diff options
Diffstat (limited to 'contrib/lua-torch/nn/GPU.lua')
-rw-r--r-- | contrib/lua-torch/nn/GPU.lua | 273 |
1 files changed, 273 insertions, 0 deletions
diff --git a/contrib/lua-torch/nn/GPU.lua b/contrib/lua-torch/nn/GPU.lua new file mode 100644 index 000000000..758618d8b --- /dev/null +++ b/contrib/lua-torch/nn/GPU.lua @@ -0,0 +1,273 @@ +------------------------------------------------------------------------ +--[[ GPU ]]-- +-- Decorates a module such that its parameters are +-- hosted on a specified GPU device. +-- The operations are also executed on that device. +-- Arguments input and gradOutput are converted to the specified device +-- before being fed to the decorated module. +-- Returned output is on the specified outdevice (defaults to device). +-- Returned gradInput is allocated on the same device as the input. +-- The unit test is located in cunn. +------------------------------------------------------------------------ +local GPU, parent = torch.class("nn.GPU", "nn.Container") + +function GPU:__init(module, device, outdevice) + parent.__init(self) + assert(torch.type(device) == 'number') + self.device = device + self.outdevice = outdevice or device + + assert(torch.isTypeOf(module, 'nn.Module')) + self.modules[1] = module + + if module:type():find('torch%.Cuda.*Tensor') then + self:type(module:type()) + end +end + +function GPU.recursiveModuleDevice(obj, device) + if type(obj) == 'table' and not torch.isTypeOf(obj, 'nn.GPU') and not obj.__noGPU__ then + for k,v in pairs(obj) do + obj[k] = GPU.recursiveModuleDevice(v, device) + end + elseif torch.type(obj):match('torch.Cuda.*Tensor') then + if obj:getDevice() ~= device then + obj = obj:clone() -- this will reallocate it to device + local newdevice = obj:getDevice() + -- when nElement() == 0 newdevice is 0 + assert(newdevice == device or newdevice == 0) + end + end + assert(obj ~= nil) + return obj +end + +-- set the device of the decorated module +function GPU:setDevice(device) + self.device = device or self.device + + assert(self.modules[1]) + self.modules[1] = cutorch.withDevice(self.device, function() + return self.recursiveModuleDevice(self.modules[1], self.device) + end) + return self +end + +-- when proto is a device number, returns a dst that has device device for each element in src +-- otherwise, if proto is a table/tensor, makes sure dst is a identical to src, yet on the same device as proto +function GPU.recursiveSetDevice(dst, src, proto) + local device, prototable + if torch.isTensor(proto) then + device = proto:getDevice() + elseif torch.type(proto) == 'number' then + device = proto + elseif torch.type(proto) == 'table' then + prototable = true + else + error"Expecting number, table or tensor for arg 3 (proto)" + end + if torch.type(src) == 'table' then + dst = torch.type(dst) == 'table' and dst or {} + for k,v in ipairs(src) do + dst[k] = GPU.recursiveSetDevice(dst[k], v, prototable and proto[k] or device) + end + for k=#src+1,#dst do + dst[k] = nil + end + elseif torch.type(src):match('torch.Cuda.*Tensor') and src:getDevice() ~= device and src:getDevice() ~= 0 then + if not (torch.type(dst):match('torch.Cuda.*Tensor') and dst:getDevice() == device) then + dst = src.new() + end + cutorch.withDevice(device, function() dst:resizeAs(src):copy(src) end) + else + dst = src + end + return dst +end + +function GPU:updateOutput(input) + if self._type:find('torch%.Cuda.*Tensor') then + self._input = self.recursiveSetDevice(self._input, input, self.device) + + local output = cutorch.withDevice(self.device, function() + return self.modules[1]:updateOutput(self._input) + end) + + if self.device ~= self.outdevice then + self.output = self.recursiveSetDevice(self.output, output, self.outdevice) + else + self.output = output + end + else + self.output = self.modules[1]:updateOutput(input) + end + + return self.output +end + +function GPU:updateGradInput(input, gradOutput) + if self._type:find('torch%.Cuda.*Tensor') then + self._gradOutput = self.recursiveSetDevice(self._gradOutput, gradOutput, self.device) + + local gradInput = cutorch.withDevice(self.device, function() + return self.modules[1]:updateGradInput(self._input, self._gradOutput) + end) + + self.gradInput = self.recursiveSetDevice(self.gradInput, gradInput, input) + else + self.gradInput = self.modules[1]:updateGradInput(input, gradOutput) + end + + return self.gradInput +end + +function GPU:accGradParameters(input, gradOutput, scale) + if self._type:find('torch%.Cuda.