aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/lua-torch/nn/TemporalDynamicKMaxPooling.lua
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/lua-torch/nn/TemporalDynamicKMaxPooling.lua')
-rw-r--r--contrib/lua-torch/nn/TemporalDynamicKMaxPooling.lua65
1 files changed, 65 insertions, 0 deletions
diff --git a/contrib/lua-torch/nn/TemporalDynamicKMaxPooling.lua b/contrib/lua-torch/nn/TemporalDynamicKMaxPooling.lua
new file mode 100644
index 000000000..644a0fa9c
--- /dev/null
+++ b/contrib/lua-torch/nn/TemporalDynamicKMaxPooling.lua
@@ -0,0 +1,65 @@
+--[[
+ This file implements Dynamic K Max Pooling as described in the paper:
+ "A Convolutional Neural Network for Modelling Sentences"
+ by Nal Kalchbrenner, Edward Grefenstette, Phil Blunsom
+
+ The operation is simply selecting the k highest values out of a sequence.
+ k can be a calculated value or pre-defined
+
+ The value of k can be calulated as in the paper by using:
+ k_top as minK
+ (L-l)/L as factor
+
+ Where:
+ k_top is the desired sequence length at the end of the convolution part,
+ L is the total number of layers,
+ l is this layers number
+]]
+
+local TemporalDynamicKMaxPooling, parent = torch.class('nn.TemporalDynamicKMaxPooling', 'nn.Module')
+
+function TemporalDynamicKMaxPooling:__init(minK, factor)
+ parent.__init(self)
+
+ self.minK = minK
+ self.factor = factor or 0
+end
+
+function TemporalDynamicKMaxPooling:updateOutput(input)
+ assert(input:dim() == 2 or input:dim() == 3, 'Only 2D or 3D(batch mode) accepted')
+
+ local seqDim = input:dim()-1
+ local k = math.max(self.minK, math.ceil(self.factor*input:size(seqDim)))
+ assert(input:size(seqDim) >= self.minK, 'Input sequence length (' .. input:size(seqDim) .. ') too small for desired k value (' .. k .. ')')
+
+ -- Sort input in descending order
+ local sorted, allIndices = input:sort(seqDim,true)
+ -- Reduce the indices to only include the top-k and return to original order by sorting
+ self.indices = allIndices:narrow(seqDim, 1, k):sort(seqDim)
+
+ self.output = input:gather(seqDim, self.indices)
+
+ return self.output
+end
+
+function TemporalDynamicKMaxPooling:updateGradInput(input, gradOutput)
+ if self.gradInput then
+ local seqDim = input:dim()-1
+
+ self.gradInput:resizeAs(input)
+ self.gradInput:zero()
+
+ -- Using the previously stored indices, add the gradOutputs to their respective
+ -- input indices in the self.gradInput buffer
+ local updateValues = self.gradInput:gather(seqDim, self.indices)
+ updateValues:add(gradOutput)
+ self.gradInput:scatter(seqDim, self.indices, updateValues)
+
+ return self.gradInput
+ end
+end
+
+function TemporalDynamicKMaxPooling:clearState()
+ nn.utils.clear(self, 'indices')
+ return parent.clearState(self)
+end