summaryrefslogtreecommitdiffstats
path: root/contrib/torch/nn/init.lua
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/torch/nn/init.lua')
-rwxr-xr-xcontrib/torch/nn/init.lua221
1 files changed, 221 insertions, 0 deletions
diff --git a/contrib/torch/nn/init.lua b/contrib/torch/nn/init.lua
new file mode 100755
index 000000000..4319a8868
--- /dev/null
+++ b/contrib/torch/nn/init.lua
@@ -0,0 +1,221 @@
+require('torch')
+
+nn = {} -- define the global nn table
+
+require('nn.THNN')
+
+require('nn.utils')
+
+
+require('nn.ErrorMessages')
+require('nn.Module')
+
+require('nn.Container')
+require('nn.Concat')
+require('nn.Parallel')
+require('nn.Sequential')
+require('nn.DepthConcat')
+
+require('nn.Decorator')
+require('nn.Bottle')
+require('nn.WeightNorm')
+require('nn.DontCast')
+require('nn.NaN')
+require('nn.Profile')
+
+require('nn.Linear')
+require('nn.LinearWeightNorm')
+require('nn.Bilinear')
+require('nn.PartialLinear')
+require('nn.SparseLinear')
+require('nn.IndexLinear')
+require('nn.Reshape')
+require('nn.View')
+require('nn.Contiguous')
+require('nn.Select')
+require('nn.Narrow')
+require('nn.Index')
+require('nn.Squeeze')
+require('nn.Unsqueeze')
+require('nn.Replicate')
+require('nn.Transpose')
+require('nn.BatchNormalization')
+require('nn.LayerNormalization')
+require('nn.Padding')
+require('nn.GradientReversal')
+require('nn.MaskedSelect')
+
+require('nn.Copy')
+require('nn.Min')
+require('nn.Max')
+require('nn.Sum')
+require('nn.Mean')
+require('nn.CMul')
+require('nn.Mul')
+require('nn.MulConstant')
+require('nn.CAdd')
+require('nn.Add')
+require('nn.AddConstant')
+require('nn.Constant')
+require('nn.Dropout')
+require('nn.SpatialDropout')
+require('nn.VolumetricDropout')
+require('nn.WhiteNoise')
+require('nn.OneHot')
+require('nn.PrintSize')
+require('nn.ZeroGrad')
+
+require('nn.CAddTable')
+require('nn.CDivTable')
+require('nn.CMulTable')
+require('nn.CSubTable')
+require('nn.CMaxTable')
+require('nn.CMinTable')
+require('nn.CAddTensorTable')
+
+require('nn.Euclidean')
+require('nn.WeightedEuclidean')
+require('nn.PairwiseDistance')
+require('nn.CosineDistance')
+require('nn.DotProduct')
+require('nn.Normalize')
+require('nn.Cosine')
+require('nn.Kmeans')
+
+require('nn.Exp')
+require('nn.Log')
+require('nn.HardTanh')
+require('nn.Clamp')
+require('nn.LogSigmoid')
+require('nn.LogSoftMax')
+require('nn.Sigmoid')
+require('nn.SoftMax')
+require('nn.SoftMin')
+require('nn.SoftPlus')
+require('nn.SoftSign')
+require('nn.Tanh')
+require('nn.TanhShrink')
+require('nn.Abs')
+require('nn.Power')
+require('nn.Square')
+require('nn.Sqrt')
+require('nn.HardShrink')
+require('nn.SoftShrink')
+require('nn.Threshold')
+require('nn.Maxout')
+require('nn.ReLU')
+require('nn.ReLU6')
+require('nn.PReLU')
+require('nn.CReLU')
+require('nn.LeakyReLU')
+require('nn.SpatialSoftMax')
+require('nn.SpatialLogSoftMax')
+require('nn.RReLU')
+require('nn.ELU')
+require('nn.GatedLinearUnit')
+
+require('nn.LookupTable')
+require('nn.SpatialConvolution')
+require('nn.SpatialConvolutionLocal')
+require('nn.SpatialFullConvolution')
