From 969902f04569ab12e69e0d57ef1f6e9f0c42f855 Mon Sep 17 00:00:00 2001
From: Vsevolod Stakhov <vsevolod@rspamd.com>
Date: Sun, 17 Jul 2022 16:43:47 +0100
Subject: [Rework] Use another version of hash table from the same author

---
 contrib/robin-hood/LICENSE      |   21 -
 contrib/robin-hood/robin_hood.h | 2430 ---------------------------------------
 2 files changed, 2451 deletions(-)
 delete mode 100644 contrib/robin-hood/LICENSE
 delete mode 100644 contrib/robin-hood/robin_hood.h

(limited to 'contrib/robin-hood')

diff --git a/contrib/robin-hood/LICENSE b/contrib/robin-hood/LICENSE
deleted file mode 100644
index e9a58ad65..000000000
--- a/contrib/robin-hood/LICENSE
+++ /dev/null
@@ -1,21 +0,0 @@
-MIT License
-
-Copyright (c) 2018-2019 Martin Ankerl
-
-Permission is hereby granted, free of charge, to any person obtaining a copy
-of this software and associated documentation files (the "Software"), to deal
-in the Software without restriction, including without limitation the rights
-to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all
-copies or substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-SOFTWARE.
diff --git a/contrib/robin-hood/robin_hood.h b/contrib/robin-hood/robin_hood.h
deleted file mode 100644
index 9141848d7..000000000
--- a/contrib/robin-hood/robin_hood.h
+++ /dev/null
@@ -1,2430 +0,0 @@
-//                 ______  _____                 ______                _________
-//  ______________ ___  /_ ___(_)_______         ___  /_ ______ ______ ______  /
-//  __  ___/_  __ \__  __ \__  / __  __ \        __  __ \_  __ \_  __ \_  __  /
-//  _  /    / /_/ /_  /_/ /_  /  _  / / /        _  / / // /_/ // /_/ // /_/ /
-//  /_/     \____/ /_.___/ /_/   /_/ /_/ ________/_/ /_/ \____/ \____/ \__,_/
-//                                      _/_____/
-//
-// Fast & memory efficient hashtable based on robin hood hashing for C++11/14/17/20
-// https://github.com/martinus/robin-hood-hashing
-//
-// Licensed under the MIT License <http://opensource.org/licenses/MIT>.
-// SPDX-License-Identifier: MIT
-// Copyright (c) 2018-2020 Martin Ankerl <http://martin.ankerl.com>
-//
-// Permission is hereby granted, free of charge, to any person obtaining a copy
-// of this software and associated documentation files (the "Software"), to deal
-// in the Software without restriction, including without limitation the rights
-// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-// copies of the Software, and to permit persons to whom the Software is
-// furnished to do so, subject to the following conditions:
-//
-// The above copyright notice and this permission notice shall be included in all
-// copies or substantial portions of the Software.
-//
-// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-// SOFTWARE.
-
-#ifndef ROBIN_HOOD_H_INCLUDED
-#define ROBIN_HOOD_H_INCLUDED
-
-// see https://semver.org/
-#define ROBIN_HOOD_VERSION_MAJOR 3 // for incompatible API changes
-#define ROBIN_HOOD_VERSION_MINOR 9 // for adding functionality in a backwards-compatible manner
-#define ROBIN_HOOD_VERSION_PATCH 1 // for backwards-compatible bug fixes
-
-#include <algorithm>
-#include <cstdlib>
-#include <cstring>
-#include <functional>
-#include <limits>
-#include <memory> // only to support hash of smart pointers
-#include <stdexcept>
-#include <string>
-#include <type_traits>
-#include <utility>
-#if __cplusplus >= 201703L
-#    include <string_view>
-#endif
-
-// #define ROBIN_HOOD_LOG_ENABLED
-#ifdef ROBIN_HOOD_LOG_ENABLED
-#    include <iostream>
-#    define ROBIN_HOOD_LOG(...) \
-        std::cout << __FUNCTION__ << "@" << __LINE__ << ": " << __VA_ARGS__ << std::endl;
-#else
-#    define ROBIN_HOOD_LOG(x)
-#endif
-
-// #define ROBIN_HOOD_TRACE_ENABLED
-#ifdef ROBIN_HOOD_TRACE_ENABLED
-#    include <iostream>
-#    define ROBIN_HOOD_TRACE(...) \
-        std::cout << __FUNCTION__ << "@" << __LINE__ << ": " << __VA_ARGS__ << std::endl;
-#else
-#    define ROBIN_HOOD_TRACE(x)
-#endif
-
-// #define ROBIN_HOOD_COUNT_ENABLED
-#ifdef ROBIN_HOOD_COUNT_ENABLED
-#    include <iostream>
-#    define ROBIN_HOOD_COUNT(x) ++counts().x;
-namespace robin_hood {
-struct Counts {
-    uint64_t shiftUp{};
-    uint64_t shiftDown{};
