diff options
Diffstat (limited to 'contrib/lua-torch/optim/adamax.lua')
-rw-r--r-- | contrib/lua-torch/optim/adamax.lua | 66 |
1 files changed, 66 insertions, 0 deletions
diff --git a/contrib/lua-torch/optim/adamax.lua b/contrib/lua-torch/optim/adamax.lua new file mode 100644 index 000000000..2b6487720 --- /dev/null +++ b/contrib/lua-torch/optim/adamax.lua @@ -0,0 +1,66 @@ +--[[ An implementation of AdaMax http://arxiv.org/pdf/1412.6980.pdf + +ARGS: + +- 'opfunc' : a function that takes a single input (X), the point + of a evaluation, and returns f(X) and df/dX +- 'x' : the initial point +- 'config` : a table with configuration parameters for the optimizer +- 'config.learningRate' : learning rate +- 'config.beta1' : first moment coefficient +- 'config.beta2' : second moment coefficient +- 'config.epsilon' : for numerical stability +- 'state' : a table describing the state of the optimizer; + after each call the state is modified. + +RETURN: +- `x` : the new x vector +- `f(x)` : the function, evaluated before the update + +]] + +function optim.adamax(opfunc, x, config, state) + -- (0) get/update state + local config = config or {} + local state = state or config + local lr = config.learningRate or 0.002 + + local beta1 = config.beta1 or 0.9 + local beta2 = config.beta2 or 0.999 + local epsilon = config.epsilon or 1e-38 + local wd = config.weightDecay or 0 + + -- (1) evaluate f(x) and df/dx + local fx, dfdx = opfunc(x) + + -- (2) weight decay + if wd ~= 0 then + dfdx:add(wd, x) + end + + -- Initialization + state.t = state.t or 0 + -- Exponential moving average of gradient values + state.m = state.m or x.new(dfdx:size()):zero() + -- Exponential moving average of the infinity norm + state.u = state.u or x.new(dfdx:size()):zero() + -- A tmp tensor to hold the input to max() + state.max = state.max or x.new(2, unpack(dfdx:size():totable())):zero() + + state.t = state.t + 1 + + -- Update biased first moment estimate. + state.m:mul(beta1):add(1-beta1, dfdx) + -- Update the exponentially weighted infinity norm. + state.max[1]:copy(state.u):mul(beta2) + state.max[2]:copy(dfdx):abs():add(epsilon) + state.u:max(state.max, 1) + + local biasCorrection1 = 1 - beta1^state.t + local stepSize = lr/biasCorrection1 + -- (2) update x + x:addcdiv(-stepSize, state.m, state.u) + + -- return x*, f(x) before optimization + return x, {fx} +end |