+require('nn.SpatialFullConvolutionMap')
+require('nn.SpatialConvolutionMM')
+require('nn.SpatialDepthWiseConvolution')
+require('nn.SpatialConvolutionMap')
+require('nn.SpatialDilatedConvolution')
+require('nn.SpatialSubSampling')
+require('nn.SpatialMaxPooling')
+require('nn.SpatialDilatedMaxPooling')
+require('nn.SpatialMaxUnpooling')
+require('nn.SpatialFractionalMaxPooling')
+require('nn.SpatialLPPooling')
+require('nn.SpatialAveragePooling')
+require('nn.SpatialAdaptiveMaxPooling')
+require('nn.SpatialAdaptiveAveragePooling')
+require('nn.TemporalConvolution')
+require('nn.TemporalSubSampling')
+require('nn.TemporalMaxPooling')
+require('nn.TemporalDynamicKMaxPooling')
+require('nn.TemporalRowConvolution')
+require('nn.SpatialSubtractiveNormalization')
+require('nn.SpatialDivisiveNormalization')
+require('nn.SpatialContrastiveNormalization')
+require('nn.SpatialCrossMapLRN')
+require('nn.SpatialZeroPadding')
+require('nn.SpatialReflectionPadding')
+require('nn.SpatialReplicationPadding')
+require('nn.SpatialUpSamplingNearest')
+require('nn.SpatialUpSamplingBilinear')
+require('nn.SpatialBatchNormalization')
+
+require('nn.VolumetricConvolution')
+require('nn.VolumetricFullConvolution')
+require('nn.VolumetricDilatedConvolution')
+require('nn.VolumetricMaxPooling')
+require('nn.VolumetricDilatedMaxPooling')
+require('nn.VolumetricFractionalMaxPooling')
+require('nn.VolumetricMaxUnpooling')
+require('nn.VolumetricAveragePooling')
+require('nn.VolumetricBatchNormalization')
+require('nn.VolumetricReplicationPadding')
+
+require('nn.GPU')
+
+require('nn.ParallelTable')
+require('nn.Identity')
+require('nn.ConcatTable')
+require('nn.SplitTable')
+require('nn.JoinTable')
+require('nn.SelectTable')
+require('nn.MixtureTable')
+require('nn.CriterionTable')
+require('nn.FlattenTable')
+require('nn.NarrowTable')
+require('nn.MapTable')
+require('nn.ZipTable')
+require('nn.ZipTableOneToMany')
+require('nn.Collapse')
+require('nn.Convert')
+
+require('nn.Criterion')
+require('nn.MSECriterion')
+require('nn.SpatialAutoCropMSECriterion')
+require('nn.SmoothL1Criterion')
+require('nn.MarginCriterion')
+require('nn.SoftMarginCriterion')
+require('nn.AbsCriterion')
+require('nn.ClassNLLCriterion')
+require('nn.SpatialClassNLLCriterion')
+require('nn.ClassSimplexCriterion')
+require('nn.DistKLDivCriterion')
+require('nn.MultiCriterion')
+require('nn.L1HingeEmbeddingCriterion')
+require('nn.HingeEmbeddingCriterion')
+require('nn.CosineEmbeddingCriterion')
+require('nn.MarginRankingCriterion')
+require('nn.MultiMarginCriterion')
+require('nn.MultiLabelMarginCriterion')
+require('nn.MultiLabelSoftMarginCriterion')
+require('nn.L1Cost')
+require('nn.L1Penalty')
+require('nn.WeightedMSECriterion')
+require('nn.BCECriterion')
+require('nn.CrossEntropyCriterion')
+require('nn.ParallelCriterion')
+require('nn.DistanceRatioCriterion')
+require('nn.ModuleCriterion')
+
+require('nn.PixelShuffle')
+
+require('nn.StochasticGradient')
+
+require('nn.MM')
+require('nn.MV')
+
+require('nn.Jacobian')
+require('nn.SparseJacobian')
+require('nn.hessian')
+require('nn.test')
+
+
+return nn