.html
+#define ANKERL_UNORDERED_DENSE_VERSION_MAJOR 1 // incompatible API changes
+#define ANKERL_UNORDERED_DENSE_VERSION_MINOR 0 // add functionality in a backwards compatible manner
+#define ANKERL_UNORDERED_DENSE_VERSION_PATCH 2 // backwards compatible bug fixes
+
+#if __cplusplus < 201703L
+# error ankerl::unordered_dense requires C++17 or higher
+#else
+
+# include <array> // for array
+# include <cstdint> // for uint64_t, uint32_t, uint8_t, UINT64_C
+# include <cstring> // for size_t, memcpy, memset
+# include <functional> // for equal_to, hash
+# include <initializer_list> // for initializer_list
+# include <iterator> // for pair, distance
+# include <limits> // for numeric_limits
+# include <memory> // for allocator, allocator_traits, shared_ptr
+# include <stdexcept> // for out_of_range
+# include <string> // for basic_string
+# include <string_view> // for basic_string_view, hash
+# include <tuple> // for forward_as_tuple
+# include <type_traits> // for enable_if_t, declval, conditional_t, ena...
+# include <utility> // for forward, exchange, pair, as_const, piece...
+# include <vector> // for vector
+
+# define ANKERL_UNORDERED_DENSE_PMR 0
+# if defined(__has_include)
+# if __has_include(<memory_resource>)
+# undef ANKERL_UNORDERED_DENSE_PMR
+# define ANKERL_UNORDERED_DENSE_PMR 1
+# include <memory_resource> // for polymorphic_allocator
+# endif
+# endif
+
+# if defined(_MSC_VER) && defined(_M_X64)
+# include <intrin.h>
+# pragma intrinsic(_umul128)
+# endif
+
+# if defined(__GNUC__) || defined(__INTEL_COMPILER) || defined(__clang__)
+# define ANKERL_UNORDERED_DENSE_LIKELY(x) __builtin_expect(x, 1)
+# define ANKERL_UNORDERED_DENSE_UNLIKELY(x) __builtin_expect(x, 0)
+# else
+# define ANKERL_UNORDERED_DENSE_LIKELY(x) (x)
+# define ANKERL_UNORDERED_DENSE_UNLIKELY(x) (x)
+# endif
+
+namespace ankerl::unordered_dense {
+
+// hash ///////////////////////////////////////////////////////////////////////
+
+// This is a stripped-down implementation of wyhash: https://github.com/wangyi-fudan/wyhash
+// No big-endian support (because different values on different machines don't matter),
+// hardcodes seed and the secret, reformattes the code, and clang-tidy fixes.
+namespace detail::wyhash {
+
+static inline void mum(uint64_t* a, uint64_t* b) {
+# if defined(__SIZEOF_INT128__)
+ __uint128_t r = *a;
+ r *= *b;
+ *a = static_cast<uint64_t>(r);
+ *b = static_cast<uint64_t>(r >> 64U);
+# elif defined(_MSC_VER) && defined(_M_X64)
+ *a = _umul128(*a, *b, b);
+# else
+ uint64_t ha = *a >> 32U;
+ uint64_t hb = *b >> 32U;
+ uint64_t la = static_cast<uint32_t>(*a);
+ uint64_t lb = static_cast<uint32_t>(*b);
+ uint64_t hi{};
+ uint64_t lo{};
+ uint64_t rh = ha * hb;
+ uint64_t rm0 = ha * lb;
+ uint64_t rm1 = hb * la;
+ uint64_t rl = la * lb;
+ uint64_t t = rl + (rm0 << 32U);
+ auto c = static_cast<uint64_t>(t < rl);
+ lo = t + (rm1 << 32U);
+ c += static_cast<uint64_t>(lo < t);
+ hi = rh + (rm0 >> 32U) + (rm1 >> 32U) + c;
+ *a = lo;
+ *b = hi;
+# endif
+}
+
+// multiply and xor mix function, aka MUM
+[[nodiscard]] static inline auto mix(uint64_t a, uint64_t b) -> uint64_t {
+ mum(&a, &b);
+ return a ^ b;
+}
+
+// read functions. WARNING: we don't care about endianness, so results are different on big endian!
+[[nodiscard]] static inline auto r8(const uint8_t* p) -> uint64_t {
+ uint64_t v{};
+ std::memcpy(&v, p, 8);
+ return v;
+}
+
+[[nodiscard]] static inline auto r4(const uint8_t* p) -> uint64_t {
+ uint32_t v{};
+ std::memcpy(&v, p, 4);
+ return v;
+}
+
+// reads 1, 2, or 3 bytes
+[[nodiscard]] static inline auto r3(const uint8_t* p, size_t k) -> uint64_t {
+ return (static_cast<uint64_t>(p[0]) << 16U) | (static_cast<uint64_t>(p[k >> 1U]) << 8U) | p[k - 1];
+}
+
+[[nodiscard]] static inline auto hash(void const* key, size_t len) -> uint64_t {
+ static constexpr auto secret = std::array{UINT64_C(0xa0761d6478bd642f),
+ UINT64_C(0xe7037ed1a0b428db),
+ UINT64_C(0x8ebc6af09c88c6e3),
+ UINT64_C(0x589965cc75374cc3)};
+
+ auto const* p = static_cast<uint8_t const*>(key);
+ uint64_t seed = secret[0];
+ uint64_t a{};
+ uint64_t b{};
+ if (ANKERL_UNORDERED_DENSE_LIKELY(len <= 16)) {
+ if (ANKERL_UNORDERED_DENSE_LIKELY(len >= 4)) {
+ a = (r4(p) << 32U) | r4(p + ((len >> 3U) << 2U));
+ b = (r4(p + len - 4) << 32U) | r4(p + len - 4 - ((len >> 3U) << 2U));
+ } else if (ANKERL_UNORDERED_DENSE_LIKELY(len > 0)) {
+ a = r3(p, len);
+ b = 0;
+ } else {
+ a = 0;
+ b = 0;
+ }
+ } else {
+ size_t i = len;
+ if (ANKERL_UNORDERED_DENSE_UNLIKELY(i > 48)) {
+ uint64_t see1 = seed;
+ uint64_t see2 = seed;
+ do {
+ seed = mix(r8(p) ^ secret[1], r8(p + 8) ^ seed);
+ see1 = mix(r8(p + 16) ^ secret[2], r8(p + 24) ^ see1);
+ see2 = mix(r8(p + 32) ^ secret[3], r8(p + 40) ^ see2);
+ p += 48;
+ i -= 48;
+ } while (ANKERL_UNORDERED_DENSE_LIKELY(i > 48));
+ seed ^= see1 ^ see2;
+ }
+ while (ANKERL_UNORDERED_DENSE_UNLIKELY(i > 16)) {