-};
-inline std::ostream& operator<<(std::ostream& os, Counts const& c) {
-    return os << c.shiftUp << " shiftUp" << std::endl << c.shiftDown << " shiftDown" << std::endl;
-}
-
-static Counts& counts() {
-    static Counts counts{};
-    return counts;
-}
-} // namespace robin_hood
-#else
-#    define ROBIN_HOOD_COUNT(x)
-#endif
-
-// all non-argument macros should use this facility. See
-// https://www.fluentcpp.com/2019/05/28/better-macros-better-flags/
-#define ROBIN_HOOD(x) ROBIN_HOOD_PRIVATE_DEFINITION_##x()
-
-// mark unused members with this macro
-#define ROBIN_HOOD_UNUSED(identifier)
-
-// bitness
-#if SIZE_MAX == UINT32_MAX
-#    define ROBIN_HOOD_PRIVATE_DEFINITION_BITNESS() 32
-#elif SIZE_MAX == UINT64_MAX
-#    define ROBIN_HOOD_PRIVATE_DEFINITION_BITNESS() 64
-#else
-#    error Unsupported bitness
-#endif
-
-// endianess
-#ifdef _MSC_VER
-#    define ROBIN_HOOD_PRIVATE_DEFINITION_LITTLE_ENDIAN() 1
-#    define ROBIN_HOOD_PRIVATE_DEFINITION_BIG_ENDIAN() 0
-#else
-#    define ROBIN_HOOD_PRIVATE_DEFINITION_LITTLE_ENDIAN() \
-        (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
-#    define ROBIN_HOOD_PRIVATE_DEFINITION_BIG_ENDIAN() (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
-#endif
-
-// inline
-#ifdef _MSC_VER
-#    define ROBIN_HOOD_PRIVATE_DEFINITION_NOINLINE() __declspec(noinline)
-#else
-#    define ROBIN_HOOD_PRIVATE_DEFINITION_NOINLINE() __attribute__((noinline))
-#endif
-
-// exceptions
-#if !defined(__cpp_exceptions) && !defined(__EXCEPTIONS) && !defined(_CPPUNWIND)
-#    define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_EXCEPTIONS() 0
-#else
-#    define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_EXCEPTIONS() 1
-#endif
-
-// count leading/trailing bits
-#if !defined(ROBIN_HOOD_DISABLE_INTRINSICS)
-#    ifdef _MSC_VER
-#        if ROBIN_HOOD(BITNESS) == 32
-#            define ROBIN_HOOD_PRIVATE_DEFINITION_BITSCANFORWARD() _BitScanForward
-#        else
-#            define ROBIN_HOOD_PRIVATE_DEFINITION_BITSCANFORWARD() _BitScanForward64
-#        endif
-#        include <intrin.h>
-#        pragma intrinsic(ROBIN_HOOD(BITSCANFORWARD))
-#        define ROBIN_HOOD_COUNT_TRAILING_ZEROES(x)                                       \
-            [](size_t mask) noexcept -> int {                                             \
-                unsigned long index;                                                      \
-                return ROBIN_HOOD(BITSCANFORWARD)(&index, mask) ? static_cast<int>(index) \
-                                                                : ROBIN_HOOD(BITNESS);    \
-            }(x)
-#    else
-#        if ROBIN_HOOD(BITNESS) == 32
-#            define ROBIN_HOOD_PRIVATE_DEFINITION_CTZ() __builtin_ctzl
-#            define ROBIN_HOOD_PRIVATE_DEFINITION_CLZ() __builtin_clzl
-#        else
-#            define ROBIN_HOOD_PRIVATE_DEFINITION_CTZ() __builtin_ctzll
-#            define ROBIN_HOOD_PRIVATE_DEFINITION_CLZ() __builtin_clzll
-#        endif
-#        define ROBIN_HOOD_COUNT_LEADING_ZEROES(x) ((x) ? ROBIN_HOOD(CLZ)(x) : ROBIN_HOOD(BITNESS))
-#        define ROBIN_HOOD_COUNT_TRAILING_ZEROES(x) ((x) ? ROBIN_HOOD(CTZ)(x) : ROBIN_HOOD(BITNESS))
-#    endif
-#endif
-
-// fallthrough
-#ifndef __has_cpp_attribute // For backwards compatibility
-#    define __has_cpp_attribute(x) 0
-#endif
-#if __has_cpp_attribute(clang::fallthrough)
-#    define ROBIN_HOOD_PRIVATE_DEFINITION_FALLTHROUGH() [[clang::fallthrough]]
-#elif __has_cpp_attribute(gnu::fallthrough)
-#    define ROBIN_HOOD_PRIVATE_DEFINITION_FALLTHROUGH() [[gnu::fallthrough]]
-#else
-#    define ROBIN_HOOD_PRIVATE_DEFINITION_FALLTHROUGH()
-#endif
-
-// likely/unlikely
-#ifdef _MSC_VER
-#    define ROBIN_HOOD_LIKELY(condition) condition
-#    define ROBIN_HOOD_UNLIKELY(condition) condition
-#else
-#    define ROBIN_HOOD_LIKELY(condition) __builtin_expect(condition, 1)
-#    define ROBIN_HOOD_UNLIKELY(condition) __builtin_expect(condition, 0)
-#endif
-
-// detect if native wchar_t type is availiable in MSVC
-#ifdef _MSC_VER
-#    ifdef _NATIVE_WCHAR_T_DEFINED
-#        define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_NATIVE_WCHART() 1
-#    else