*Tensor') then + cutorch.withDevice(self.device, function() + self.modules[1]:accGradParameters(self._input, self._gradOutput, scale) + end) + else + self.modules[1]:accGradParameters(input, gradOutput, scale) + end +end + +function GPU:apply(callback) + if self._type:find('torch%.Cuda.*Tensor') then + cutorch.withDevice(self.device, function() parent.apply(self, callback) end) + else + parent.apply(self, callback) + end +end + +function GPU:type(type, typecache) + if type and type:find('torch%.Cuda.*Tensor') then + cutorch.withDevice(self.device, function() parent.type(self, type, typecache) end) + self:setDevice() + else + self.output = nil + self.gradInput = nil + self._input = nil + self._gradOutput = nil + parent.type(self, type, typecache) + end + return self +end + +function GPU:clearState() + nn.utils.clear(self, 'output', 'gradInput') + self._input = nil + self._gradOutput = nil + if self._type:find('torch%.Cuda.*Tensor') then + cutorch.withDevice(self.device, function() parent.clearState(self) end) + else + parent.clearState(self) + end +end + +function GPU:zeroGradParameters() + if self._type:find('torch%.Cuda.*Tensor') then + cutorch.withDevice(self.device, function() parent.zeroGradParameters(self) end) + else + parent.zeroGradParameters(self) + end +end + +function GPU:updateParameters(lr) + if self._type:find('torch%.Cuda.*Tensor') then + cutorch.withDevice(self.device, function() parent.updateParameters(self, lr) end) + else + parent.updateParameters(self, lr) + end +end + +function GPU:training() + if self._type:find('torch%.Cuda.*Tensor') then + cutorch.withDevice(self.device, function() parent.training(self) end) + else + parent.training(self) + end +end + +function GPU:evaluate() + if self._type:find('torch%.Cuda.*Tensor') then + cutorch.withDevice(self.device, function() parent.evaluate(self) end) + else + parent.evaluate(self) + end +end + +function GPU:share(mlp, ...) + local args = {...} + if self._type:find('torch%.Cuda.*Tensor') then + cutorch.withDevice(self.device, function() parent.share(self, mlp, unpack(args)) end) + else + parent.share(self, mlp, unpack(args)) + end + return self +end + +function GPU:reset(...) + local args = {...} + if self._type:find('torch%.Cuda.*Tensor') then + cutorch.withDevice(self.device, function() parent.reset(self, unpack(args)) end) + else + parent.reset(self, unpack(args)) + end + return self +end + +function GPU:clone(...) + local args = {...} + if self._type:find('torch%.Cuda.*Tensor') then + return cutorch.withDevice(self.device, function() parent.clone(self, unpack(args)) end) + else + return parent.clone(self, unpack(args)) + end +end + +function GPU:write(file) + -- Write all values in the object as a table. + local object = {} + for k, v in pairs(self) do + object[k] = v + end + local header = {self._type, self.device} + file:writeObject(header) + file:writeObject(object) +end + +function GPU:read(file) + local header = file:readObject() + local object + if header[1] and header[1]:find('torch%.Cuda.*Tensor') then + local device = header[2] + if device > cutorch.getDeviceCount() then + print"Warning : model was saved with more devices than available on current host." + print"Attempting to load module onto device 1" + device = 1 + end + object = cutorch.withDevice(device, function() return file:readObject() end) + else + object = file:readObject() + end + + for k, v in pairs(object) do + self[k] = v + end +end + +function GPU:__tostring__() + if self.modules[1].__tostring__ then + return torch.type(self) .. '(' .. self.device ..') @ ' .. self.modules[1]:__tostring__() + else + return torch.type(self) .. '(' .. self.device ..') @ ' .. torch.type(self.modules[1]) + end +end + +function GPU:accUpdateGradParameters(input, gradOutput, lr) + error("Not Implemented for "..torch.type(self)) +end + +function GPU:sharedAccUpdateGradParameters(input, gradOutput, lr) + error("Not Implemented for "..torch.type(self)) +end |