+ seed = mix(r8(p) ^ secret[1], r8(p + 8) ^ seed);
+ i -= 16;
+ p += 16;
+ }
+ a = r8(p + i - 16);
+ b = r8(p + i - 8);
+ }
+
+ return mix(secret[1] ^ len, mix(a ^ secret[1], b ^ seed));
+}
+
+[[nodiscard]] static inline auto hash(uint64_t x) -> uint64_t {
+ return detail::wyhash::mix(x, UINT64_C(0x9E3779B97F4A7C15));
+}
+
+} // namespace detail::wyhash
+
+template <typename T, typename Enable = void>
+struct hash : public std::hash<T> {
+ using is_avalanching = void;
+ auto operator()(T const& obj) const noexcept(noexcept(std::declval<std::hash<T>>().operator()(std::declval<T const&>())))
+ -> size_t {
+ return static_cast<size_t>(detail::wyhash::hash(std::hash<T>::operator()(obj)));
+ }
+};
+
+template <typename CharT>
+struct hash<std::basic_string<CharT>> {
+ using is_avalanching = void;
+ auto operator()(std::basic_string<CharT> const& str) const noexcept -> size_t {
+ return static_cast<size_t>(detail::wyhash::hash(str.data(), sizeof(CharT) * str.size()));
+ }
+};
+
+template <typename CharT>
+struct hash<std::basic_string_view<CharT>> {
+ using is_avalanching = void;
+ auto operator()(std::basic_string_view<CharT> const& sv) const noexcept -> size_t {
+ return static_cast<size_t>(detail::wyhash::hash(sv.data(), sizeof(CharT) * sv.size()));
+ }
+};
+
+template <class T>
+struct hash<T*> {
+ using is_avalanching = void;
+ auto operator()(T* ptr) const noexcept -> size_t {
+ return static_cast<size_t>(detail::wyhash::hash(reinterpret_cast<uintptr_t>(ptr)));
+ }
+};
+
+template <class T>
+struct hash<std::unique_ptr<T>> {
+ using is_avalanching = void;
+ auto operator()(std::unique_ptr<T> const& ptr) const noexcept -> size_t {
+ return static_cast<size_t>(detail::wyhash::hash(reinterpret_cast<uintptr_t>(ptr.get())));
+ }
+};
+
+template <class T>
+struct hash<std::shared_ptr<T>> {
+ using is_avalanching = void;
+ auto operator()(std::shared_ptr<T> const& ptr) const noexcept -> size_t {
+ return static_cast<size_t>(detail::wyhash::hash(reinterpret_cast<uintptr_t>(ptr.get())));
+ }
+};
+
+template <typename Enum>
+struct hash<Enum, typename std::enable_if<std::is_enum<Enum>::value>::type> {
+ using is_avalanching = void;
+ auto operator()(Enum e) const noexcept -> size_t {
+ using Underlying = typename std::underlying_type_t<Enum>;
+ return static_cast<size_t>(detail::wyhash::hash(static_cast<Underlying>(e)));
+ }
+};
+
+# define ANKERL_UNORDERED_DENSE_HASH_STATICCAST(T) \
+ template <> \
+ struct hash<T> { \
+ using is_avalanching = void; \
+ auto operator()(T const& obj) const noexcept -> size_t { \
+ return static_cast<size_t>(detail::wyhash::hash(static_cast<uint64_t>(obj))); \
+ } \
+ }
+
+# if defined(__GNUC__) && !defined(__clang__)
+# pragma GCC diagnostic push
+# pragma GCC diagnostic ignored "-Wuseless-cast"
+# endif
+// see https://en.cppreference.com/w/cpp/utility/hash
+ANKERL_UNORDERED_DENSE_HASH_STATICCAST(bool);
+ANKERL_UNORDERED_DENSE_HASH_STATICCAST(char);
+ANKERL_UNORDERED_DENSE_HASH_STATICCAST(signed char);
+ANKERL_UNORDERED_DENSE_HASH_STATICCAST(unsigned char);
+# if __cplusplus >= 202002L
+ANKERL_UNORDERED_DENSE_HASH_STATICCAST(char8_t);
+# endif
+ANKERL_UNORDERED_DENSE_HASH_STATICCAST(char16_t);
+ANKERL_UNORDERED_DENSE_HASH_STATICCAST(char32_t);
+ANKERL_UNORDERED_DENSE_HASH_STATICCAST(wchar_t);
+ANKERL_UNORDERED_DENSE_HASH_STATICCAST(short);
+ANKERL_UNORDERED_DENSE_HASH_STATICCAST(unsigned short);
+ANKERL_UNORDERED_DENSE_HASH_STATICCAST(int);
+ANKERL_UNORDERED_DENSE_HASH_STATICCAST(unsigned int);
+ANKERL_UNORDERED_DENSE_HASH_STATICCAST(long);
+ANKERL_UNORDERED_DENSE_HASH_STATICCAST(long long);
+ANKERL_UNORDERED_DENSE_HASH_STATICCAST(unsigned long);
+ANKERL_UNORDERED_DENSE_HASH_STATICCAST(unsigned long long);
+
+# if defined(__GNUC__) && !defined(__clang__)
+# pragma GCC diagnostic pop
+# endif
+
+namespace detail {
+
+struct nonesuch {};
+
+template <class Default, class AlwaysVoid, template <class...> class Op, class... Args>
+struct detector {
+ using value_t = std::false_type;
+ using type = Default;
+};
+
+template <class Default, template <class...> class Op, class... Args>
+struct detector<Default, std::void_t<Op<Args...>>, Op, Args...> {
+ using value_t = std::true_type;
+ using type = Op<Args...>;
+};
+
+template <template <class...> class Op, class... Args>
+using is_detected = typename detail::detector<detail::nonesuch, void, Op, Args...>::value_t;
+
+template <template <class...> class Op, class... Args>
+constexpr bool is_detected_v = is_detected<Op, Args...>::value;
+
+template <typename T>
+using detect_avalanching = typename T::is_avalanching;
+
+template <typename T>
+using detect_is_transparent = typename T::is_transparent;
+
+template <typename H, typename KE>
+using is_transparent =
+ std::enable_if_t<is_detected_v<detect_is_transparent, H> && is_detected_v<detect_is_transparent, KE>, bool>;
+
+// This is it, the table. Doubles as map and set, and uses `void` for T when its used as a set.