-#        define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_NATIVE_WCHART() 0
-#    endif
-#else
-#    define ROBIN_HOOD_PRIVATE_DEFINITION_HAS_NATIVE_WCHART() 1
-#endif
-
-// workaround missing "is_trivially_copyable" in g++ < 5.0
-// See https://stackoverflow.com/a/31798726/48181
-#if defined(__GNUC__) && __GNUC__ < 5
-#    define ROBIN_HOOD_IS_TRIVIALLY_COPYABLE(...) __has_trivial_copy(__VA_ARGS__)
-#else
-#    define ROBIN_HOOD_IS_TRIVIALLY_COPYABLE(...) std::is_trivially_copyable<__VA_ARGS__>::value
-#endif
-
-// helpers for C++ versions, see https://gcc.gnu.org/onlinedocs/cpp/Standard-Predefined-Macros.html
-#define ROBIN_HOOD_PRIVATE_DEFINITION_CXX() __cplusplus
-#define ROBIN_HOOD_PRIVATE_DEFINITION_CXX98() 199711L
-#define ROBIN_HOOD_PRIVATE_DEFINITION_CXX11() 201103L
-#define ROBIN_HOOD_PRIVATE_DEFINITION_CXX14() 201402L
-#define ROBIN_HOOD_PRIVATE_DEFINITION_CXX17() 201703L
-
-#if ROBIN_HOOD(CXX) >= ROBIN_HOOD(CXX17)
-#    define ROBIN_HOOD_PRIVATE_DEFINITION_NODISCARD() [[nodiscard]]
-#else
-#    define ROBIN_HOOD_PRIVATE_DEFINITION_NODISCARD()
-#endif
-
-namespace robin_hood {
-
-#if ROBIN_HOOD(CXX) >= ROBIN_HOOD(CXX14)
-#    define ROBIN_HOOD_STD std
-#else
-
-// c++11 compatibility layer
-namespace ROBIN_HOOD_STD {
-template <class T>
-struct alignment_of
-    : std::integral_constant<std::size_t, alignof(typename std::remove_all_extents<T>::type)> {};
-
-template <class T, T... Ints>
-class integer_sequence {
-public:
-    using value_type = T;
-    static_assert(std::is_integral<value_type>::value, "not integral type");
-    static constexpr std::size_t size() noexcept {
-        return sizeof...(Ints);
-    }
-};
-template <std::size_t... Inds>
-using index_sequence = integer_sequence<std::size_t, Inds...>;
-
-namespace detail_ {
-template <class T, T Begin, T End, bool>
-struct IntSeqImpl {
-    using TValue = T;
-    static_assert(std::is_integral<TValue>::value, "not integral type");
-    static_assert(Begin >= 0 && Begin < End, "unexpected argument (Begin<0 || Begin<=End)");
-
-    template <class, class>
-    struct IntSeqCombiner;
-
-    template <TValue... Inds0, TValue... Inds1>
-    struct IntSeqCombiner<integer_sequence<TValue, Inds0...>, integer_sequence<TValue, Inds1...>> {
-        using TResult = integer_sequence<TValue, Inds0..., Inds1...>;
-    };
-
-    using TResult =
-        typename IntSeqCombiner<typename IntSeqImpl<TValue, Begin, Begin + (End - Begin) / 2,
-                                                    (End - Begin) / 2 == 1>::TResult,
-                                typename IntSeqImpl<TValue, Begin + (End - Begin) / 2, End,
-                                                    (End - Begin + 1) / 2 == 1>::TResult>::TResult;
-};
-
-template <class T, T Begin>
-struct IntSeqImpl<T, Begin, Begin, false> {
-    using TValue = T;
-    static_assert(std::is_integral<TValue>::value, "not integral type");
-    static_assert(Begin >= 0, "unexpected argument (Begin<0)");
-    using TResult = integer_sequence<TValue>;
-};
-
-template <class T, T Begin, T End>
-struct IntSeqImpl<T, Begin, End, true> {
-    using TValue = T;
-    static_assert(std::is_integral<TValue>::value, "not integral type");
-    static_assert(Begin >= 0, "unexpected argument (Begin<0)");
-    using TResult = integer_sequence<TValue, Begin>;
-};
-} // namespace detail_
-
-template <class T, T N>
-using make_integer_sequence = typename detail_::IntSeqImpl<T, 0, N, (N - 0) == 1>::TResult;
-
-template <std::size_t N>
-using make_index_sequence = make_integer_sequence<std::size_t, N>;
-
-template <class... T>
-using index_sequence_for = make_index_sequence<sizeof...(T)>;
-
-} // namespace ROBIN_HOOD_STD
-
-#endif
-
-namespace detail {
-
-// make sure we static_cast to the correct type for hash_int
-#if ROBIN_HOOD(BITNESS) == 64
-using SizeT = uint64_t;
-#else
-using SizeT = uint32_t;
-#endif
-
-template <typename T>
-T rotr(T x, unsigned k) {
-    return (x >> k) | (x << (8U * sizeof(T) - k));
-}
-
-// This cast gets rid of warnings like "cast from 'uint8_t*' {aka 'unsigned char*'} to
-// 'uint64_t*' {aka 'long unsigned int*'} increases required alignment of target type". Use with
-// care!
