diff options
Diffstat (limited to 'src/classifiers/bayes.c')
-rw-r--r-- | src/classifiers/bayes.c | 322 |
1 files changed, 192 insertions, 130 deletions
diff --git a/src/classifiers/bayes.c b/src/classifiers/bayes.c index a8a18f5ff..2d3fca084 100644 --- a/src/classifiers/bayes.c +++ b/src/classifiers/bayes.c @@ -25,13 +25,13 @@ /* * Bayesian classifier */ +#include "binlog.h" +#include "cfg_file.h" #include "classifiers.h" -#include "tokenizers/tokenizers.h" -#include "main.h" #include "filter.h" -#include "cfg_file.h" -#include "binlog.h" #include "lua/lua_common.h" +#include "main.h" +#include "tokenizers/tokenizers.h" #define LOCAL_PROB_DENOM 16.0 @@ -42,56 +42,68 @@ bayes_error_quark (void) } struct bayes_statfile_data { - guint64 hits; - guint64 total_hits; - double value; - struct rspamd_statfile_config *st; - stat_file_t *file; + guint64 hits; + guint64 total_hits; + double value; + struct rspamd_statfile_config *st; + stat_file_t *file; }; struct bayes_callback_data { - statfile_pool_t *pool; - struct classifier_ctx *ctx; - gboolean in_class; - time_t now; - stat_file_t *file; - struct bayes_statfile_data *statfiles; - guint32 statfiles_num; - guint64 total_spam; - guint64 total_ham; - guint64 processed_tokens; - gsize max_tokens; - double spam_probability; - double ham_probability; + statfile_pool_t *pool; + struct classifier_ctx *ctx; + gboolean in_class; + time_t now; + stat_file_t *file; + struct bayes_statfile_data *statfiles; + guint32 statfiles_num; + guint64 total_spam; + guint64 total_ham; + guint64 processed_tokens; + gsize max_tokens; + double spam_probability; + double ham_probability; }; -static gboolean +static gboolean bayes_learn_callback (gpointer key, gpointer value, gpointer data) { - token_node_t *node = key; - struct bayes_callback_data *cd = data; - gint c; - guint64 v; + token_node_t *node = key; + struct bayes_callback_data *cd = data; + gint c; + guint64 v; c = (cd->in_class) ? 1 : -1; /* Consider that not found blocks have value 1 */ - v = statfile_pool_get_block (cd->pool, cd->file, node->h1, node->h2, cd->now); + v = + statfile_pool_get_block (cd->pool, cd->file, node->h1, node->h2, + cd->now); if (v == 0 && c > 0) { - statfile_pool_set_block (cd->pool, cd->file, node->h1, node->h2, cd->now, c); - cd->processed_tokens ++; + statfile_pool_set_block (cd->pool, + cd->file, + node->h1, + node->h2, + cd->now, + c); + cd->processed_tokens++; } else if (v != 0) { if (G_LIKELY (c > 0)) { - v ++; + v++; } - else if (c < 0){ + else if (c < 0) { if (v != 0) { - v --; + v--; } } - statfile_pool_set_block (cd->pool, cd->file, node->h1, node->h2, cd->now, v); - cd->processed_tokens ++; + statfile_pool_set_block (cd->pool, + cd->file, + node->h1, + node->h2, + cd->now, + v); + cd->processed_tokens++; } if (cd->max_tokens != 0 && cd->processed_tokens > cd->max_tokens) { @@ -133,7 +145,7 @@ inv_chi_square (gdouble value, gint freedom_deg) return 0; } sum = prob; - for (i = 1; i < freedom_deg / 2; i ++) { + for (i = 1; i < freedom_deg / 2; i++) { prob *= value / (gdouble)i; sum += prob; } @@ -148,16 +160,20 @@ static gboolean bayes_classify_callback (gpointer key, gpointer value, gpointer data) { - token_node_t *node = key; - struct bayes_callback_data *cd = data; - guint i; - struct bayes_statfile_data *cur; - guint64 spam_count = 0, ham_count = 0, total_count = 0; - double spam_prob, spam_freq, ham_freq, bayes_spam_prob; + token_node_t *node = key; + struct bayes_callback_data *cd = data; + guint i; + struct bayes_statfile_data *cur; + guint64 spam_count = 0, ham_count = 0, total_count = 0; + double spam_prob, spam_freq, ham_freq, bayes_spam_prob; - for (i = 0; i < cd->statfiles_num; i ++) { + for (i = 0; i < cd->statfiles_num; i++) { cur = &cd->statfiles[i]; - cur->value = statfile_pool_get_block (cd->pool, cur->file, node->h1, node->h2, cd->now); + cur->value = statfile_pool_get_block (cd->pool, + cur->file, + node->h1, + node->h2, + cd->now); if (cur->value > 0) { cur->total_hits += cur->value; if (cur->st->is_spam) { @@ -178,7 +194,7 @@ bayes_classify_callback (gpointer key, gpointer value, gpointer data) bayes_spam_prob = (0.5 + spam_prob * total_count) / (1. + total_count); cd->spam_probability += log (bayes_spam_prob); cd->ham_probability += log (1. - bayes_spam_prob); - cd->processed_tokens ++; + cd->processed_tokens++; } if (cd->max_tokens != 0 && cd->processed_tokens > cd->max_tokens) { @@ -189,10 +205,11 @@ bayes_classify_callback (gpointer key, gpointer value, gpointer data) return FALSE; } -struct classifier_ctx* +struct classifier_ctx * bayes_init (rspamd_mempool_t *pool, struct rspamd_classifier_config *cfg) { - struct classifier_ctx *ctx = rspamd_mempool_alloc (pool, sizeof (struct classifier_ctx)); + struct classifier_ctx *ctx = + rspamd_mempool_alloc (pool, sizeof (struct classifier_ctx)); ctx->pool = pool; ctx->cfg = cfg; @@ -202,23 +219,28 @@ bayes_init (rspamd_mempool_t *pool, struct rspamd_classifier_config *cfg) } gboolean -bayes_classify (struct classifier_ctx* ctx, statfile_pool_t *pool, GTree *input, struct rspamd_task *task, lua_State *L) +bayes_classify (struct classifier_ctx * ctx, + statfile_pool_t *pool, + GTree *input, + struct rspamd_task *task, + lua_State *L) { - struct bayes_callback_data data; - gchar *value; - gint nodes, i = 0, selected_st = -1, cnt; - gint minnodes; - guint64 maxhits = 0, rev; - double final_prob, h, s; - struct rspamd_statfile_config *st; - stat_file_t *file; - GList *cur; - char *sumbuf; + struct bayes_callback_data data; + gchar *value; + gint nodes, i = 0, selected_st = -1, cnt; + gint minnodes; + guint64 maxhits = 0, rev; + double final_prob, h, s; + struct rspamd_statfile_config *st; + stat_file_t *file; + GList *cur; + char *sumbuf; g_assert (pool != NULL); g_assert (ctx != NULL); - if (ctx->cfg->opts && (value = g_hash_table_lookup (ctx->cfg->opts, "min_tokens")) != NULL) { + if (ctx->cfg->opts && + (value = g_hash_table_lookup (ctx->cfg->opts, "min_tokens")) != NULL) { minnodes = strtol (value, NULL, 10); nodes = g_tree_nnodes (input); if (nodes > FEATURE_WINDOW_SIZE) { @@ -231,7 +253,8 @@ bayes_classify (struct classifier_ctx* ctx, statfile_pool_t *pool, GTree *input, cur = call_classifier_pre_callbacks (ctx->cfg, task, FALSE, FALSE, L); if (cur) { - rspamd_mempool_add_destructor (task->task_pool, (rspamd_mempool_destruct_t)g_list_free, cur); + rspamd_mempool_add_destructor (task->task_pool, + (rspamd_mempool_destruct_t)g_list_free, cur); } else { cur = ctx->cfg->statfiles; @@ -248,7 +271,8 @@ bayes_classify (struct classifier_ctx* ctx, statfile_pool_t *pool, GTree *input, data.ham_probability = 0; data.total_ham = 0; data.total_spam = 0; - if (ctx->cfg->opts && (value = g_hash_table_lookup (ctx->cfg->opts, "max_tokens")) != NULL) { + if (ctx->cfg->opts && + (value = g_hash_table_lookup (ctx->cfg->opts, "max_tokens")) != NULL) { minnodes = rspamd_config_parse_limit (value, -1); data.max_tokens = minnodes; } @@ -260,10 +284,11 @@ bayes_classify (struct classifier_ctx* ctx, statfile_pool_t *pool, GTree *input, /* Select statfile to classify */ st = cur->data; if ((file = statfile_pool_is_open (pool, st->path)) == NULL) { - if ((file = statfile_pool_open (pool, st->path, st->size, FALSE)) == NULL) { + if ((file = + statfile_pool_open (pool, st->path, st->size, FALSE)) == NULL) { msg_warn ("cannot open %s", st->path); cur = g_list_next (cur); - data.statfiles_num --; + data.statfiles_num--; continue; } } @@ -278,7 +303,7 @@ bayes_classify (struct classifier_ctx* ctx, statfile_pool_t *pool, GTree *input, } cur = g_list_next (cur); - i ++; + i++; } cnt = i; @@ -289,17 +314,19 @@ bayes_classify (struct classifier_ctx* ctx, statfile_pool_t *pool, GTree *input, final_prob = 0; } else { - h = 1 - inv_chi_square (-2. * data.spam_probability, 2 * data.processed_tokens); - s = 1 - inv_chi_square (-2. * data.ham_probability, 2 * data.processed_tokens); + h = 1 - inv_chi_square (-2. * data.spam_probability, + 2 * data.processed_tokens); + s = 1 - inv_chi_square (-2. * data.ham_probability, + 2 * data.processed_tokens); final_prob = (s + 1 - h) / 2.; } if (data.processed_tokens > 0 && fabs (final_prob - 0.5) > 0.05) { sumbuf = rspamd_mempool_alloc (task->task_pool, 32); - for (i = 0; i < cnt; i ++) { + for (i = 0; i < cnt; i++) { if ((final_prob > 0.5 && !data.statfiles[i].st->is_spam) || - (final_prob < 0.5 && data.statfiles[i].st->is_spam)) { + (final_prob < 0.5 && data.statfiles[i].st->is_spam)) { continue; } if (data.statfiles[i].total_hits > maxhits) { @@ -308,7 +335,8 @@ bayes_classify (struct classifier_ctx* ctx, statfile_pool_t *pool, GTree *input, } } if (selected_st == -1) { - msg_err ("unexpected classifier error: cannot select desired statfile"); + msg_err ( + "unexpected classifier error: cannot select desired statfile"); } else { /* Calculate ham probability correctly */ @@ -317,7 +345,10 @@ bayes_classify (struct classifier_ctx* ctx, statfile_pool_t *pool, GTree *input, } rspamd_snprintf (sumbuf, 32, "%.2f%%", final_prob * 100.); cur = g_list_prepend (NULL, sumbuf); - insert_result (task, data.statfiles[selected_st].st->symbol, final_prob, cur); + insert_result (task, + data.statfiles[selected_st].st->symbol, + final_prob, + cur); } } @@ -327,34 +358,44 @@ bayes_classify (struct classifier_ctx* ctx, statfile_pool_t *pool, GTree *input, } gboolean -bayes_learn (struct classifier_ctx* ctx, statfile_pool_t *pool, const char *symbol, GTree *input, - gboolean in_class, double *sum, double multiplier, GError **err) +bayes_learn (struct classifier_ctx * ctx, + statfile_pool_t *pool, + const char *symbol, + GTree *input, + gboolean in_class, + double *sum, + double multiplier, + GError **err) { - struct bayes_callback_data data; - gchar *value; - gint nodes; - gint minnodes; - struct rspamd_statfile_config *st, *sel_st = NULL; - stat_file_t *to_learn; - GList *cur; + struct bayes_callback_data data; + gchar *value; + gint nodes; + gint minnodes; + struct rspamd_statfile_config *st, *sel_st = NULL; + stat_file_t *to_learn; + GList *cur; g_assert (pool != NULL); g_assert (ctx != NULL); - if (ctx->cfg->opts && (value = g_hash_table_lookup (ctx->cfg->opts, "min_tokens")) != NULL) { + if (ctx->cfg->opts && + (value = g_hash_table_lookup (ctx->cfg->opts, "min_tokens")) != NULL) { minnodes = strtol (value, NULL, 10); nodes = g_tree_nnodes (input); if (nodes > FEATURE_WINDOW_SIZE) { nodes = nodes / FEATURE_WINDOW_SIZE + FEATURE_WINDOW_SIZE; } if (nodes < minnodes) { - msg_info ("do not learn message as it has too few tokens: %d, while %d min", nodes, minnodes); + msg_info ( + "do not learn message as it has too few tokens: %d, while %d min", + nodes, + minnodes); *sum = 0; g_set_error (err, - bayes_error_quark(), /* error domain */ - 1, /* error code */ - "message contains too few tokens: %d, while min is %d", - nodes, (int)minnodes); + bayes_error_quark (), /* error domain */ + 1, /* error code */ + "message contains too few tokens: %d, while min is %d", + nodes, (int)minnodes); return FALSE; } } @@ -365,7 +406,8 @@ bayes_learn (struct classifier_ctx* ctx, statfile_pool_t *pool, const char *symb data.ctx = ctx; data.processed_tokens = 0; data.processed_tokens = 0; - if (ctx->cfg->opts && (value = g_hash_table_lookup (ctx->cfg->opts, "max_tokens")) != NULL) { + if (ctx->cfg->opts && + (value = g_hash_table_lookup (ctx->cfg->opts, "max_tokens")) != NULL) { minnodes = rspamd_config_parse_limit (value, -1); data.max_tokens = minnodes; } @@ -384,31 +426,36 @@ bayes_learn (struct classifier_ctx* ctx, statfile_pool_t *pool, const char *symb } if (sel_st == NULL) { g_set_error (err, - bayes_error_quark(), /* error domain */ - 1, /* error code */ - "cannot find statfile for symbol: %s", - symbol); + bayes_error_quark (), /* error domain */ + 1, /* error code */ + "cannot find statfile for symbol: %s", + symbol); return FALSE; } if ((to_learn = statfile_pool_is_open (pool, sel_st->path)) == NULL) { - if ((to_learn = statfile_pool_open (pool, sel_st->path, sel_st->size, FALSE)) == NULL) { + if ((to_learn = + statfile_pool_open (pool, sel_st->path, sel_st->size, + FALSE)) == NULL) { msg_warn ("cannot open %s", sel_st->path); if (statfile_pool_create (pool, sel_st->path, sel_st->size) == -1) { msg_err ("cannot create statfile %s", sel_st->path); g_set_error (err, - bayes_error_quark(), /* error domain */ - 1, /* error code */ - "cannot create statfile: %s", - sel_st->path); + bayes_error_quark (), /* error domain */ + 1, /* error code */ + "cannot create statfile: %s", + sel_st->path); return FALSE; } - if ((to_learn = statfile_pool_open (pool, sel_st->path, sel_st->size, FALSE)) == NULL) { + if ((to_learn = + statfile_pool_open (pool, sel_st->path, sel_st->size, + FALSE)) == NULL) { g_set_error (err, - bayes_error_quark(), /* error domain */ - 1, /* error code */ - "cannot open statfile %s after creation", - sel_st->path); - msg_err ("cannot open statfile %s after creation", sel_st->path); + bayes_error_quark (), /* error domain */ + 1, /* error code */ + "cannot open statfile %s after creation", + sel_st->path); + msg_err ("cannot open statfile %s after creation", + sel_st->path); return FALSE; } } @@ -427,22 +474,28 @@ bayes_learn (struct classifier_ctx* ctx, statfile_pool_t *pool, const char *symb } gboolean -bayes_learn_spam (struct classifier_ctx* ctx, statfile_pool_t *pool, - GTree *input, struct rspamd_task *task, gboolean is_spam, lua_State *L, GError **err) +bayes_learn_spam (struct classifier_ctx * ctx, + statfile_pool_t *pool, + GTree *input, + struct rspamd_task *task, + gboolean is_spam, + lua_State *L, + GError **err) { - struct bayes_callback_data data; - gchar *value; - gint nodes; - gint minnodes; - struct rspamd_statfile_config *st; - stat_file_t *file; - GList *cur; - gboolean skip_labels; + struct bayes_callback_data data; + gchar *value; + gint nodes; + gint minnodes; + struct