+template <class Key,
+ class T, // when void, treat it as a set.
+ class Hash,
+ class KeyEqual,
+ class Allocator>
+class table {
+ struct Bucket;
+ using ValueContainer =
+ typename std::vector<typename std::conditional_t<std::is_void_v<T>, Key, std::pair<Key, T>>, Allocator>;
+ using BucketAlloc = typename std::allocator_traits<Allocator>::template rebind_alloc<Bucket>;
+ using BucketAllocTraits = std::allocator_traits<BucketAlloc>;
+
+ static constexpr uint32_t BUCKET_DIST_INC = 1U << 8U; // skip 1 byte fingerprint
+ static constexpr uint32_t BUCKET_FINGERPRINT_MASK = BUCKET_DIST_INC - 1; // mask for 1 byte of fingerprint
+ static constexpr uint8_t INITIAL_SHIFTS = 64 - 3; // 2^(64-m_shift) number of buckets
+ static constexpr float DEFAULT_MAX_LOAD_FACTOR = 0.8F;
+
+public:
+ using key_type = Key;
+ using mapped_type = T;
+ using value_type = typename ValueContainer::value_type;
+ using size_type = typename ValueContainer::size_type;
+ using difference_type = typename ValueContainer::difference_type;
+ using hasher = Hash;
+ using key_equal = KeyEqual;
+ using allocator_type = typename ValueContainer::allocator_type;
+ using reference = typename ValueContainer::reference;
+ using const_reference = typename ValueContainer::const_reference;
+ using pointer = typename ValueContainer::pointer;
+ using const_pointer = typename ValueContainer::const_pointer;
+ using iterator = typename ValueContainer::iterator;
+ using const_iterator = typename ValueContainer::const_iterator;
+
+private:
+ struct Bucket {
+ uint32_t dist_and_fingerprint; // upper 3 byte: distance to original bucket. lower byte: fingerprint from hash
+ uint32_t value_idx; // index into the m_values vector.
+ };
+ static_assert(std::is_trivially_destructible_v<Bucket>, "assert there's no need to call destructor / std::destroy");
+ static_assert(std::is_trivially_copyable_v<Bucket>, "assert we can just memset / memcpy");
+
+ ValueContainer m_values{}; // Contains all the key-value pairs in one densely stored container. No holes.
+ Bucket* m_buckets_start = nullptr;
+ Bucket* m_buckets_end = nullptr;
+ uint32_t m_max_bucket_capacity = 0;
+ float m_max_load_factor = DEFAULT_MAX_LOAD_FACTOR;
+ Hash m_hash{};
+ KeyEqual m_equal{};
+ uint8_t m_shifts = INITIAL_SHIFTS;
+
+ [[nodiscard]] auto next(Bucket const* bucket) const -> Bucket const* {
+ return ANKERL_UNORDERED_DENSE_UNLIKELY(bucket + 1 == m_buckets_end) ? m_buckets_start : bucket + 1;
+ }
+
+ [[nodiscard]] auto next(Bucket* bucket) -> Bucket* {
+ return ANKERL_UNORDERED_DENSE_UNLIKELY(bucket + 1 == m_buckets_end) ? m_buckets_start : bucket + 1;
+ }
+
+ template <typename K>
+ [[nodiscard]] constexpr auto mixed_hash(K const& key) const -> uint64_t {
+ if constexpr (is_detected_v<detect_avalanching, Hash>) {
+ return m_hash(key);
+ } else {
+ return wyhash::hash(m_hash(key));
+ }
+ }
+
+ [[nodiscard]] constexpr auto dist_and_fingerprint_from_hash(uint64_t hash) const -> uint32_t {
+ return BUCKET_DIST_INC | (hash & BUCKET_FINGERPRINT_MASK);
+ }
+
+ [[nodiscard]] constexpr auto bucket_from_hash(uint64_t hash) const -> Bucket const* {
+ return m_buckets_start + (hash >> m_shifts);
+ }
+
+ [[nodiscard]] constexpr auto bucket_from_hash(uint64_t hash) -> Bucket* {
+ return m_buckets_start + (hash >> m_shifts);
+ }
+
+ [[nodiscard]] static constexpr auto get_key(value_type const& vt) -> key_type const& {
+ if constexpr (std::is_void_v<T>) {
+ return vt;
+ } else {
+ return vt.first;
+ }
+ }
+
+ template <typename K>
+ [[nodiscard]] auto next_while_less(K const& key) -> std::pair<uint32_t, Bucket*> {
+ auto const& pair = std::as_const(*this).next_while_less(key);
+ return {pair.first, const_cast<Bucket*>(pair.second)}; // NOLINT(cppcoreguidelines-pro-type-const-cast)
+ }
+
+ template <typename K>
+ [[nodiscard]] auto next_while_less(K const& key) const -> std::pair<uint32_t, Bucket const*> {
+ auto hash = mixed_hash(key);
+ auto dist_and_fingerprint = dist_and_fingerprint_from_hash(hash);
+ auto const* bucket = bucket_from_hash(hash);
+
+ while (dist_and_fingerprint < bucket->dist_and_fingerprint) {
+ dist_and_fingerprint += BUCKET_DIST_INC;
+ bucket = next(bucket);
+ }
+ return {dist_and_fingerprint, bucket};
+ }
+
+ void place_and_shift_up(Bucket bucket, Bucket* place) {
+ while (0 != place->dist_and_fingerprint) {
+ bucket = std::exchange(*place, bucket);
+ bucket.dist_and_fingerprint += BUCKET_DIST_INC;
+ place = next(place);
+ }
+ *place = bucket;
+ }
+
+ [[nodiscard]] static constexpr auto calc_num_buckets(uint8_t shifts) -> uint64_t {
+ return UINT64_C(1) << (64U - shifts);
+ }
+
+ [[nodiscard]] constexpr auto calc_shifts_for_size(size_t s) const -> uint8_t {
+ auto shifts = INITIAL_SHIFTS;
+ while (shifts > 0 && static_cast<uint64_t>(calc_num_buckets(shifts) * max_load_factor()) < s) {
+ --shifts;
+ }
+ return shifts;
+ }
+
+ // assumes m_values has data, m_buckets_start=m_buckets_end=nullptr, m_shifts is INITIAL_SHIFTS
+ void copy_buckets(table const& other) {
+ if (!empty()) {
+ m_shifts = other.m_shifts;