-template <typename T>
-inline T reinterpret_cast_no_cast_align_warning(void* ptr) noexcept {
-    return reinterpret_cast<T>(ptr);
-}
-
-template <typename T>
-inline T reinterpret_cast_no_cast_align_warning(void const* ptr) noexcept {
-    return reinterpret_cast<T>(ptr);
-}
-
-// make sure this is not inlined as it is slow and dramatically enlarges code, thus making other
-// inlinings more difficult. Throws are also generally the slow path.
-template <typename E, typename... Args>
-[[noreturn]] ROBIN_HOOD(NOINLINE)
-#if ROBIN_HOOD(HAS_EXCEPTIONS)
-    void doThrow(Args&&... args) {
-    // NOLINTNEXTLINE(cppcoreguidelines-pro-bounds-array-to-pointer-decay)
-    throw E(std::forward<Args>(args)...);
-}
-#else
-    void doThrow(Args&&... ROBIN_HOOD_UNUSED(args) /*unused*/) {
-    abort();
-}
-#endif
-
-template <typename E, typename T, typename... Args>
-T* assertNotNull(T* t, Args&&... args) {
-    if (ROBIN_HOOD_UNLIKELY(nullptr == t)) {
-        doThrow<E>(std::forward<Args>(args)...);
-    }
-    return t;
-}
-
-template <typename T>
-inline T unaligned_load(void const* ptr) noexcept {
-    // using memcpy so we don't get into unaligned load problems.
-    // compiler should optimize this very well anyways.
-    T t;
-    std::memcpy(&t, ptr, sizeof(T));
-    return t;
-}
-
-// Allocates bulks of memory for objects of type T. This deallocates the memory in the destructor,
-// and keeps a linked list of the allocated memory around. Overhead per allocation is the size of a
-// pointer.
-template <typename T, size_t MinNumAllocs = 4, size_t MaxNumAllocs = 256>
-class BulkPoolAllocator {
-public:
-    BulkPoolAllocator() noexcept = default;
-
-    // does not copy anything, just creates a new allocator.
-    BulkPoolAllocator(const BulkPoolAllocator& ROBIN_HOOD_UNUSED(o) /*unused*/) noexcept
-        : mHead(nullptr)
-        , mListForFree(nullptr) {}
-
-    BulkPoolAllocator(BulkPoolAllocator&& o) noexcept
-        : mHead(o.mHead)
-        , mListForFree(o.mListForFree) {
-        o.mListForFree = nullptr;
-        o.mHead = nullptr;
-    }
-
-    BulkPoolAllocator& operator=(BulkPoolAllocator&& o) noexcept {
-        reset();
-        mHead = o.mHead;
-        mListForFree = o.mListForFree;
-        o.mListForFree = nullptr;
-        o.mHead = nullptr;
-        return *this;
-    }
-
-    BulkPoolAllocator&
-    // NOLINTNEXTLINE(bugprone-unhandled-self-assignment,cert-oop54-cpp)
-    operator=(const BulkPoolAllocator& ROBIN_HOOD_UNUSED(o) /*unused*/) noexcept {
-        // does not do anything
-        return *this;
-    }
-
-    ~BulkPoolAllocator() noexcept {
-        reset();
-    }
-
-    // Deallocates all allocated memory.
-    void reset() noexcept {
-        while (mListForFree) {
-            T* tmp = *mListForFree;
-            ROBIN_HOOD_LOG("std::free")
-            std::free(mListForFree);
-            mListForFree = reinterpret_cast_no_cast_align_warning<T**>(tmp);
-        }
-        mHead = nullptr;
-    }
-
-    // allocates, but does NOT initialize. Use in-place new constructor, e.g.
-    //   T* obj = pool.allocate();
-    //   ::new (static_cast<void*>(obj)) T();
-    T* allocate() {
-        T* tmp = mHead;
-        if (!tmp) {
-            tmp = performAllocation();
-        }
-
-        mHead = *reinterpret_cast_no_cast_align_warning<T**>(tmp);
-        return tmp;
-    }
-
-    // does not actually deallocate but puts it in store.
-    // make sure you have already called the destructor! e.g. with
-    //  obj->~T();
-    //  pool.deallocate(obj);
-    void deallocate(T* obj) noexcept {
-        *reinterpret_cast_no_cast_align_warning<T**>(obj) = mHead;
-        mHead = obj;
-    }
-
-    // Adds an already allocated block of memory to the allocator. This allocator is from now on
-    // responsible for freeing the data (with free()). If the provided data is not large enough to
-    // make use of, it is immediately freed. Otherwise it is reused and freed in the destructor.
-    void addOrFree(void* ptr, const size_t numBytes) noexcept {
-        // calculate number of available elements in ptr
-        if (numBytes < ALIGNMENT + ALIGNED_SIZE) {
-            // not enough data for at least one element. Free and return.
