diff options
Diffstat (limited to 'contrib/lua-torch/nn/SpatialConvolutionMap.lua')
-rw-r--r-- | contrib/lua-torch/nn/SpatialConvolutionMap.lua | 154 |
1 files changed, 154 insertions, 0 deletions
diff --git a/contrib/lua-torch/nn/SpatialConvolutionMap.lua b/contrib/lua-torch/nn/SpatialConvolutionMap.lua new file mode 100644 index 000000000..9051c119e --- /dev/null +++ b/contrib/lua-torch/nn/SpatialConvolutionMap.lua @@ -0,0 +1,154 @@ +local SpatialConvolutionMap, parent = torch.class('nn.SpatialConvolutionMap', 'nn.Module') + +nn.tables = nn.tables or {} + +function nn.tables.full(nin, nout) + local ft = torch.Tensor(nin*nout,2) + local p = 1 + for j=1,nout do + for i=1,nin do + ft[p][1] = i + ft[p][2] = j + p = p + 1 + end + end + return ft +end + +function nn.tables.oneToOne(nfeat) + local ft = torch.Tensor(nfeat,2) + for i=1,nfeat do + ft[i][1] = i + ft[i][2] = i + end + return ft +end + +function nn.tables.random(nin, nout, nto) + local nker = nto * nout + local tbl = torch.Tensor(nker, 2) + local fi = torch.randperm(nin) + local frcntr = 1 + local nfi = math.floor(nin/nto) -- number of distinct nto chunks + local totbl = tbl:select(2,2) + local frtbl = tbl:select(2,1) + local fitbl = fi:narrow(1, 1, (nfi * nto)) -- part of fi that covers distinct chunks + local ufrtbl= frtbl:unfold(1, nto, nto) + local utotbl= totbl:unfold(1, nto, nto) + local ufitbl= fitbl:unfold(1, nto, nto) + + -- start filling frtbl + for i=1,nout do -- fro each unit in target map + ufrtbl:select(1,i):copy(ufitbl:select(1,frcntr)) + frcntr = frcntr + 1 + if frcntr-1 == nfi then -- reset fi + fi:copy(torch.randperm(nin)) + frcntr = 1 + end + end + for tocntr=1,utotbl:size(1) do + utotbl:select(1,tocntr):fill(tocntr) + end + return tbl +end + +function SpatialConvolutionMap:__init(conMatrix, kW, kH, dW, dH) + parent.__init(self) + + dW = dW or 1 + dH = dH or 1 + + self.kW = kW + self.kH = kH + self.dW = dW + self.dH = dH + self.connTable = conMatrix + self.nInputPlane = self.connTable:select(2,1):max() + self.nOutputPlane = self.connTable:select(2,2):max() + self.weight = torch.Tensor(self.connTable:size(1), kH, kW) + self.bias = torch.Tensor(self.nOutputPlane) + self.gradWeight = torch.Tensor(self.connTable:size(1), kH, kW) + self.gradBias = torch.Tensor(self.nOutputPlane) + + self:reset() +end + +function SpatialConvolutionMap:reset(stdv) + if stdv then + stdv = stdv * math.sqrt(3) + if nn.oldSeed then + self.weight:apply(function() + return torch.uniform(-stdv, stdv) + end) + self.bias:apply(function() + return torch.uniform(-stdv, stdv) + end) + else + self.weight:uniform(-stdv, stdv) + self.bias:uniform(-stdv, stdv) + end + else + local ninp = torch.Tensor(self.nOutputPlane):zero() + for i=1,self.connTable:size(1) do ninp[self.connTable[i][2]] = ninp[self.connTable[i][2]]+1 end + for k=1,self.connTable:size(1) do + stdv = 1/math.sqrt(self.kW*self.kH*ninp[self.connTable[k][2]]) + if nn.oldSeed then + self.weight:select(1,k):apply(function() return torch.uniform(-stdv,stdv) end) + else + self.weight:select(1,k):uniform(-stdv,stdv) + end + end + for k=1,self.bias:size(1) do + stdv = 1/math.sqrt(self.kW*self.kH*ninp[k]) + self.bias[k] = torch.uniform(-stdv,stdv) + end + end +end + +function SpatialConvolutionMap:updateOutput(input) + input.THNN.SpatialConvolutionMap_updateOutput( + input:cdata(), + self.output:cdata(), + self.weight:cdata(), + self.bias:cdata(), + self.connTable:cdata(), + self.nInputPlane, + self.nOutputPlane, + self.dW, self.dH + ) + return self.output +end + +function SpatialConvolutionMap:updateGradInput(input, gradOutput) + input.THNN.SpatialConvolutionMap_updateGradInput( + input:cdata(), + gradOutput:cdata(), + self.gradInput:cdata(), + self.weight:cdata(), + self.bias:cdata(), + self.connTable:cdata(), + self.nInputPlane, + self.nOutputPlane, + self.dW, self.dH + ) + return self.gradInput +end + +function SpatialConvolutionMap:accGradParameters(input, gradOutput, scale) + input.THNN.SpatialConvolutionMap_accGradParameters( + input:cdata(), + gradOutput:cdata(), + self.gradWeight:cdata(), + self.gradBias:cdata(), + self.connTable:cdata(), + self.nInputPlane, + self.nOutputPlane, + self.dW, self.dH, + scale or 1 + ) +end + +function SpatialConvolutionMap:decayParameters(decay) + self.weight:add(-decay, self.weight) + self.bias:add(-decay, self.bias) +end |