diff options
Diffstat (limited to 'src/lua/lua_fann.c')
-rw-r--r-- | src/lua/lua_fann.c | 1032 |
1 files changed, 0 insertions, 1032 deletions
diff --git a/src/lua/lua_fann.c b/src/lua/lua_fann.c deleted file mode 100644 index 7eb493740..000000000 --- a/src/lua/lua_fann.c +++ /dev/null @@ -1,1032 +0,0 @@ -/*- - * Copyright 2016 Vsevolod Stakhov - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ -#include "lua_common.h" - -#ifdef WITH_FANN -#include <fann.h> -#endif - -#include "unix-std.h" - -/*** - * @module rspamd_fann - * This module enables [fann](http://libfann.github.io) interaction in rspamd - * Please note, that this module works merely if you have `ENABLE_FANN=ON` option - * definition when building rspamd - */ - -/* - * Fann functions - */ -LUA_FUNCTION_DEF (fann, is_enabled); -LUA_FUNCTION_DEF (fann, create); -LUA_FUNCTION_DEF (fann, create_full); -LUA_FUNCTION_DEF (fann, load_file); -LUA_FUNCTION_DEF (fann, load_data); - -/* - * Fann methods - */ -LUA_FUNCTION_DEF (fann, train); -LUA_FUNCTION_DEF (fann, train_threaded); -LUA_FUNCTION_DEF (fann, test); -LUA_FUNCTION_DEF (fann, save); -LUA_FUNCTION_DEF (fann, data); -LUA_FUNCTION_DEF (fann, get_inputs); -LUA_FUNCTION_DEF (fann, get_outputs); -LUA_FUNCTION_DEF (fann, get_layers); -LUA_FUNCTION_DEF (fann, get_mse); -LUA_FUNCTION_DEF (fann, dtor); - -static const struct luaL_reg fannlib_f[] = { - LUA_INTERFACE_DEF (fann, is_enabled), - LUA_INTERFACE_DEF (fann, create), - LUA_INTERFACE_DEF (fann, create_full), - LUA_INTERFACE_DEF (fann, load_file), - {"load", lua_fann_load_file}, - LUA_INTERFACE_DEF (fann, load_data), - {NULL, NULL} -}; - -static const struct luaL_reg fannlib_m[] = { - LUA_INTERFACE_DEF (fann, train), - LUA_INTERFACE_DEF (fann, train_threaded), - LUA_INTERFACE_DEF (fann, test), - LUA_INTERFACE_DEF (fann, save), - LUA_INTERFACE_DEF (fann, data), - LUA_INTERFACE_DEF (fann, get_inputs), - LUA_INTERFACE_DEF (fann, get_outputs), - LUA_INTERFACE_DEF (fann, get_layers), - LUA_INTERFACE_DEF (fann, get_mse), - {"__gc", lua_fann_dtor}, - {"__tostring", rspamd_lua_class_tostring}, - {NULL, NULL} -}; - -#ifdef WITH_FANN -struct fann * -rspamd_lua_check_fann (lua_State *L, gint pos) -{ - void *ud = rspamd_lua_check_udata (L, pos, "rspamd{fann}"); - luaL_argcheck (L, ud != NULL, pos, "'fann' expected"); - return ud ? *((struct fann **) ud) : NULL; -} -#endif - -/*** - * @function rspamd_fann.is_enabled() - * Checks if fann is enabled for this rspamd build - * @return {boolean} true if fann is enabled - */ -static gint -lua_fann_is_enabled (lua_State *L) -{ -#ifdef WITH_FANN - lua_pushboolean (L, true); -#else - lua_pushboolean (L, false); -#endif - return 1; -} - -/*** - * @function rspamd_fann.create(nlayers, [layer1, ... layern]) - * Creates new neural network with `nlayers` that contains `layer1`...`layern` - * neurons in each layer - * @param {number} nlayers number of layers - * @param {number} layerI number of neurons in each layer - * @return {fann} fann object - */ -static gint -lua_fann_create (lua_State *L) -{ -#ifndef WITH_FANN - return 0; -#else - struct fann *f, **pfann; - guint nlayers, *layers, i; - - nlayers = luaL_checknumber (L, 1); - - if (nlayers > 0) { - layers = g_malloc (nlayers * sizeof (layers[0])); - - if (lua_type (L, 2) == LUA_TNUMBER) { - for (i = 0; i < nlayers; i ++) { - layers[i] = luaL_checknumber (L, i + 2); - } - } - else if (lua_type (L, 2) == LUA_TTABLE) { - for (i = 0; i < nlayers; i ++) { - lua_rawgeti (L, 2, i + 1); - layers[i] = luaL_checknumber (L, -1); - lua_pop (L, 1); - } - } - - f = fann_create_standard_array (nlayers, layers); - fann_set_activation_function_hidden (f, FANN_SIGMOID_SYMMETRIC); - fann_set_activation_function_output (f, FANN_SIGMOID_SYMMETRIC); - fann_set_training_algorithm (f, FANN_TRAIN_INCREMENTAL); - fann_randomize_weights (f, 0, 1); - - if (f != NULL) { - pfann = lua_newuserdata (L, sizeof (gpointer)); - *pfann = f; - rspamd_lua_setclass (L, "rspamd{fann}", -1); - } - else { - lua_pushnil (L); - } - - g_free (layers); - } - else { - lua_pushnil (L); - } - - return 1; -#endif -} - -#ifdef WITH_FANN -static enum fann_activationfunc_enum -string_to_activation_func (const gchar *str) -{ - if (str == NULL) { - return FANN_SIGMOID_SYMMETRIC; - } - if (strcmp (str, "sigmoid") == 0) { - return FANN_SIGMOID; - } - else if (strcmp (str, "elliot") == 0) { - return FANN_ELLIOT; - } - else if (strcmp (str, "elliot_symmetric") == 0) { - return FANN_ELLIOT_SYMMETRIC; - } - else if (strcmp (str, "linear") == 0) { - return FANN_LINEAR; - } - - return FANN_SIGMOID_SYMMETRIC; -} - -static enum fann_train_enum -string_to_learn_alg (const gchar *str) -{ - if (str == NULL) { - return FANN_TRAIN_INCREMENTAL; - } - if (strcmp (str, "rprop") == 0) { - return FANN_TRAIN_RPROP; - } - else if (strcmp (str, "qprop") == 0) { - return FANN_TRAIN_QUICKPROP; - } - else if (strcmp (str, "batch") == 0) { - return FANN_TRAIN_BATCH; - } - - return FANN_TRAIN_INCREMENTAL; -} -/* - * This is needed since libfann provides no versioning macros... - */ -static struct fann_train_data * -rspamd_fann_create_train (guint num_data, guint num_input, guint num_output) -{ - struct fann_train_data *t; - fann_type *inp, *outp; - guint i; - - g_assert (num_data > 0 && num_input > 0 && num_output > 0); - - t = calloc (1, sizeof (*t)); - g_assert (t != NULL); - - t->num_data = num_data; - t->num_input = num_input; - t->num_output = num_output; - - t->input = calloc (num_data, sizeof (fann_type *)); - g_assert (t->input != NULL); - - t->output = calloc (num_data, sizeof (fann_type *)); - g_assert (t->output != NULL); - - inp = calloc (num_data * num_input, sizeof (fann_type)); - g_assert (inp != NULL); - - outp = calloc (num_data * num_output, sizeof (fann_type)); - g_assert (outp != NULL); - - for (i = 0; i < num_data; i ++) { - t->input[i] = inp; - inp += num_input; - t->output[i] = outp; - outp += num_output; - } - - return t; -} - - -#endif - -/*** - * @function rspamd_fann.create_full(params) - * Creates new neural network with parameters: - * - `layers` {table/numbers}: table of layers in form: {N1, N2, N3 ... Nn} where N is number of neurons in a layer - * - `activation_hidden` {string}: activation function type for hidden layers (`tanh` by default) - * - `activation_output` {string}: activation function type for output layer (`tanh` by default) - * - `sparsed` {float}: create sparsed ANN, where number is a coefficient for sparsing - * - `learn` {string}: learning algorithm (quickprop, rprop or incremental) - * - `randomize` {boolean}: randomize weights (true by default) - * @return {fann} fann object - */ -static gint -lua_fann_create_full (lua_State *L) -{ -#ifndef WITH_FANN - return 0; -#else - struct fann *f, **pfann; - guint nlayers, *layers, i; - const gchar *activation_hidden = NULL, *activation_output, *learn_alg = NULL; - gdouble sparsed = 0.0; - gboolean randomize_ann = TRUE; - GError *err = NULL; - - if (lua_type (L, 1) == LUA_TTABLE) { - lua_pushstring (L, "layers"); - lua_gettable (L, 1); - - if (lua_type (L, -1) != LUA_TTABLE) { - return luaL_error (L, "bad layers attribute"); - } - - nlayers = rspamd_lua_table_size (L, -1); - if (nlayers < 2) { - return luaL_error (L, "bad layers attribute"); - } - - layers = g_new0 (guint, nlayers); - - for (i = 0; i < nlayers; i ++) { - lua_rawgeti (L, -1, i + 1); - layers[i] = luaL_checknumber (L, -1); - lua_pop (L, 1); - } - - lua_pop (L, 1); /* Table */ - - if (!rspamd_lua_parse_table_arguments (L, 1, &err, - "sparsed=N;randomize=B;learn=S;activation_hidden=S;activation_output=S", - &sparsed, &randomize_ann, &learn_alg, &activation_hidden, &activation_output)) { - g_free (layers); - - if (err) { - gint r; - - r = luaL_error (L, "invalid arguments: %s", err->message); - g_error_free (err); - return r; - } - else { - return luaL_error (L, "invalid arguments"); - } - } - - if (sparsed != 0.0) { - f = fann_create_standard_array (nlayers, layers); - } - else { - f = fann_create_sparse_array (sparsed, nlayers, layers); - } - - if (f != NULL) { - pfann = lua_newuserdata (L, sizeof (gpointer)); - *pfann = f; - rspamd_lua_setclass (L, "rspamd{fann}", -1); - } - else { - g_free (layers); - return luaL_error (L, "cannot create fann"); - } - - fann_set_activation_function_hidden (f, - string_to_activation_func (activation_hidden)); - fann_set_activation_function_output (f, - string_to_activation_func (activation_output)); - fann_set_training_algorithm (f, string_to_learn_alg (learn_alg)); - - if (randomize_ann) { - fann_randomize_weights (f, 0, 1); - } - - g_free (layers); - } - else { - return luaL_error (L, "bad arguments"); - } - - return 1; -#endif -} - -/*** - * @function rspamd_fann.load(file) - * Loads neural network from the file - * @param {string} file filename where fann is stored - * @return {fann} fann object - */ -static gint -lua_fann_load_file (lua_State *L) -{ -#ifndef WITH_FANN - return 0; -#else - struct fann *f, **pfann; - const gchar *fname; - - fname = luaL_checkstring (L, 1); - - if (fname != NULL) { - f = fann_create_from_file (fname); - - if (f != NULL) { - pfann = lua_newuserdata (L, sizeof (gpointer)); - *pfann = f; - rspamd_lua_setclass (L, "rspamd{fann}", -1); - } - else { - lua_pushnil (L); - } - } - else { - lua_pushnil (L); - } - - return 1; -#endif -} - -/*** - * @function rspamd_fann.load_data(data) - * Loads neural network from the data - * @param {string} file filename where fann is stored - * @return {fann} fann object - */ -static gint -lua_fann_load_data (lua_State *L) -{ -#ifndef WITH_FANN - return 0; -#else - struct fann *f, **pfann; - gint fd; - struct rspamd_lua_text *t; - gchar fpath[PATH_MAX]; - - if (lua_type (L, 1) == LUA_TUSERDATA) { - t = lua_check_text (L, 1); - - if (!t) { - return luaL_error (L, "text required"); - } - } - else { - t = g_alloca (sizeof (*t)); - t->start = lua_tolstring (L, 1, (gsize *)&t->len); - t->flags = 0; - } - - /* We need to save data to file because of libfann stupidity */ - rspamd_strlcpy (fpath, "/tmp/rspamd-fannXXXXXXXXXX", sizeof (fpath)); - fd = mkstemp (fpath); - - if (fd == -1) { - msg_warn ("cannot create tempfile: %s", strerror (errno)); - lua_pushnil (L); - } - else { - if (write (fd, t->start, t->len) == -1) { - msg_warn ("cannot write tempfile: %s", strerror (errno)); - lua_pushnil (L); - unlink (fpath); - close (fd); - - return 1; - } - - f = fann_create_from_file (fpath); - unlink (fpath); - close (fd); - - if (f != NULL) { - pfann = lua_newuserdata (L, sizeof (gpointer)); - *pfann = f; - rspamd_lua_setclass (L, "rspamd{fann}", -1); - } - else { - lua_pushnil (L); - } - } - - return 1; -#endif -} - -/*** - * @function rspamd_fann:data() - * Returns serialized neural network - * @return {rspamd_text} fann data - */ -static gint -lua_fann_data (lua_State *L) -{ -#ifndef WITH_FANN - return 0; -#else - struct fann *f = rspamd_lua_check_fann (L, 1); - gint fd; - struct rspamd_lua_text *res; - gchar fpath[PATH_MAX]; - gpointer map; - gsize sz; - - if (f == NULL) { - return luaL_error (L, "invalid arguments"); - } - - /* We need to save data to file because of libfann stupidity */ - rspamd_strlcpy (fpath, "/tmp/rspamd-fannXXXXXXXXXX", sizeof (fpath)); - fd = mkstemp (fpath); - - if (fd == -1) { - msg_warn ("cannot create tempfile: %s", strerror (errno)); - lua_pushnil (L); - } - else { - if (fann_save (f, fpath) == -1) { - msg_warn ("cannot write tempfile: %s", strerror (errno)); - lua_pushnil (L); - unlink (fpath); - close (fd); - - return 1; - } - - - (void)lseek (fd, 0, SEEK_SET); - map = rspamd_file_xmap (fpath, PROT_READ, &sz, TRUE); - unlink (fpath); - close (fd); - - if (map != NULL) { - res = lua_newuserdata (L, sizeof (*res)); - res->len = sz; - res->start = map; - res->flags = RSPAMD_TEXT_FLAG_OWN|RSPAMD_TEXT_FLAG_MMAPED; - rspamd_lua_setclass (L, "rspamd{text}", -1); - } - else { - lua_pushnil (L); - } - - } - - return 1; -#endif -} - - -/** - * @method rspamd_fann:train(inputs, outputs) - * Trains neural network with samples. Inputs and outputs should be tables of - * equal size, each row in table should be N inputs and M outputs, e.g. - * {0, 1, 1} -> {0} - * @param {table} inputs input samples - * @param {table} outputs output samples - * @return {number} number of samples learned - */ -static gint -lua_fann_train (lua_State *L) -{ -#ifndef WITH_FANN - return 0; -#else - struct fann *f = rspamd_lua_check_fann (L, 1); - guint ninputs, noutputs, j; - fann_type *cur_input, *cur_output; - gboolean ret = FALSE; - - if (f != NULL) { - /* First check sanity, call for table.getn for that */ - ninputs = rspamd_lua_table_size (L, 2); - noutputs = rspamd_lua_table_size (L, 3); - - if (ninputs != fann_get_num_input (f) || - noutputs != fann_get_num_output (f)) { - msg_err ("bad number of inputs(%d, expected %d) and " - "output(%d, expected %d) args for train", - ninputs, fann_get_num_input (f), - noutputs, fann_get_num_output (f)); - } - else { - cur_input = g_malloc (ninputs * sizeof (fann_type)); - - for (j = 0; j < ninputs; j ++) { - lua_rawgeti (L, 2, j + 1); - cur_input[j] = lua_tonumber (L, -1); - lua_pop (L, 1); - } - - cur_output = g_malloc (noutputs * sizeof (fann_type)); - - for (j = 0; j < noutputs; j++) { - lua_rawgeti (L, 3, j + 1); - cur_output[j] = lua_tonumber (L, -1); - lua_pop (L, 1); - } - - fann_train (f, cur_input, cur_output); - g_free (cur_input); - g_free (cur_output); - - ret = TRUE; - } - } - - lua_pushboolean (L, ret); - - return 1; -#endif -} - -#ifdef