-            ROBIN_HOOD_LOG("std::free")
-            std::free(ptr);
-        } else {
-            ROBIN_HOOD_LOG("add to buffer")
-            add(ptr, numBytes);
-        }
-    }
-
-    void swap(BulkPoolAllocator<T, MinNumAllocs, MaxNumAllocs>& other) noexcept {
-        using std::swap;
-        swap(mHead, other.mHead);
-        swap(mListForFree, other.mListForFree);
-    }
-
-private:
-    // iterates the list of allocated memory to calculate how many to alloc next.
-    // Recalculating this each time saves us a size_t member.
-    // This ignores the fact that memory blocks might have been added manually with addOrFree. In
-    // practice, this should not matter much.
-    ROBIN_HOOD(NODISCARD) size_t calcNumElementsToAlloc() const noexcept {
-        auto tmp = mListForFree;
-        size_t numAllocs = MinNumAllocs;
-
-        while (numAllocs * 2 <= MaxNumAllocs && tmp) {
-            auto x = reinterpret_cast<T***>(tmp);
-            tmp = *x;
-            numAllocs *= 2;
-        }
-
-        return numAllocs;
-    }
-
-    // WARNING: Underflow if numBytes < ALIGNMENT! This is guarded in addOrFree().
-    void add(void* ptr, const size_t numBytes) noexcept {
-        const size_t numElements = (numBytes - ALIGNMENT) / ALIGNED_SIZE;
-
-        auto data = reinterpret_cast<T**>(ptr);
-
-        // link free list
-        auto x = reinterpret_cast<T***>(data);
-        *x = mListForFree;
-        mListForFree = data;
-
-        // create linked list for newly allocated data
-        auto* const headT =
-            reinterpret_cast_no_cast_align_warning<T*>(reinterpret_cast<char*>(ptr) + ALIGNMENT);
-
-        auto* const head = reinterpret_cast<char*>(headT);
-
-        // Visual Studio compiler automatically unrolls this loop, which is pretty cool
-        for (size_t i = 0; i < numElements; ++i) {
-            *reinterpret_cast_no_cast_align_warning<char**>(head + i * ALIGNED_SIZE) =
-                head + (i + 1) * ALIGNED_SIZE;
-        }
-
-        // last one points to 0
-        *reinterpret_cast_no_cast_align_warning<T**>(head + (numElements - 1) * ALIGNED_SIZE) =
-            mHead;
-        mHead = headT;
-    }
-
-    // Called when no memory is available (mHead == 0).
-    // Don't inline this slow path.
-    ROBIN_HOOD(NOINLINE) T* performAllocation() {
-        size_t const numElementsToAlloc = calcNumElementsToAlloc();
-
-        // alloc new memory: [prev |T, T, ... T]
-        size_t const bytes = ALIGNMENT + ALIGNED_SIZE * numElementsToAlloc;
-        ROBIN_HOOD_LOG("std::malloc " << bytes << " = " << ALIGNMENT << " + " << ALIGNED_SIZE
-                                      << " * " << numElementsToAlloc)
-        add(assertNotNull<std::bad_alloc>(std::malloc(bytes)), bytes);
-        return mHead;
-    }
-
-    // enforce byte alignment of the T's
-#if ROBIN_HOOD(CXX) >= ROBIN_HOOD(CXX14)
-    static constexpr size_t ALIGNMENT =
-        (std::max)(std::alignment_of<T>::value, std::alignment_of<T*>::value);
-#else
-    static const size_t ALIGNMENT =
-        (ROBIN_HOOD_STD::alignment_of<T>::value > ROBIN_HOOD_STD::alignment_of<T*>::value)
-            ? ROBIN_HOOD_STD::alignment_of<T>::value
-            : +ROBIN_HOOD_STD::alignment_of<T*>::value; // the + is for walkarround
-#endif
-
-    static constexpr size_t ALIGNED_SIZE = ((sizeof(T) - 1) / ALIGNMENT + 1) * ALIGNMENT;
-
-    static_assert(MinNumAllocs >= 1, "MinNumAllocs");
-    static_assert(MaxNumAllocs >= MinNumAllocs, "MaxNumAllocs");
-    static_assert(ALIGNED_SIZE >= sizeof(T*), "ALIGNED_SIZE");
-    static_assert(0 == (ALIGNED_SIZE % sizeof(T*)), "ALIGNED_SIZE mod");
-    static_assert(ALIGNMENT >= sizeof(T*), "ALIGNMENT");
-
-    T* mHead{nullptr};
-    T** mListForFree{nullptr};
-};
-
-template <typename T, size_t MinSize, size_t MaxSize, bool IsFlat>
-struct NodeAllocator;
-
-// dummy allocator that does nothing
-template <typename T, size_t MinSize, size_t MaxSize>
-struct NodeAllocator<T, MinSize, MaxSize, true> {
-
-    // we are not using the data, so just free it.