rspamd_statfile_config *st; + stat_file_t *file; + GList *cur; + gboolean skip_labels; g_assert (pool != NULL); g_assert (ctx != NULL); - if (ctx->cfg->opts && (value = g_hash_table_lookup (ctx->cfg->opts, "min_tokens")) != NULL) { + if (ctx->cfg->opts && + (value = g_hash_table_lookup (ctx->cfg->opts, "min_tokens")) != NULL) { minnodes = strtol (value, NULL, 10); nodes = g_tree_nnodes (input); if (nodes > FEATURE_WINDOW_SIZE) { @@ -450,10 +503,10 @@ bayes_learn_spam (struct classifier_ctx* ctx, statfile_pool_t *pool, } if (nodes < minnodes) { g_set_error (err, - bayes_error_quark(), /* error domain */ - 1, /* error code */ - "message contains too few tokens: %d, while min is %d", - nodes, (int)minnodes); + bayes_error_quark (), /* error domain */ + 1, /* error code */ + "message contains too few tokens: %d, while min is %d", + nodes, (int)minnodes); return FALSE; } } @@ -461,7 +514,8 @@ bayes_learn_spam (struct classifier_ctx* ctx, statfile_pool_t *pool, cur = call_classifier_pre_callbacks (ctx->cfg, task, TRUE, is_spam, L); if (cur) { skip_labels = FALSE; - rspamd_mempool_add_destructor (task->task_pool, (rspamd_mempool_destruct_t)g_list_free, cur); + rspamd_mempool_add_destructor (task->task_pool, + (rspamd_mempool_destruct_t)g_list_free, cur); } else { /* Do not try to learn specific statfiles if pre callback returned nil */ @@ -475,7 +529,8 @@ bayes_learn_spam (struct classifier_ctx* ctx, statfile_pool_t *pool, data.in_class = TRUE; data.processed_tokens = 0; - if (ctx->cfg->opts && (value = g_hash_table_lookup (ctx->cfg->opts, "max_tokens")) != NULL) { + if (ctx->cfg->opts && + (value = g_hash_table_lookup (ctx->cfg->opts, "max_tokens")) != NULL) { minnodes = rspamd_config_parse_limit (value, -1); data.max_tokens = minnodes; } @@ -491,24 +546,28 @@ bayes_learn_spam (struct classifier_ctx* ctx, statfile_pool_t *pool, continue; } if ((file = statfile_pool_is_open (pool, st->path)) == NULL) { - if ((file = statfile_pool_open (pool, st->path, st->size, FALSE)) == NULL) { + if ((file = + statfile_pool_open (pool, st->path, st->size, FALSE)) == NULL) { msg_warn ("cannot open %s", st->path); if (statfile_pool_create (pool, st->path, st->size) == -1) { msg_err ("cannot create statfile %s", st->path); g_set_error (err, - bayes_error_quark(), /* error domain */ - 1, /* error code */ - "cannot create statfile: %s", - st->path); + bayes_error_quark (), /* error domain */ + 1, /* error code */ + "cannot create statfile: %s", + st->path); return FALSE; } - if ((file = statfile_pool_open (pool, st->path, st->size, FALSE)) == NULL) { + if ((file = + statfile_pool_open (pool, st->path, st->size, + FALSE)) == NULL) { g_set_error (err, - bayes_error_quark(), /* error domain */ - 1, /* error code */ - "cannot open statfile %s after creation", - st->path); - msg_err ("cannot open statfile %s after creation", st->path); + bayes_error_quark (), /* error domain */ + 1, /* error code */ + "cannot open statfile %s after creation", + st->path); + msg_err ("cannot open statfile %s after creation", + st->path); return FALSE; } } @@ -528,7 +587,10 @@ bayes_learn_spam (struct classifier_ctx* ctx, statfile_pool_t *pool, } GList * -bayes_weights (struct classifier_ctx* ctx, statfile_pool_t *pool, GTree *input, struct rspamd_task *task) +bayes_weights (struct classifier_ctx * ctx, + statfile_pool_t *pool, + GTree *input, + struct rspamd_task *task) { /* This function is unimplemented with new normalizer */ return NULL; |