+ allocate_buckets_from_shift();
+ std::memcpy(m_buckets_start, other.m_buckets_start, sizeof(Bucket) * bucket_count());
+ }
+ }
+
+ /**
+ * True when no element can be added any more without increasing the size
+ */
+ [[nodiscard]] auto is_full() const -> bool {
+ return size() >= m_max_bucket_capacity;
+ }
+
+ void deallocate_buckets() {
+ auto bucket_alloc = BucketAlloc(m_values.get_allocator());
+ BucketAllocTraits::deallocate(bucket_alloc, m_buckets_start, bucket_count());
+ m_buckets_start = nullptr;
+ m_buckets_end = nullptr;
+ m_max_bucket_capacity = 0;
+ }
+
+ void allocate_buckets_from_shift() {
+ auto bucket_alloc = BucketAlloc(m_values.get_allocator());
+ auto num_buckets = calc_num_buckets(m_shifts);
+ m_buckets_start = BucketAllocTraits::allocate(bucket_alloc, num_buckets);
+ m_buckets_end = m_buckets_start + num_buckets;
+ m_max_bucket_capacity = static_cast<uint64_t>(num_buckets * max_load_factor());
+ }
+
+ void clear_buckets() {
+ if (m_buckets_start != nullptr) {
+ std::memset(m_buckets_start, 0, sizeof(Bucket) * bucket_count());
+ }
+ }
+
+ void clear_and_fill_buckets_from_values() {
+ clear_buckets();
+ for (uint32_t value_idx = 0, end_idx = static_cast<uint32_t>(m_values.size()); value_idx < end_idx; ++value_idx) {
+ auto const& key = get_key(m_values[value_idx]);
+ auto [dist_and_fingerprint, bucket] = next_while_less(key);
+
+ // we know for certain that key has not yet been inserted, so no need to check it.
+ place_and_shift_up({dist_and_fingerprint, value_idx}, bucket);
+ }
+ }
+
+ void increase_size() {
+ --m_shifts;
+ deallocate_buckets();
+ allocate_buckets_from_shift();
+ clear_and_fill_buckets_from_values();
+ }
+
+ void do_erase(Bucket* bucket) {
+ auto const value_idx_to_remove = bucket->value_idx;
+
+ // shift down until either empty or an element with correct spot is found
+ auto* next_bucket = next(bucket);
+ while (next_bucket->dist_and_fingerprint >= BUCKET_DIST_INC * 2) {
+ *bucket = {next_bucket->dist_and_fingerprint - BUCKET_DIST_INC, next_bucket->value_idx};
+ bucket = std::exchange(next_bucket, next(next_bucket));
+ }
+ *bucket = {};
+
+ // update m_values
+ if (value_idx_to_remove != m_values.size() - 1) {
+ // no luck, we'll have to replace the value with the last one and update the index accordingly
+ auto& val = m_values[value_idx_to_remove];
+ val = std::move(m_values.back());
+
+ // update the values_idx of the moved entry. No need to play the info game, just look until we find the values_idx
+ auto mh = mixed_hash(get_key(val));
+ bucket = bucket_from_hash(mh);
+
+ auto const values_idx_back = static_cast<uint32_t>(m_values.size() - 1);
+ while (values_idx_back != bucket->value_idx) {
+ bucket = next(bucket);
+ }
+ bucket->value_idx = value_idx_to_remove;
+ }
+ m_values.pop_back();
+ }
+
+ template <typename K>
+ auto do_erase_key(K&& key) -> size_t {
+ if (empty()) {
+ return 0;
+ }
+
+ auto [dist_and_fingerprint, bucket] = next_while_less(key);
+
+ while (dist_and_fingerprint == bucket->dist_and_fingerprint && !m_equal(key, get_key(m_values[bucket->value_idx]))) {
+ dist_and_fingerprint += BUCKET_DIST_INC;
+ bucket = next(bucket);
+ }
+
+ if (dist_and_fingerprint != bucket->dist_and_fingerprint) {
+ return 0;
+ }
+ do_erase(bucket);
+ return 1;
+ }
+
+ template <class K, class M>
+ auto do_insert_or_assign(K&& key, M&& mapped) -> std::pair<iterator, bool> {
+ auto it_isinserted = try_emplace(std::forward<K>(key), std::forward<M>(mapped));
+ if (!it_isinserted.second) {
+ it_isinserted.first->second = std::forward<M>(mapped);
+ }
+ return it_isinserted;
+ }
+
+ template <typename K, typename... Args>
+ auto do_try_emplace(K&& key, Args&&... args) -> std::pair<iterator, bool> {
+ if (is_full()) {
+ increase_size();
+ }
+
+ auto hash = mixed_hash(key);
+ auto dist_and_fingerprint = dist_and_fingerprint_from_hash(hash);
+ auto* bucket = bucket_from_hash(hash);
+
+ while (dist_and_fingerprint <= bucket->dist_and_fingerprint) {
+ if (dist_and_fingerprint == bucket->dist_and_fingerprint && m_equal(key, m_values[bucket->value_idx].first)) {
+ return {begin() + bucket->value_idx, false};
+ }
+ dist_and_fingerprint += BUCKET_DIST_INC;
+ bucket = next(bucket);
+ }
+
+ // emplace the new value. If that throws an exception, no harm done; index is still in a valid state
+ m_values.emplace_back(std::piecewise_construct,
+ std::forward_as_tuple(std::forward<K>(key)),
+ std::forward_as_tuple(std::forward<Args>(args)...));
+
+ // place element and shift up until we find an empty spot
+ uint32_t value_idx = static_cast<uint32_t>(m_values.size()) - 1;
+ place_and_shift_up({dist_and_fingerprint, value_idx}, bucket);
+ return {begin() + value_idx, true};
+ }
+
+ template <typename K>
+ auto do_find(K const& key) -> iterator {
+ if (empty()) {
+ return end();
+ }
+
+ auto mh = mixed_hash(key);
+ auto dist_and_fingerprint = dist_and_fingerprint_from_hash(mh);
+ auto const* bucket = bucket_from_hash(mh);
+
+ // unrolled loop. *Always* check a few directly, then enter the loop. This is faster.