-    void addOrFree(void* ptr, size_t ROBIN_HOOD_UNUSED(numBytes) /*unused*/) noexcept {
-        ROBIN_HOOD_LOG("std::free")
-        std::free(ptr);
-    }
-};
-
-template <typename T, size_t MinSize, size_t MaxSize>
-struct NodeAllocator<T, MinSize, MaxSize, false> : public BulkPoolAllocator<T, MinSize, MaxSize> {};
-
-// dummy hash, unsed as mixer when robin_hood::hash is already used
-template <typename T>
-struct identity_hash {
-    constexpr size_t operator()(T const& obj) const noexcept {
-        return static_cast<size_t>(obj);
-    }
-};
-
-// c++14 doesn't have is_nothrow_swappable, and clang++ 6.0.1 doesn't like it either, so I'm making
-// my own here.
-namespace swappable {
-#if ROBIN_HOOD(CXX) < ROBIN_HOOD(CXX17)
-using std::swap;
-template <typename T>
-struct nothrow {
-    static const bool value = noexcept(swap(std::declval<T&>(), std::declval<T&>()));
-};
-#else
-template <typename T>
-struct nothrow {
-    static const bool value = std::is_nothrow_swappable<T>::value;
-};
-#endif
-} // namespace swappable
-
-} // namespace detail
-
-struct is_transparent_tag {};
-
-// A custom pair implementation is used in the map because std::pair is not is_trivially_copyable,
-// which means it would  not be allowed to be used in std::memcpy. This struct is copyable, which is
-// also tested.
-template <typename T1, typename T2>
-struct pair {
-    using first_type = T1;
-    using second_type = T2;
-
-    template <typename U1 = T1, typename U2 = T2,
-              typename = typename std::enable_if<std::is_default_constructible<U1>::value &&
-                                                 std::is_default_constructible<U2>::value>::type>
-    constexpr pair() noexcept(noexcept(U1()) && noexcept(U2()))
-        : first()
-        , second() {}
-
-    // pair constructors are explicit so we don't accidentally call this ctor when we don't have to.
-    explicit constexpr pair(std::pair<T1, T2> const& o) noexcept(
-        noexcept(T1(std::declval<T1 const&>())) && noexcept(T2(std::declval<T2 const&>())))
-        : first(o.first)
-        , second(o.second) {}
-
-    // pair constructors are explicit so we don't accidentally call this ctor when we don't have to.
-    explicit constexpr pair(std::pair<T1, T2>&& o) noexcept(noexcept(
-        T1(std::move(std::declval<T1&&>()))) && noexcept(T2(std::move(std::declval<T2&&>()))))
-        : first(std::move(o.first))
-        , second(std::move(o.second)) {}
-
-    constexpr pair(T1&& a, T2&& b) noexcept(noexcept(
-        T1(std::move(std::declval<T1&&>()))) && noexcept(T2(std::move(std::declval<T2&&>()))))
-        : first(std::move(a))
-        , second(std::move(b)) {}
-
-    template <typename U1, typename U2>
-    constexpr pair(U1&& a, U2&& b) noexcept(noexcept(T1(std::forward<U1>(
-        std::declval<U1&&>()))) && noexcept(T2(std::forward<U2>(std::declval<U2&&>()))))
-        : first(std::forward<U1>(a))
-        , second(std::forward<U2>(b)) {}
-
-    template <typename... U1, typename... U2>
-    constexpr pair(
-        std::piecewise_construct_t /*unused*/, std::tuple<U1...> a,
-        std::tuple<U2...> b) noexcept(noexcept(pair(std::declval<std::tuple<U1...>&>(),
-                                                    std::declval<std::tuple<U2...>&>(),
-                                                    ROBIN_HOOD_STD::index_sequence_for<U1...>(),
-                                                    ROBIN_HOOD_STD::index_sequence_for<U2...>())))
-        : pair(a, b, ROBIN_HOOD_STD::index_sequence_for<U1...>(),
-               ROBIN_HOOD_STD::index_sequence_for<U2...>()) {}
-
-    // constructor called from the std::piecewise_construct_t ctor
-    template <typename... U1, size_t... I1, typename... U2, size_t... I2>
-    pair(std::tuple<U1...>& a, std::tuple<U2...>& b, ROBIN_HOOD_STD::index_sequence<I1...> /*unused*/, ROBIN_HOOD_STD::index_sequence<I2...> /*unused*/) noexcept(
-        noexcept(T1(std::forward<U1>(std::get<I1>(
-            std::declval<std::tuple<
-                U1...>&>()))...)) && noexcept(T2(std::
-                                                     forward<U2>(std::get<I2>(
-                                                         std::declval<std::tuple<U2...>&>()))...)))
-        : first(std::forward<U1>(std::get<I1>(a))...)
-        , second(std::forward<U2>(std::get<I2>(b))...) {
-        // make visual studio compiler happy about warning about unused a & b.
-        // Visual studio's pair implementation disables warning 4100.