WITH_FANN -struct lua_fann_train_cbdata { - lua_State *L; - gint pair[2]; - struct fann_train_data *train; - struct fann *f; - gint cbref; - gdouble desired_mse; - guint max_epochs; - GThread *t; - struct event io; -}; - -struct lua_fann_train_reply { - gint errcode; - float mse; - gchar errmsg[128]; -}; - -static void -lua_fann_push_train_result (struct lua_fann_train_cbdata *cbdata, - gint errcode, float mse, const gchar *errmsg) -{ - lua_rawgeti (cbdata->L, LUA_REGISTRYINDEX, cbdata->cbref); - lua_pushnumber (cbdata->L, errcode); - lua_pushstring (cbdata->L, errmsg); - lua_pushnumber (cbdata->L, mse); - - if (lua_pcall (cbdata->L, 3, 0, 0) != 0) { - msg_err ("call to train callback failed: %s", lua_tostring (cbdata->L, -1)); - lua_pop (cbdata->L, 1); - } -} - -static void -lua_fann_thread_notify (gint fd, short what, gpointer ud) -{ - struct lua_fann_train_cbdata *cbdata = ud; - struct lua_fann_train_reply rep; - - if (read (cbdata->pair[0], &rep, sizeof (rep)) == -1) { - if (errno == EAGAIN || errno == EINTR) { - event_add (&cbdata->io, NULL); - return; - } - - lua_fann_push_train_result (cbdata, errno, 0.0, strerror (errno)); - } - else { - lua_fann_push_train_result (cbdata, rep.errcode, rep.mse, rep.errmsg); - } - - g_assert (write (cbdata->pair[0], "", 1) == 1); - g_thread_join (cbdata->t); - close (cbdata->pair[0]); - close (cbdata->pair[1]); - - fann_destroy_train (cbdata->train); - luaL_unref (cbdata->L, LUA_REGISTRYINDEX, cbdata->cbref); - g_free (cbdata); -} - -static void * -lua_fann_train_thread (void *ud) -{ - struct lua_fann_train_cbdata *cbdata = ud; - struct lua_fann_train_reply rep; - gchar repbuf[1]; - - msg_info ("start learning ANN, %d epochs are possible", - cbdata->max_epochs); - rspamd_socket_blocking (cbdata->pair[1]); - fann_train_on_data (cbdata->f, cbdata->train, cbdata->max_epochs, 0, - cbdata->desired_mse); - rep.errcode = 0; - rspamd_strlcpy (rep.errmsg, "OK", sizeof (rep.errmsg)); - rep.mse = fann_get_MSE (cbdata->f); - - if (write (cbdata->pair[1], &rep, sizeof (rep)) == -1) { - msg_err ("cannot write to socketpair: %s", strerror (errno)); - - return NULL; - } - - if (read (cbdata->pair[1], repbuf, sizeof (repbuf)) == -1) { - msg_err ("cannot read from socketpair: %s", strerror (errno)); - - return NULL; - } - - return NULL; -} -#endif -/** - * @method rspamd_fann:train_threaded(inputs, outputs, callback, event_base, {params}) - * Trains neural network with batch of samples. Inputs and outputs should be tables of - * equal size, each row in table should be N inputs and M outputs, e.g. - * {{0, 1, 1}, ...} -> {{0}, {1} ...} - * @param {table} inputs input samples - * @param {table} outputs output samples - * @param {callback} function that is called when train is completed - */ -static gint -lua_fann_train_threaded (lua_State *L) -{ -#ifndef WITH_FANN - return 0; -#else - struct fann *f = rspamd_lua_check_fann (L, 1); - guint ninputs, noutputs, ndata, i, j; - struct lua_fann_train_cbdata *cbdata; - struct ev_loop *ev_base = lua_check_ev_base (L, 5); - GError *err = NULL; - const guint max_epochs_default = 1000; - const gdouble desired_mse_default = 0.0001; - - if (f != NULL && lua_type (L, 2) == LUA_TTABLE && - lua_type (L, 3) == LUA_TTABLE && lua_type (L, 4) == LUA_TFUNCTION && - ev_base != NULL) { - /* First check sanity, call for table.getn for that */ - ndata = rspamd_lua_table_size (L, 2); - ninputs = fann_get_num_input (f); - noutputs = fann_get_num_output (f); - cbdata = g_malloc0 (sizeof (*cbdata)); - cbdata->L = L; - cbdata->f = f; - cbdata->train = rspamd_fann_create_train (ndata, ninputs, noutputs); - lua_pushvalue (L, 4); - cbdata->cbref = luaL_ref (L, LUA_REGISTRYINDEX); - - if (rspamd_socketpair (cbdata->pair, 0) == -1) { - msg_err ("cannot open socketpair: %s", strerror (errno)); - cbdata->pair[0] = -1; - cbdata->pair[1] = -1; - goto err; - } - - for (i = 0; i < ndata; i ++) { - lua_rawgeti (L, 2, i + 1); - - if (rspamd_lua_table_size (L, -1) != ninputs) { - msg_err ("invalid number of inputs: %d, %d expected", - rspamd_lua_table_size (L, -1), ninputs); - goto err; - } - - for (j = 0; j < ninputs; j ++) { - lua_rawgeti (L, -1, j + 1); - cbdata->train->input[i][j] = lua_tonumber (L, -1); - lua_pop (L, 1); - } - - lua_pop (L, 1); - lua_rawgeti (L, 3, i + 1); - - if (rspamd_lua_table_size (L, -1) != noutputs) { - msg_err ("invalid number of outputs: %d, %d expected", - rspamd_lua_table_size (L, -1), noutputs); - goto err; - } - - for (j = 0; j < noutputs; j++) { - lua_rawgeti (L, -1, j + 1); - cbdata->train->output[i][j] = lua_tonumber (L, -1); - lua_pop (L, 1); - } - } - - cbdata->max_epochs = max_epochs_default; - cbdata->desired_mse = desired_mse_default; - - if (lua_type (L, 5) == LUA_TTABLE) { - rspamd_lua_parse_table_arguments (L, 5, NULL, - "max_epochs=I;desired_mse=N", - &cbdata->max_epochs, &cbdata->desired_mse); - } - - /* Now we can call training in a separate thread */ - rspamd_socket_nonblocking (cbdata->pair[0]); - event_set (&cbdata->io, cbdata->pair[0], EV_READ, lua_fann_thread_notify, - cbdata); - event_base_set (ev_base, &cbdata->io); - /* TODO: add timeout */ - event_add (&cbdata->io, NULL); - cbdata->t = rspamd_create_thread ("fann train", lua_fann_train_thread, - cbdata, &err); - - if (cbdata->t == NULL) { - msg_err ("cannot create training thread: %e", err); - - if (err) { - g_error_free (err); - } - - goto err; - } - } - else { - return luaL_error (L, "invalid arguments"); - } - - return 0; - -err: - if (cbdata->pair[0] != -1) { - close (cbdata->pair[0]); - } - if (cbdata->pair[1] != -1) { - close (cbdata->pair[1]); - } - - fann_destroy_train (cbdata->train); - luaL_unref (L, LUA_REGISTRYINDEX, cbdata->cbref); - g_free (cbdata); - return luaL_error (L, "invalid arguments"); -#endif -} - -/** - * @method rspamd_fann:test(inputs) - * Tests neural network with samples. Inputs is a single sample of input data. - * The function returns table of results, e.g.: - * {0, 1, 1} -> {0} - * @param {table} inputs input sample - * @return {table/number} outputs values - */ -static gint -lua_fann_test (lua_State *L) -{ -#ifndef WITH_FANN - return 0; -#else - struct fann *f = rspamd_lua_check_fann (L, 1); - guint ninputs, noutputs, i, tbl_idx = 2; - fann_type *cur_input, *cur_output; - - if (f != NULL) { - /* First check sanity, call for table.getn for that */ - if (lua_isnumber (L, 2)) { - ninputs = lua_tonumber (L, 2); - tbl_idx = 3; - } - else { - ninputs = rspamd_lua_table_size (L, 2); - - if (ninputs == 0) { - msg_err ("empty inputs number"); - lua_pushnil (L); - - return 1; - } - } - - cur_input = g_malloc0 (ninputs * sizeof (fann_type)); - - for (i = 0; i < ninputs; i++) { - lua_rawgeti (L, tbl_idx, i + 1); - cur_input[i] = lua_tonumber (L, -1); - lua_pop (L, 1); - } - - cur_output = fann_run (f, cur_input); - noutputs = fann_get_num_output (f); - lua_createtable (L, noutputs, 0); - - for (i = 0; i < noutputs; i ++) { - lua_pushnumber (L, cur_output[i]); - lua_rawseti (L, -2, i + 1); - } - - g_free (cur_input); - } - else { - lua_pushnil (L); - } - - return 1; -#endif -} - -/*** - * @method rspamd_fann:get_inputs() - * Returns number of inputs for neural network - * @return {number} number of inputs - */ -static gint -lua_fann_get_inputs (lua_State *L) -{ -#ifndef WITH_FANN - return 0; -#else - struct fann *f = rspamd_lua_check_fann (L, 1); - - if (f != NULL) { - lua_pushnumber (L, fann_get_num_input (f)); - } - else { - lua_pushnil (L); - } - - return 1; -#endif -} - -/*** - * @method rspamd_fann:get_outputs() - * Returns number of outputs for neural network - * @return {number} number of outputs - */ -static gint -lua_fann_get_outputs (lua_State *L) -{ -#ifndef WITH_FANN - return 0; -#else - struct fann *f = rspamd_lua_check_fann (L, 1); - - if (f != NULL) { - lua_pushnumber (L, fann_get_num_output (f)); - } - else { - lua_pushnil (L); - } - - return 1; -#endif -} - -/*** - * @method rspamd_fann:get_mse() - * Returns mean square error for ANN - * @return {number} MSE value - */ -static gint -lua_fann_get_mse (lua_State *L) -{ -#ifndef WITH_FANN - return 0; -#else - struct fann *f = rspamd_lua_check_fann (L, 1); - - if (f != NULL) { - lua_pushnumber (L, fann_get_MSE (f)); - } - else { - lua_pushnil (L); - } - - return 1; -#endif -} - -/*** - * @method rspamd_fann:get_layers() - * Returns array of neurons count for each layer - * @return {table/number} table with number ofr neurons in each layer - */ -static gint -lua_fann_get_layers (lua_State *L) -{ -#ifndef WITH_FANN - return 0; -#else - struct fann *f = rspamd_lua_check_fann (L, 1); - guint nlayers, i, *layers; - - if (f != NULL) { - nlayers = fann_get_num_layers (f); - layers = g_new (guint, nlayers); - fann_get_layer_array (f, layers); - lua_createtable (L, nlayers, 0); - - for (i = 0; i < nlayers; i ++) { - lua_pushnumber (L, layers[i]); - lua_rawseti (L, -2, i + 1); - } - - g_free (layers); - } - else { - lua_pushnil (L); - } - - return 1; -#endif -} - -/*** - * @method rspamd_fann:save(fname) - * Save fann to file named 'fname' - * @param {string} fname filename to save fann into - * @return {boolean} true if ann has been saved - */ -static gint -lua_fann_save (lua_State *L) -{ -#ifndef WITH_FANN - return 0; -#else - struct fann *f = rspamd_lua_check_fann (L, 1); - const gchar *fname = luaL_checkstring (L, 2); - - if (f != NULL && fname != NULL) { - if (fann_save (f, fname) == 0) { - lua_pushboolean (L, true); - } - else { - msg_err ("cannot save ANN to %s: %s", fname, strerror (errno)); - lua_pushboolean (L, false); - } - } - else { - lua_pushnil (L); - } - - return 1; -#endif -} - -static gint -lua_fann_dtor (lua_State *L) -{ -#ifndef WITH_FANN - return 0; -#else - struct fann *f = rspamd_lua_check_fann (L, 1); - - if (f) { - fann_destroy (f); - } - - return 0; -#endif -} - -static gint -lua_load_fann (lua_State * L) -{ - lua_newtable (L); - luaL_register (L, NULL, fannlib_f); - - return 1; -} - -void -luaopen_fann (lua_State * L) -{ - rspamd_lua_new_class (L, "rspamd{fann}", fannlib_m); - lua_pop (L, 1); - - rspamd_lua_add_preload (L, "rspamd_fann", lua_load_fann); -} |