+ if (dist_and_fingerprint == bucket->dist_and_fingerprint && m_equal(key, get_key(m_values[bucket->value_idx]))) {
+ return begin() + bucket->value_idx;
+ }
+ dist_and_fingerprint += BUCKET_DIST_INC;
+ bucket = next(bucket);
+
+ if (dist_and_fingerprint == bucket->dist_and_fingerprint && m_equal(key, get_key(m_values[bucket->value_idx]))) {
+ return begin() + bucket->value_idx;
+ }
+ dist_and_fingerprint += BUCKET_DIST_INC;
+ bucket = next(bucket);
+
+ do {
+ if (dist_and_fingerprint == bucket->dist_and_fingerprint && m_equal(key, get_key(m_values[bucket->value_idx]))) {
+ return begin() + bucket->value_idx;
+ }
+ dist_and_fingerprint += BUCKET_DIST_INC;
+ bucket = next(bucket);
+ } while (dist_and_fingerprint <= bucket->dist_and_fingerprint);
+ return end();
+ }
+
+ template <typename K>
+ auto do_find(K const& key) const -> const_iterator {
+ return const_cast<table*>(this)->do_find(key); // NOLINT(cppcoreguidelines-pro-type-const-cast)
+ }
+
+public:
+ table()
+ : table(0) {}
+
+ explicit table(size_t /*bucket_count*/,
+ Hash const& hash = Hash(),
+ KeyEqual const& equal = KeyEqual(),
+ Allocator const& alloc = Allocator())
+ : m_values(alloc)
+ , m_hash(hash)
+ , m_equal(equal) {}
+
+ table(size_t bucket_count, Allocator const& alloc)
+ : table(bucket_count, Hash(), KeyEqual(), alloc) {}
+
+ table(size_t bucket_count, Hash const& hash, Allocator const& alloc)
+ : table(bucket_count, hash, KeyEqual(), alloc) {}
+
+ explicit table(Allocator const& alloc)
+ : table(0, Hash(), KeyEqual(), alloc) {}
+
+ template <class InputIt>
+ table(InputIt first,
+ InputIt last,
+ size_type bucket_count = 0,
+ Hash const& hash = Hash(),
+ KeyEqual const& equal = KeyEqual(),
+ Allocator const& alloc = Allocator())
+ : table(bucket_count, hash, equal, alloc) {
+ insert(first, last);
+ }
+
+ template <class InputIt>
+ table(InputIt first, InputIt last, size_type bucket_count, Allocator const& alloc)
+ : table(first, last, bucket_count, Hash(), KeyEqual(), alloc) {}
+
+ template <class InputIt>
+ table(InputIt first, InputIt last, size_type bucket_count, Hash const& hash, Allocator const& alloc)
+ : table(first, last, bucket_count, hash, KeyEqual(), alloc) {}
+
+ table(table const& other)
+ : table(other, other.m_values.get_allocator()) {}
+
+ table(table const& other, Allocator const& alloc)
+ : m_values(other.m_values, alloc)
+ , m_max_load_factor(other.m_max_load_factor)
+ , m_hash(other.m_hash)
+ , m_equal(other.m_equal) {
+ copy_buckets(other);
+ }
+
+ table(table&& other) noexcept
+ : table(std::move(other), other.m_values.get_allocator()) {}
+
+ table(table&& other, Allocator const& alloc) noexcept
+ : m_values(std::move(other.m_values), alloc)
+ , m_buckets_start(std::exchange(other.m_buckets_start, nullptr))
+ , m_buckets_end(std::exchange(other.m_buckets_end, nullptr))
+ , m_max_bucket_capacity(std::exchange(other.m_max_bucket_capacity, 0))
+ , m_max_load_factor(std::exchange(other.m_max_load_factor, DEFAULT_MAX_LOAD_FACTOR))
+ , m_hash(std::exchange(other.m_hash, {}))
+ , m_equal(std::exchange(other.m_equal, {}))
+ , m_shifts(std::exchange(other.m_shifts, INITIAL_SHIFTS)) {
+ other.m_values.clear();
+ }
+
+ table(std::initializer_list<value_type> ilist,
+ size_t bucket_count = 0,
+ Hash const& hash = Hash(),
+ KeyEqual const& equal = KeyEqual(),
+ Allocator const& alloc = Allocator())
+ : table(bucket_count, hash, equal, alloc) {
+ insert(ilist);
+ }
+
+ table(std::initializer_list<value_type> ilist, size_type bucket_count, const Allocator& alloc)
+ : table(ilist, bucket_count, Hash(), KeyEqual(), alloc) {}
+
+ table(std::initializer_list<value_type> init, size_type bucket_count, Hash const& hash, Allocator const& alloc)
+ : table(init, bucket_count, hash, KeyEqual(), alloc) {}
+
+ ~table() {
+ auto bucket_alloc = BucketAlloc(m_values.get_allocator());
+ BucketAllocTraits::deallocate(bucket_alloc, m_buckets_start, bucket_count());
+ }
+
+ auto operator=(table const& other) -> table& {
+ if (&other != this) {
+ deallocate_buckets(); // deallocate before m_values is set (might have another allocator)
+ m_values = other.m_values;
+ m_max_load_factor = other.m_max_load_factor;
+ m_hash = other.m_hash;
+ m_equal = other.m_equal;
+ m_shifts = INITIAL_SHIFTS;
+ copy_buckets(other);
+ }
+ return *this;
+ }
+
+ auto operator=(table&& other) noexcept(
