diff options
Diffstat (limited to 'contrib/lua-torch/optim/rmsprop.lua')
-rw-r--r-- | contrib/lua-torch/optim/rmsprop.lua | 58 |
1 files changed, 58 insertions, 0 deletions
diff --git a/contrib/lua-torch/optim/rmsprop.lua b/contrib/lua-torch/optim/rmsprop.lua new file mode 100644 index 000000000..aa562006a --- /dev/null +++ b/contrib/lua-torch/optim/rmsprop.lua @@ -0,0 +1,58 @@ +--[[ An implementation of RMSprop + +ARGS: + +- 'opfunc' : a function that takes a single input (X), the point + of a evaluation, and returns f(X) and df/dX +- 'x' : the initial point +- 'config` : a table with configuration parameters for the optimizer +- 'config.learningRate' : learning rate +- 'config.alpha' : smoothing constant +- 'config.epsilon' : value with which to initialise m +- 'config.weightDecay' : weight decay +- 'state' : a table describing the state of the optimizer; + after each call the state is modified +- 'state.m' : leaky sum of squares of parameter gradients, +- 'state.tmp' : and the square root (with epsilon smoothing) + +RETURN: +- `x` : the new x vector +- `f(x)` : the function, evaluated before the update + +]] + +function optim.rmsprop(opfunc, x, config, state) + -- (0) get/update state + local config = config or {} + local state = state or config + local lr = config.learningRate or 1e-2 + local alpha = config.alpha or 0.99 + local epsilon = config.epsilon or 1e-8 + local wd = config.weightDecay or 0 + local mfill = config.initialMean or 0 + + -- (1) evaluate f(x) and df/dx + local fx, dfdx = opfunc(x) + + -- (2) weight decay + if wd ~= 0 then + dfdx:add(wd, x) + end + + -- (3) initialize mean square values and square gradient storage + if not state.m then + state.m = torch.Tensor():typeAs(x):resizeAs(dfdx):fill(mfill) + state.tmp = torch.Tensor():typeAs(x):resizeAs(dfdx) + end + + -- (4) calculate new (leaky) mean squared values + state.m:mul(alpha) + state.m:addcmul(1.0-alpha, dfdx, dfdx) + + -- (5) perform update + state.tmp:sqrt(state.m):add(epsilon) + x:addcdiv(-lr, dfdx, state.tmp) + + -- return x*, f(x) before optimization + return x, {fx} +end |