summaryrefslogtreecommitdiffstats
path: root/contrib/lua-torch/nn/SpatialSubSampling.lua
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/lua-torch/nn/SpatialSubSampling.lua')
-rw-r--r--contrib/lua-torch/nn/SpatialSubSampling.lua79
1 files changed, 79 insertions, 0 deletions
diff --git a/contrib/lua-torch/nn/SpatialSubSampling.lua b/contrib/lua-torch/nn/SpatialSubSampling.lua
new file mode 100644
index 000000000..4e3fb8881
--- /dev/null
+++ b/contrib/lua-torch/nn/SpatialSubSampling.lua
@@ -0,0 +1,79 @@
+local SpatialSubSampling, parent = torch.class('nn.SpatialSubSampling', 'nn.Module')
+
+function SpatialSubSampling:__init(nInputPlane, kW, kH, dW, dH)
+ parent.__init(self)
+
+ dW = dW or 1
+ dH = dH or 1
+
+ self.nInputPlane = nInputPlane
+ self.kW = kW
+ self.kH = kH
+ self.dW = dW
+ self.dH = dH
+
+ self.weight = torch.Tensor(nInputPlane)
+ self.bias = torch.Tensor(nInputPlane)
+ self.gradWeight = torch.Tensor(nInputPlane)
+ self.gradBias = torch.Tensor(nInputPlane)
+
+ self:reset()
+end
+
+function SpatialSubSampling:reset(stdv)
+ if stdv then
+ stdv = stdv * math.sqrt(3)
+ else
+ stdv = 1/math.sqrt(self.kW*self.kH)
+ end
+ if nn.oldSeed then
+ self.weight:apply(function()
+ return torch.uniform(-stdv, stdv)
+ end)
+ self.bias:apply(function()
+ return torch.uniform(-stdv, stdv)
+ end)
+ else
+ self.weight:uniform(-stdv, stdv)
+ self.bias:uniform(-stdv, stdv)
+ end
+end
+
+function SpatialSubSampling:updateOutput(input)
+ input.THNN.SpatialSubSampling_updateOutput(
+ input:cdata(),
+ self.output:cdata(),
+ self.weight:cdata(),
+ self.bias:cdata(),
+ self.kW, self.kH,
+ self.dW, self.dH
+ )
+ return self.output
+end
+
+function SpatialSubSampling:updateGradInput(input, gradOutput)
+ if self.gradInput then
+ input.THNN.SpatialSubSampling_updateGradInput(
+ input:cdata(),
+ gradOutput:cdata(),
+ self.gradInput:cdata(),
+ self.weight:cdata(),
+ self.kW, self.kH,
+ self.dW, self.dH
+ )
+ return self.gradInput
+ end
+end
+
+function SpatialSubSampling:accGradParameters(input, gradOutput, scale)
+ scale = scale or 1
+ input.THNN.SpatialSubSampling_accGradParameters(
+ input:cdata(),
+ gradOutput:cdata(),
+ self.gradWeight:cdata(),
+ self.gradBias:cdata(),
+ self.kW, self.kH,
+ self.dW, self.dH,
+ scale
+ )
+end