aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/lua-torch/nn/TemporalSubSampling.lua
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/lua-torch/nn/TemporalSubSampling.lua')
-rw-r--r--contrib/lua-torch/nn/TemporalSubSampling.lua64
1 files changed, 64 insertions, 0 deletions
diff --git a/contrib/lua-torch/nn/TemporalSubSampling.lua b/contrib/lua-torch/nn/TemporalSubSampling.lua
new file mode 100644
index 000000000..e9287d63d
--- /dev/null
+++ b/contrib/lua-torch/nn/TemporalSubSampling.lua
@@ -0,0 +1,64 @@
+local TemporalSubSampling, parent = torch.class('nn.TemporalSubSampling', 'nn.Module')
+
+function TemporalSubSampling:__init(inputFrameSize, kW, dW)
+ parent.__init(self)
+
+ dW = dW or 1
+
+ self.inputFrameSize = inputFrameSize
+ self.kW = kW
+ self.dW = dW
+
+ self.weight = torch.Tensor(inputFrameSize)
+ self.bias = torch.Tensor(inputFrameSize)
+ self.gradWeight = torch.Tensor(inputFrameSize)
+ self.gradBias = torch.Tensor(inputFrameSize)
+
+ self:reset()
+end
+
+function TemporalSubSampling:reset(stdv)
+ if stdv then
+ stdv = stdv * math.sqrt(3)
+ else
+ stdv = 1/math.sqrt(self.kW)
+ end
+ if nn.oldSeed then
+ self.weight:apply(function()
+ return torch.uniform(-stdv, stdv)
+ end)
+ self.bias:apply(function()
+ return torch.uniform(-stdv, stdv)
+ end)
+ else
+ self.weight:uniform(-stdv, stdv)
+ self.bias:uniform(-stdv, stdv)
+ end
+end
+
+function TemporalSubSampling:updateOutput(input)
+ input.THNN.TemporalSubSampling_updateOutput(
+ input:cdata(), self.output:cdata(),
+ self.weight:cdata(), self.bias:cdata(),
+ self.kW, self.dW, self.inputFrameSize
+ )
+ return self.output
+end
+
+function TemporalSubSampling:updateGradInput(input, gradOutput)
+ if self.gradInput then
+ input.THNN.TemporalSubSampling_updateGradInput(
+ input:cdata(), gradOutput:cdata(), self.gradInput:cdata(),
+ self.weight:cdata(), self.kW, self.dW
+ )
+ return self.gradInput
+ end
+end
+
+function TemporalSubSampling:accGradParameters(input, gradOutput, scale)
+ scale = scale or 1
+ input.THNN.TemporalSubSampling_accGradParameters(
+ input:cdata(), gradOutput:cdata(), self.gradWeight:cdata(),
+ self.gradBias:cdata(), self.kW, self.dW, scale
+ )
+end