diff options
Diffstat (limited to 'contrib/lua-torch/optim/nag.lua')
-rw-r--r-- | contrib/lua-torch/optim/nag.lua | 86 |
1 files changed, 86 insertions, 0 deletions
diff --git a/contrib/lua-torch/optim/nag.lua b/contrib/lua-torch/optim/nag.lua new file mode 100644 index 000000000..875d81e4c --- /dev/null +++ b/contrib/lua-torch/optim/nag.lua @@ -0,0 +1,86 @@ +---------------------------------------------------------------------- +-- An implementation of SGD adapted with features of Nesterov's +-- Accelerated Gradient method, based on the paper +-- On the Importance of Initialization and Momentum in Deep Learning +-- Sutsveker et. al., ICML 2013 +-- +-- ARGS: +-- opfunc : a function that takes a single input (X), the point of +-- evaluation, and returns f(X) and df/dX +-- x : the initial point +-- state : a table describing the state of the optimizer; after each +-- call the state is modified +-- state.learningRate : learning rate +-- state.learningRateDecay : learning rate decay +-- state.weightDecay : weight decay +-- state.momentum : momentum +-- state.learningRates : vector of individual learning rates +-- +-- RETURN: +-- x : the new x vector +-- f(x) : the function, evaluated before the update +-- +-- (Dilip Krishnan, 2013) +-- + +function optim.nag(opfunc, x, config, state) + -- (0) get/update state + local config = config or {} + local state = state or config + local lr = config.learningRate or 1e-3 + local lrd = config.learningRateDecay or 0 + local wd = config.weightDecay or 0 + local mom = config.momentum or 0.9 + local damp = config.dampening or mom + local lrs = config.learningRates + state.evalCounter = state.evalCounter or 0 + local nevals = state.evalCounter + + if mom <= 0 then + error('Momentum must be positive for Nesterov Accelerated Gradient') + end + + -- (1) evaluate f(x) and df/dx + -- first step in the direction of the momentum vector + + if state.dfdx then + x:add(mom, state.dfdx) + end + -- then compute gradient at that point + -- comment out the above line to get the original SGD + local fx,dfdx = opfunc(x) + + -- (2) weight decay + if wd ~= 0 then + dfdx:add(wd, x) + end + + -- (3) learning rate decay (annealing) + local clr = lr / (1 + nevals*lrd) + + -- (4) apply momentum + if not state.dfdx then + state.dfdx = torch.Tensor():typeAs(dfdx):resizeAs(dfdx):fill(0) + else + state.dfdx:mul(mom) + end + + -- (5) parameter update with single or individual learning rates + if lrs then + if not state.deltaParameters then + state.deltaParameters = torch.Tensor():typeAs(x):resizeAs(dfdx) + end + state.deltaParameters:copy(lrs):cmul(dfdx) + x:add(-clr, state.deltaParameters) + state.dfdx:add(-clr, state.deltaParameters) + else + x:add(-clr, dfdx) + state.dfdx:add(-clr, dfdx) + end + + -- (6) update evaluation counter + state.evalCounter = state.evalCounter + 1 + + -- return x, f(x) before optimization + return x,{fx} +end |