+ noexcept(std::is_nothrow_move_assignable_v<ValueContainer>&& std::is_nothrow_move_assignable_v<Hash>&&
+ std::is_nothrow_move_assignable_v<KeyEqual>)) -> table& {
+ if (&other != this) {
+ deallocate_buckets(); // deallocate before m_values is set (might have another allocator)
+ m_values = std::move(other.m_values);
+ m_buckets_start = std::exchange(other.m_buckets_start, nullptr);
+ m_buckets_end = std::exchange(other.m_buckets_end, nullptr);
+ m_max_bucket_capacity = std::exchange(other.m_max_bucket_capacity, 0);
+ m_max_load_factor = std::exchange(other.m_max_load_factor, DEFAULT_MAX_LOAD_FACTOR);
+ m_hash = std::exchange(other.m_hash, {});
+ m_equal = std::exchange(other.m_equal, {});
+ m_shifts = std::exchange(other.m_shifts, INITIAL_SHIFTS);
+ other.m_values.clear();
+ }
+ return *this;
+ }
+
+ auto operator=(std::initializer_list<value_type> ilist) -> table& {
+ clear();
+ insert(ilist);
+ return *this;
+ }
+
+ auto get_allocator() const noexcept -> allocator_type {
+ return m_values.get_allocator();
+ }
+
+ // iterators //////////////////////////////////////////////////////////////
+
+ auto begin() noexcept -> iterator {
+ return m_values.begin();
+ }
+
+ auto begin() const noexcept -> const_iterator {
+ return m_values.begin();
+ }
+
+ auto cbegin() const noexcept -> const_iterator {
+ return m_values.cbegin();
+ }
+
+ auto end() noexcept -> iterator {
+ return m_values.end();
+ }
+
+ auto cend() const noexcept -> const_iterator {
+ return m_values.cend();
+ }
+
+ auto end() const noexcept -> const_iterator {
+ return m_values.end();
+ }
+
+ // capacity ///////////////////////////////////////////////////////////////
+
+ [[nodiscard]] auto empty() const noexcept -> bool {
+ return m_values.empty();
+ }
+
+ [[nodiscard]] auto size() const noexcept -> size_t {
+ return m_values.size();
+ }
+
+ [[nodiscard]] auto max_size() const noexcept -> size_t {
+ return std::numeric_limits<uint32_t>::max();
+ }
+
+ // modifiers //////////////////////////////////////////////////////////////
+
+ void clear() {
+ m_values.clear();
+ clear_buckets();
+ }
+
+ auto insert(value_type const& value) -> std::pair<iterator, bool> {
+ return emplace(value);
+ }
+
+ auto insert(value_type&& value) -> std::pair<iterator, bool> {
+ return emplace(std::move(value));
+ }
+
+ template <class P, std::enable_if_t<std::is_constructible_v<value_type, P&&>, bool> = true>
+ auto insert(P&& value) -> std::pair<iterator, bool> {
+ return emplace(std::forward<P>(value));
+ }
+
+ auto insert(const_iterator /*hint*/, value_type const& value) -> iterator {
+ return insert(value).first;
+ }
+
+ auto insert(const_iterator /*hint*/, value_type&& value) -> iterator {
+ return insert(std::move(value)).first;
+ }
+
+ template <class P, std::enable_if_t<std::is_constructible_v<value_type, P&&>, bool> = true>
+ auto insert(const_iterator /*hint*/, P&& value) -> iterator {
+ return insert(std::forward<P>(value)).first;
+ }
+
+ template <class InputIt>
+ void insert(InputIt first, InputIt last) {
+ while (first != last) {
+ insert(*first);
+ ++first;
+ }
+ }
+
+ void insert(std::initializer_list<value_type> ilist) {
+ insert(ilist.begin(), ilist.end());
+ }
+
+ template <class M, typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true>
+ auto insert_or_assign(Key const& key, M&& mapped) -> std::pair<iterator, bool> {
+ return do_insert_or_assign(key, std::forward<M>(mapped));
+ }
+
+ template <class M, typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true>
+ auto insert_or_assign(Key&& key, M&& mapped) -> std::pair<iterator, bool> {
+ return do_insert_or_assign(std::move(key), std::forward<M>(mapped));
+ }
+
+ template <class M, typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true>
+ auto insert_or_assign(const_iterator /*hint*/, Key const& key, M&& mapped) -> iterator {
+ return do_insert_or_assign(key, std::forward<M>(mapped)).first;
+ }
+
+ template <class M, typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true>
+ auto insert_or_assign(const_iterator /*hint*/, Key&& key, M&& mapped) -> iterator {
+ return do_insert_or_assign(std::move(key), std::forward<M>(mapped)).first;
+ }
+
+ template <class... Args>
+ auto emplace(Args&&... args) -> std::pair<iterator, bool> {
+ if (is_full()) {
+ increase_size();
+ }
+
+ // first emplace_back the object so it is constructed. If the key is already there, pop it.