-        (void)a;
-        (void)b;
-    }
-
-    void swap(pair<T1, T2>& o) noexcept((detail::swappable::nothrow<T1>::value) &&
-                                        (detail::swappable::nothrow<T2>::value)) {
-        using std::swap;
-        swap(first, o.first);
-        swap(second, o.second);
-    }
-
-    T1 first;  // NOLINT(misc-non-private-member-variables-in-classes)
-    T2 second; // NOLINT(misc-non-private-member-variables-in-classes)
-};
-
-template <typename A, typename B>
-inline void swap(pair<A, B>& a, pair<A, B>& b) noexcept(
-    noexcept(std::declval<pair<A, B>&>().swap(std::declval<pair<A, B>&>()))) {
-    a.swap(b);
-}
-
-template <typename A, typename B>
-inline constexpr bool operator==(pair<A, B> const& x, pair<A, B> const& y) {
-    return (x.first == y.first) && (x.second == y.second);
-}
-template <typename A, typename B>
-inline constexpr bool operator!=(pair<A, B> const& x, pair<A, B> const& y) {
-    return !(x == y);
-}
-template <typename A, typename B>
-inline constexpr bool operator<(pair<A, B> const& x, pair<A, B> const& y) noexcept(noexcept(
-    std::declval<A const&>() < std::declval<A const&>()) && noexcept(std::declval<B const&>() <
-                                                                     std::declval<B const&>())) {
-    return x.first < y.first || (!(y.first < x.first) && x.second < y.second);
-}
-template <typename A, typename B>
-inline constexpr bool operator>(pair<A, B> const& x, pair<A, B> const& y) {
-    return y < x;
-}
-template <typename A, typename B>
-inline constexpr bool operator<=(pair<A, B> const& x, pair<A, B> const& y) {
-    return !(x > y);
-}
-template <typename A, typename B>
-inline constexpr bool operator>=(pair<A, B> const& x, pair<A, B> const& y) {
-    return !(x < y);
-}
-
-inline size_t hash_bytes(void const* ptr, size_t len) noexcept {
-    static constexpr uint64_t m = UINT64_C(0xc6a4a7935bd1e995);
-    static constexpr uint64_t seed = UINT64_C(0xe17a1465);
-    static constexpr unsigned int r = 47;
-
-    auto const* const data64 = static_cast<uint64_t const*>(ptr);
-    uint64_t h = seed ^ (len * m);
-
-    size_t const n_blocks = len / 8;
-    for (size_t i = 0; i < n_blocks; ++i) {
-        auto k = detail::unaligned_load<uint64_t>(data64 + i);
-
-        k *= m;
-        k ^= k >> r;
-        k *= m;
-
-        h ^= k;
-        h *= m;
-    }
-
-    auto const* const data8 = reinterpret_cast<uint8_t const*>(data64 + n_blocks);
-    switch (len & 7U) {
-    case 7:
-        h ^= static_cast<uint64_t>(data8[6]) << 48U;
-        ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH
-    case 6:
-        h ^= static_cast<uint64_t>(data8[5]) << 40U;
-        ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH
-    case 5:
-        h ^= static_cast<uint64_t>(data8[4]) << 32U;
-        ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH
-    case 4:
-        h ^= static_cast<uint64_t>(data8[3]) << 24U;
-        ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH
-    case 3:
-        h ^= static_cast<uint64_t>(data8[2]) << 16U;
-        ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH
-    case 2:
-        h ^= static_cast<uint64_t>(data8[1]) << 8U;
-        ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH
-    case 1:
-        h ^= static_cast<uint64_t>(data8[0]);
-        h *= m;
-        ROBIN_HOOD(FALLTHROUGH); // FALLTHROUGH
-    default:
-        break;
-    }
-
-    h ^= h >> r;
-    h *= m;
-    h ^= h >> r;
-    return static_cast<size_t>(h);
-}
-
-inline size_t hash_int(uint64_t x) noexcept {
-    // inspired by lemire's strongly universal hashing
-    // https://lemire.me/blog/2018/08/15/fast-strongly-universal-64-bit-hashing-everywhere/
-    //
-    // Instead of shifts, we use rotations so we don't lose any bits.
-    //
-    // Added a final multiplcation with a constant for more mixing. It is most important that
-    // the lower bits are well mixed.
-    auto h1 = x * UINT64_C(0xA24BAED4963EE407);
-    auto h2 = detail::rotr(x, 32U) * UINT64_C(0x9FB21C651E98DF25);
-    auto h = detail::rotr(h1 + h2, 32U);
-    return static_cast<size_t>(h);
-}
-
-// A thin wrapper around std::hash, performing an additional simple mixing step of the result.
