diff options
Diffstat (limited to 'contrib/torch/decisiontree/init.lua')
-rw-r--r-- | contrib/torch/decisiontree/init.lua | 72 |
1 files changed, 72 insertions, 0 deletions
diff --git a/contrib/torch/decisiontree/init.lua b/contrib/torch/decisiontree/init.lua new file mode 100644 index 000000000..fdaf1b56a --- /dev/null +++ b/contrib/torch/decisiontree/init.lua @@ -0,0 +1,72 @@ +require 'paths' +require 'xlua' +require 'string' +require 'os' +require 'sys' +require 'image' +require 'lfs' +require 'nn' + +-- these actually return local variables but we will re-require them +-- when needed. This is just to make sure they are loaded. +require 'moses' + +unpack = unpack or table.unpack + +local dt = require 'decisiontree._env' + +-- c lib: +require "paths" +paths.require 'libdecisiontree' + +dt.HashMap = torch.getmetatable("dt.HashMap").new + +dt.EPSILON = 1e-6 + +-- experimental Tensor-like container +require 'decisiontree.SparseTensor' + +-- functions +require 'decisiontree.math' +require 'decisiontree.utils' + +-- for multi-threading +require 'decisiontree.WorkPool' + +-- abstract classes +require 'decisiontree.DecisionTree' +require 'decisiontree.DecisionForest' +require 'decisiontree.DecisionForestTrainer' +require 'decisiontree.TreeState' + +-- for CaRTree inference +require 'decisiontree.CartNode' +require 'decisiontree.CartTree' + +-- Criterions (extended with updateHessInput and backward2) +require 'decisiontree.MSECriterion' +require 'decisiontree.LogitBoostCriterion' + +-- Used by both RandomForestTrainer and GradientBoostTrainer +require 'decisiontree.CartTrainer' + +-- Used by CartTrainer +require 'decisiontree.DataSet' + +-- Random Forest Training +require 'decisiontree.RandomForestTrainer' +require 'decisiontree.GiniState' -- TreeState subclass + +-- Gradient Boosted Decision Tree Training +require 'decisiontree.GradientBoostTrainer' +require 'decisiontree.GradientBoostState' -- TreeState subclass + +-- unit tests and benchmarks +require 'decisiontree.test' +require 'decisiontree.benchmark' + +-- nn.Module +require 'decisiontree.DFD' +require 'decisiontree.Sparse2Dense' + +return dt |