+ auto& val = m_values.emplace_back(std::forward<Args>(args)...);
+ auto hash = mixed_hash(get_key(val));
+ auto dist_and_fingerprint = dist_and_fingerprint_from_hash(hash);
+ auto* bucket = bucket_from_hash(hash);
+
+ while (dist_and_fingerprint <= bucket->dist_and_fingerprint) {
+ if (dist_and_fingerprint == bucket->dist_and_fingerprint &&
+ m_equal(get_key(val), get_key(m_values[bucket->value_idx]))) {
+ m_values.pop_back(); // value was already there, so get rid of it
+ return {begin() + bucket->value_idx, false};
+ }
+ dist_and_fingerprint += BUCKET_DIST_INC;
+ bucket = next(bucket);
+ }
+
+ // value is new, place the bucket and shift up until we find an empty spot
+ uint32_t value_idx = static_cast<uint32_t>(m_values.size()) - 1;
+ place_and_shift_up({dist_and_fingerprint, value_idx}, bucket);
+
+ return {begin() + value_idx, true};
+ }
+
+ template <class... Args>
+ auto emplace_hint(const_iterator /*hint*/, Args&&... args) -> iterator {
+ return emplace(std::forward<Args>(args)...).first;
+ }
+
+ template <class... Args, typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true>
+ auto try_emplace(Key const& key, Args&&... args) -> std::pair<iterator, bool> {
+ return do_try_emplace(key, std::forward<Args>(args)...);
+ }
+
+ template <class... Args, typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true>
+ auto try_emplace(Key&& key, Args&&... args) -> std::pair<iterator, bool> {
+ return do_try_emplace(std::move(key), std::forward<Args>(args)...);
+ }
+
+ template <class... Args, typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true>
+ auto try_emplace(const_iterator /*hint*/, Key const& key, Args&&... args) -> iterator {
+ return do_try_emplace(key, std::forward<Args>(args)...).first;
+ }
+
+ template <class... Args, typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true>
+ auto try_emplace(const_iterator /*hint*/, Key&& key, Args&&... args) -> iterator {
+ return do_try_emplace(std::move(key), std::forward<Args>(args)...).first;
+ }
+
+ auto erase(iterator it) -> iterator {
+ auto hash = mixed_hash(get_key(*it));
+ auto* bucket = bucket_from_hash(hash);
+
+ auto const value_idx_to_remove = static_cast<uint32_t>(it - cbegin());
+ while (bucket->value_idx != value_idx_to_remove) {
+ bucket = next(bucket);
+ }
+
+ do_erase(bucket);
+ return begin() + value_idx_to_remove;
+ }
+
+ auto erase(const_iterator it) -> iterator {
+ return erase(begin() + (it - cbegin()));
+ }
+
+ auto erase(const_iterator first, const_iterator last) -> iterator {
+ auto const idx_first = first - cbegin();
+ auto const idx_last = last - cbegin();
+ auto const first_to_last = std::distance(first, last);
+ auto const last_to_end = std::distance(last, cend());
+
+ // remove elements from left to right which moves elements from the end back
+ auto const mid = idx_first + std::min(first_to_last, last_to_end);
+ auto idx = idx_first;
+ while (idx != mid) {
+ erase(begin() + idx);
+ ++idx;
+ }
+
+ // all elements from the right are moved, now remove the last element until all done
+ idx = idx_last;
+ while (idx != mid) {
+ --idx;
+ erase(begin() + idx);
+ }
+
+ return begin() + idx_first;
+ }
+
+ auto erase(Key const& key) -> size_t {
+ return do_erase_key(key);
+ }
+
+ template <class K, class H = Hash, class KE = KeyEqual, is_transparent<H, KE> = true>
+ auto erase(K&& key) -> size_t {
+ return do_erase_key(std::forward<K>(key));
+ }
+
+ void swap(table& other) noexcept(noexcept(std::is_nothrow_swappable_v<ValueContainer>&& std::is_nothrow_swappable_v<Hash>&&
+ std::is_nothrow_swappable_v<KeyEqual>)) {
+ using std::swap;
+ swap(other, *this);
+ }
+
+ // lookup /////////////////////////////////////////////////////////////////
+
+ template <typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true>
+ auto at(key_type const& key) -> Q& {
+ if (auto it = find(key); end() != it) {
+ return it->second;
+ }
+ throw std::out_of_range("ankerl::unordered_dense::map::at(): key not found");
+ } // LCOV_EXCL_LINE is this a gcov/lcov bug? this method is fully tested.
