aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/lua-torch/nn/SpatialAveragePooling.lua
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/lua-torch/nn/SpatialAveragePooling.lua')
-rw-r--r--contrib/lua-torch/nn/SpatialAveragePooling.lua93
1 files changed, 93 insertions, 0 deletions
diff --git a/contrib/lua-torch/nn/SpatialAveragePooling.lua b/contrib/lua-torch/nn/SpatialAveragePooling.lua
new file mode 100644
index 000000000..1e7666827
--- /dev/null
+++ b/contrib/lua-torch/nn/SpatialAveragePooling.lua
@@ -0,0 +1,93 @@
+local SpatialAveragePooling, parent = torch.class('nn.SpatialAveragePooling', 'nn.Module')
+
+function SpatialAveragePooling:__init(kW, kH, dW, dH, padW, padH)
+ parent.__init(self)
+
+ self.kW = kW
+ self.kH = kH
+ self.dW = dW or 1
+ self.dH = dH or 1
+ self.padW = padW or 0
+ self.padH = padH or 0
+ self.ceil_mode = false
+ self.count_include_pad = true
+ self.divide = true
+end
+
+function SpatialAveragePooling:ceil()
+ self.ceil_mode = true
+ return self
+end
+
+function SpatialAveragePooling:floor()
+ self.ceil_mode = false
+ return self
+end
+
+function SpatialAveragePooling:setCountIncludePad()
+ self.count_include_pad = true
+ return self
+end
+
+function SpatialAveragePooling:setCountExcludePad()
+ self.count_include_pad = false
+ return self
+end
+
+local function backwardCompatible(self)
+ if self.ceil_mode == nil then
+ self.ceil_mode = false
+ self.count_include_pad = true
+ self.padH = 0
+ self.padW = 0
+ end
+end
+
+function SpatialAveragePooling:updateOutput(input)
+ backwardCompatible(self)
+ input.THNN.SpatialAveragePooling_updateOutput(
+ input:cdata(),
+ self.output:cdata(),
+ self.kW, self.kH,
+ self.dW, self.dH,
+ self.padW, self.padH,
+ self.ceil_mode,
+ self.count_include_pad
+ )
+ -- for backward compatibility with saved models
+ -- which are not supposed to have "divide" field
+ if not self.divide then
+ self.output:mul(self.kW*self.kH)
+ end
+ return self.output
+end
+
+function SpatialAveragePooling:updateGradInput(input, gradOutput)
+ if self.gradInput then
+ input.THNN.SpatialAveragePooling_updateGradInput(
+ input:cdata(),
+ gradOutput:cdata(),
+ self.gradInput:cdata(),
+ self.kW, self.kH,
+ self.dW, self.dH,
+ self.padW, self.padH,
+ self.ceil_mode,
+ self.count_include_pad
+ )
+ -- for backward compatibility
+ if not self.divide then
+ self.gradInput:mul(self.kW*self.kH)
+ end
+ return self.gradInput
+ end
+end
+
+function SpatialAveragePooling:__tostring__()
+ local s = string.format('%s(%dx%d, %d,%d', torch.type(self),
+ self.kW, self.kH, self.dW, self.dH)
+ if (self.padW or self.padH) and (self.padW ~= 0 or self.padH ~= 0) then
+ s = s .. ', ' .. self.padW .. ','.. self.padH
+ end
+ s = s .. ')'
+ return s
+end