diff options
Diffstat (limited to 'contrib/torch/nn/README.md')
-rw-r--r-- | contrib/torch/nn/README.md | 21 |
1 files changed, 21 insertions, 0 deletions
diff --git a/contrib/torch/nn/README.md b/contrib/torch/nn/README.md new file mode 100644 index 000000000..6efd60962 --- /dev/null +++ b/contrib/torch/nn/README.md @@ -0,0 +1,21 @@ +[](https://travis-ci.org/torch/nn) +<a name="nn.dok"></a> +# Neural Network Package # + +This package provides an easy and modular way to build and train simple or complex neural networks using [Torch](https://github.com/torch/torch7/blob/master/README.md): + * Modules are the bricks used to build neural networks. Each are themselves neural networks, but can be combined with other networks using containers to create complex neural networks: + * [Module](doc/module.md#nn.Module): abstract class inherited by all modules; + * [Containers](doc/containers.md#nn.Containers): composite and decorator classes like [`Sequential`](doc/containers.md#nn.Sequential), [`Parallel`](doc/containers.md#nn.Parallel), [`Concat`](doc/containers.md#nn.Concat) and [`NaN`](doc/containers.md#nn.NaN); + * [Transfer functions](doc/transfer.md#nn.transfer.dok): non-linear functions like [`Tanh`](doc/transfer.md#nn.Tanh) and [`Sigmoid`](doc/transfer.md#nn.Sigmoid); + * [Simple layers](doc/simple.md#nn.simplelayers.dok): like [`Linear`](doc/simple.md#nn.Linear), [`Mean`](doc/simple.md#nn.Mean), [`Max`](doc/simple.md#nn.Max) and [`Reshape`](doc/simple.md#nn.Reshape); + * [Table layers](doc/table.md#nn.TableLayers): layers for manipulating `table`s like [`SplitTable`](doc/table.md#nn.SplitTable), [`ConcatTable`](doc/table.md#nn.ConcatTable) and [`JoinTable`](doc/table.md#nn.JoinTable); + * [Convolution layers](doc/convolution.md#nn.convlayers.dok): [`Temporal`](doc/convolution.md#nn.TemporalModules), [`Spatial`](doc/convolution.md#nn.SpatialModules) and [`Volumetric`](doc/convolution.md#nn.VolumetricModules) convolutions; + * Criterions compute a gradient according to a given loss function given an input and a target: + * [Criterions](doc/criterion.md#nn.Criterions): a list of all criterions, including [`Criterion`](doc/criterion.md#nn.Criterion), the abstract class; + * [`MSECriterion`](doc/criterion.md#nn.MSECriterion): the Mean Squared Error criterion used for regression; + * [`ClassNLLCriterion`](doc/criterion.md#nn.ClassNLLCriterion): the Negative Log Likelihood criterion used for classification; + * Additional documentation: + * [Overview](doc/overview.md#nn.overview.dok) of the package essentials including modules, containers and training; + * [Training](doc/training.md#nn.traningneuralnet.dok): how to train a neural network using [`StochasticGradient`](doc/training.md#nn.StochasticGradient); + * [Testing](doc/testing.md): how to test your modules. + * [Experimental Modules](https://github.com/clementfarabet/lua---nnx/blob/master/README.md): a package containing experimental modules and criteria. |