+
+ template <typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true>
+ auto at(key_type const& key) const -> Q const& {
+ return const_cast<table*>(this)->at(key); // NOLINT(cppcoreguidelines-pro-type-const-cast)
+ }
+
+ template <typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true>
+ auto operator[](Key const& key) -> Q& {
+ return try_emplace(key).first->second;
+ }
+
+ template <typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true>
+ auto operator[](Key&& key) -> Q& {
+ return try_emplace(std::move(key)).first->second;
+ }
+
+ auto count(Key const& key) const -> size_t {
+ return find(key) == end() ? 0 : 1;
+ }
+
+ template <class K, class H = Hash, class KE = KeyEqual, is_transparent<H, KE> = true>
+ auto count(K const& key) const -> size_t {
+ return find(key) == end() ? 0 : 1;
+ }
+
+ auto find(Key const& key) -> iterator {
+ return do_find(key);
+ }
+
+ auto find(Key const& key) const -> const_iterator {
+ return do_find(key);
+ }
+
+ template <class K, class H = Hash, class KE = KeyEqual, is_transparent<H, KE> = true>
+ auto find(K const& key) -> iterator {
+ return do_find(key);
+ }
+
+ template <class K, class H = Hash, class KE = KeyEqual, is_transparent<H, KE> = true>
+ auto find(K const& key) const -> const_iterator {
+ return do_find(key);
+ }
+
+ auto contains(Key const& key) const -> size_t {
+ return find(key) != end();
+ }
+
+ template <class K, class H = Hash, class KE = KeyEqual, is_transparent<H, KE> = true>
+ auto contains(K const& key) const -> size_t {
+ return find(key) != end();
+ }
+
+ auto equal_range(Key const& key) -> std::pair<iterator, iterator> {
+ auto it = do_find(key);
+ return {it, it == end() ? end() : it + 1};
+ }
+
+ auto equal_range(const Key& key) const -> std::pair<const_iterator, const_iterator> {
+ auto it = do_find(key);
+ return {it, it == end() ? end() : it + 1};
+ }
+
+ template <class K, class H = Hash, class KE = KeyEqual, is_transparent<H, KE> = true>
+ auto equal_range(K const& key) -> std::pair<iterator, iterator> {
+ auto it = do_find(key);
+ return {it, it == end() ? end() : it + 1};
+ }
+
+ template <class K, class H = Hash, class KE = KeyEqual, is_transparent<H, KE> = true>
+ auto equal_range(K const& key) const -> std::pair<const_iterator, const_iterator> {
+ auto it = do_find(key);
+ return {it, it == end() ? end() : it + 1};
+ }
+
+ // bucket interface ///////////////////////////////////////////////////////
+
+ auto bucket_count() const noexcept -> size_t { // NOLINT(modernize-use-nodiscard)
+ return m_buckets_end - m_buckets_start;
+ }
+
+ auto max_bucket_count() const noexcept -> size_t { // NOLINT(modernize-use-nodiscard)
+ return std::numeric_limits<uint32_t>::max();
+ }
+
+ // hash policy ////////////////////////////////////////////////////////////
+
+ [[nodiscard]] auto load_factor() const -> float {
+ return bucket_count() ? static_cast<float>(size()) / bucket_count() : 0.0F;
+ }
+
+ [[nodiscard]] auto max_load_factor() const -> float {
+ return m_max_load_factor;
+ }
+
+ void max_load_factor(float ml) {
+ m_max_load_factor = ml;
+ m_max_bucket_capacity = static_cast<uint32_t>(bucket_count() * max_load_factor());
+ }
+
+ void rehash(size_t count) {
+ auto shifts = calc_shifts_for_size(std::max(count, size()));
+ if (shifts != m_shifts) {
+ m_shifts = shifts;
+ deallocate_buckets();
+ m_values.shrink_to_fit();
+ allocate_buckets_from_shift();
+ clear_and_fill_buckets_from_values();
+ }
+ }
+
+ void reserve(size_t capa) {
+ auto shifts = calc_shifts_for_size(std::max(capa, size()));
+ if (shifts < m_shifts) {
+ m_shifts = shifts;
+ deallocate_buckets();
+ allocate_buckets_from_shift();
+ clear_and_fill_buckets_from_values();
+ }
+ }
+
+ // observers //////////////////////////////////////////////////////////////
+
+ auto hash_function() const -> hasher {
+ return m_hash;
+ }
+
+ auto key_eq() const -> key_equal {
+ return m_equal;
+ }
+
+ // non-member functions ///////////////////////////////////////////////////
+
+ friend auto operator==(table const& a, table const& b) -> bool {
+ if (&a == &b) {
+ return true;
+ }
+ if (a.size() != b.size()) {
+ return false;
+ }
+ for (auto const& b_entry : b) {
+ auto it = a.find(get_key(b_entry));
+ if constexpr (std::is_void_v<T>) {
+ // set: only check that the key is here
+ if (a.end() == it) {
+ return false;
+ }
+ } else {
+ // map: check that key is here, then also check that value is the same
+ if (a.end() == it || !(b_entry.second == it->second)) {
+ return false;
+ }
+ }
+ }
+ return true;
+ }
+
+ friend auto operator!=(table const& a, table const& b) -> bool {
+ return !(a == b);
+ }
+};
+
+} // namespace detail
+
+template <class Key,
+ class T,
+ class Hash = hash<Key>,
+ class KeyEqual = std::equal_to<Key>,
+ class Allocator = std::allocator<std::pair<Key, T>>>
+using map = detail::table<Key, T, Hash, KeyEqual, Allocator>;
+
+template <class Key, class Hash = hash<Key>, class KeyEqual = std::equal_to<Key>, class Allocator = std::allocator<Key>>
+using set = detail::table<Key, void, Hash, KeyEqual, Allocator>;
+
+# if ANKERL_UNORDERED_DENSE_PMR
+
+namespace pmr {
+
+template <class Key, class T, class Hash = hash<Key>, class KeyEqual = std::equal_to<Key>>
+using map = detail::table<Key, T, Hash, KeyEqual, std::pmr::polymorphic_allocator<std::pair<Key, T>>>;
+
+template <class Key, class Hash = hash<Key>, class KeyEqual = std::equal_to<Key>>
+using set = detail::table<Key, void, Hash, KeyEqual, std::pmr::polymorphic_allocator<Key>>;
+
+} // namespace pmr
+
+# endif
+
+// deduction guides ///////////////////////////////////////////////////////////
+
+// deduction guides for alias templates are only possible since C++20
+// see https://en.cppreference.com/w/cpp/language/class_template_argument_deduction
+
+} // namespace ankerl::unordered_dense
+
+// std extensions /////////////////////////////////////////////////////////////
+
+namespace std { // NOLINT(cert-dcl58-cpp)
+
+template <class Key, class T, class Hash, class KeyEqual, class Allocator, class Pred>
+auto erase_if(ankerl::unordered_dense::detail::table<Key, T, Hash, KeyEqual, Allocator>& map, Pred pred) -> size_t {
+ // going back to front because erase() invalidates the end iterator
+ auto const old_size = map.size();
+ auto idx = old_size;
+ while (idx) {
+ --idx;
+ auto it = map.begin() + idx;
+ if (pred(*it)) {
+ map.erase(it);
+ }
+ }
+
+ return map.size() - old_size;
+}
+
+} // namespace std
+
+#endif
+#endif