summaryrefslogtreecommitdiffstats
path: root/contrib/torch/nn/README.md
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/torch/nn/README.md')
-rw-r--r--contrib/torch/nn/README.md21
1 files changed, 21 insertions, 0 deletions
diff --git a/contrib/torch/nn/README.md b/contrib/torch/nn/README.md
new file mode 100644
index 000000000..6efd60962
--- /dev/null
+++ b/contrib/torch/nn/README.md
@@ -0,0 +1,21 @@
+[![Build Status](https://travis-ci.org/torch/nn.svg?branch=master)](https://travis-ci.org/torch/nn)
+<a name="nn.dok"></a>
+# Neural Network Package #
+
+This package provides an easy and modular way to build and train simple or complex neural networks using [Torch](https://github.com/torch/torch7/blob/master/README.md):
+ * Modules are the bricks used to build neural networks. Each are themselves neural networks, but can be combined with other networks using containers to create complex neural networks:
+ * [Module](doc/module.md#nn.Module): abstract class inherited by all modules;
+ * [Containers](doc/containers.md#nn.Containers): composite and decorator classes like [`Sequential`](doc/containers.md#nn.Sequential), [`Parallel`](doc/containers.md#nn.Parallel), [`Concat`](doc/containers.md#nn.Concat) and [`NaN`](doc/containers.md#nn.NaN);
+ * [Transfer functions](doc/transfer.md#nn.transfer.dok): non-linear functions like [`Tanh`](doc/transfer.md#nn.Tanh) and [`Sigmoid`](doc/transfer.md#nn.Sigmoid);
+ * [Simple layers](doc/simple.md#nn.simplelayers.dok): like [`Linear`](doc/simple.md#nn.Linear), [`Mean`](doc/simple.md#nn.Mean), [`Max`](doc/simple.md#nn.Max) and [`Reshape`](doc/simple.md#nn.Reshape);
+ * [Table layers](doc/table.md#nn.TableLayers): layers for manipulating `table`s like [`SplitTable`](doc/table.md#nn.SplitTable), [`ConcatTable`](doc/table.md#nn.ConcatTable) and [`JoinTable`](doc/table.md#nn.JoinTable);
+ * [Convolution layers](doc/convolution.md#nn.convlayers.dok): [`Temporal`](doc/convolution.md#nn.TemporalModules), [`Spatial`](doc/convolution.md#nn.SpatialModules) and [`Volumetric`](doc/convolution.md#nn.VolumetricModules) convolutions;
+ * Criterions compute a gradient according to a given loss function given an input and a target:
+ * [Criterions](doc/criterion.md#nn.Criterions): a list of all criterions, including [`Criterion`](doc/criterion.md#nn.Criterion), the abstract class;
+ * [`MSECriterion`](doc/criterion.md#nn.MSECriterion): the Mean Squared Error criterion used for regression;
+ * [`ClassNLLCriterion`](doc/criterion.md#nn.ClassNLLCriterion): the Negative Log Likelihood criterion used for classification;
+ * Additional documentation:
+ * [Overview](doc/overview.md#nn.overview.dok) of the package essentials including modules, containers and training;
+ * [Training](doc/training.md#nn.traningneuralnet.dok): how to train a neural network using [`StochasticGradient`](doc/training.md#nn.StochasticGradient);
+ * [Testing](doc/testing.md): how to test your modules.
+ * [Experimental Modules](https://github.com/clementfarabet/lua---nnx/blob/master/README.md): a package containing experimental modules and criteria.