-template <typename T, typename Enable = void>
-struct hash : public std::hash<T> {
-    size_t operator()(T const& obj) const
-        noexcept(noexcept(std::declval<std::hash<T>>().operator()(std::declval<T const&>()))) {
-        // call base hash
-        auto result = std::hash<T>::operator()(obj);
-        // return mixed of that, to be save against identity has
-        return hash_int(static_cast<detail::SizeT>(result));
-    }
-};
-
-template <typename CharT>
-struct hash<std::basic_string<CharT>> {
-    size_t operator()(std::basic_string<CharT> const& str) const noexcept {
-        return hash_bytes(str.data(), sizeof(CharT) * str.size());
-    }
-};
-
-#if ROBIN_HOOD(CXX) >= ROBIN_HOOD(CXX17)
-template <typename CharT>
-struct hash<std::basic_string_view<CharT>> {
-    size_t operator()(std::basic_string_view<CharT> const& sv) const noexcept {
-        return hash_bytes(sv.data(), sizeof(CharT) * sv.size());
-    }
-};
-#endif
-
-template <class T>
-struct hash<T*> {
-    size_t operator()(T* ptr) const noexcept {
-        return hash_int(reinterpret_cast<detail::SizeT>(ptr));
-    }
-};
-
-template <class T>
-struct hash<std::unique_ptr<T>> {
-    size_t operator()(std::unique_ptr<T> const& ptr) const noexcept {
-        return hash_int(reinterpret_cast<detail::SizeT>(ptr.get()));
-    }
-};
-
-template <class T>
-struct hash<std::shared_ptr<T>> {
-    size_t operator()(std::shared_ptr<T> const& ptr) const noexcept {
-        return hash_int(reinterpret_cast<detail::SizeT>(ptr.get()));
-    }
-};
-
-template <typename Enum>
-struct hash<Enum, typename std::enable_if<std::is_enum<Enum>::value>::type> {
-    size_t operator()(Enum e) const noexcept {
-        using Underlying = typename std::underlying_type<Enum>::type;
-        return hash<Underlying>{}(static_cast<Underlying>(e));
-    }
-};
-
-#define ROBIN_HOOD_HASH_INT(T)                           \
-    template <>                                          \
-    struct hash<T> {                                     \
-        size_t operator()(T const& obj) const noexcept { \
-            return hash_int(static_cast<uint64_t>(obj)); \
-        }                                                \
-    }
-
-#if defined(__GNUC__) && !defined(__clang__)
-#    pragma GCC diagnostic push
-#    pragma GCC diagnostic ignored "-Wuseless-cast"
-#endif
-// see https://en.cppreference.com/w/cpp/utility/hash
-ROBIN_HOOD_HASH_INT(bool);
-ROBIN_HOOD_HASH_INT(char);
-ROBIN_HOOD_HASH_INT(signed char);
-ROBIN_HOOD_HASH_INT(unsigned char);
-ROBIN_HOOD_HASH_INT(char16_t);
-ROBIN_HOOD_HASH_INT(char32_t);
-#if ROBIN_HOOD(HAS_NATIVE_WCHART)
-ROBIN_HOOD_HASH_INT(wchar_t);
-#endif
-ROBIN_HOOD_HASH_INT(short);
-ROBIN_HOOD_HASH_INT(unsigned short);
-ROBIN_HOOD_HASH_INT(int);
-ROBIN_HOOD_HASH_INT(unsigned int);
-ROBIN_HOOD_HASH_INT(long);
-ROBIN_HOOD_HASH_INT(long long);
-ROBIN_HOOD_HASH_INT(unsigned long);
-ROBIN_HOOD_HASH_INT(unsigned long long);
-#if defined(__GNUC__) && !defined(__clang__)
-#    pragma GCC diagnostic pop
-#endif
-namespace detail {
-
-template <typename T>
-struct void_type {
-    using type = void;
-};
-
-template <typename T, typename = void>
-struct has_is_transparent : public std::false_type {};
-
-template <typename T>
-struct has_is_transparent<T, typename void_type<typename T::is_transparent>::type>
-    : public std::true_type {};
-
-// using wrapper classes for hash and key_equal prevents the diamond problem when the same type
-// is used. see https://stackoverflow.com/a/28771920/48181
-template <typename T>
-struct WrapHash : public T {
-    WrapHash() = default;
-    explicit WrapHash(T const& o) noexcept(noexcept(T(std::declval<T const&>())))
-        : T(o) {}
-};
-
-template <typename T>
-struct WrapKeyEqual : public T {
-    WrapKeyEqual() = default;
-    explicit WrapKeyEqual(T const& o) noexcept(noexcept(T(std::declval<T const&>())))
-        : T(o) {}
-};
-
-// A highly optimized hashmap implementation, using the Robin Hood algorithm.
-//
-// In most cases, this map should be usable as a drop-in replacement for std::unordered_map, but
-// be about 2x faster in most cases and require much less allocations.
-//
-// This implementation uses the following memory layout:
-//
-// [Node, Node, ... Node | info, info, ... infoSentinel ]
-//
-// * Node: either a DataNode that directly has the std::pair<key, val> as member,
-//   or a DataNode with a pointer to std::pair<key,val>. Which DataNode representation to use
-//   depends on how fast the swap() operation is. Heuristically, this is automatically choosen
-//   based on sizeof(). there are always 2^n Nodes.
-//
-// * info: Each Node in the map has a corresponding info byte, so there are 2^n info bytes.
-//   Each byte is initialized to 0, meaning the corresponding Node is empty. Set to 1 means the
-//   corresponding node contains data. Set to 2 means the corresponding Node is filled, but it
-//   actually belongs to the previous position and was pushed out because that place is already
-//   taken.
-//
-// * infoSentinel: Sentinel byte set to 1, so that iterator's ++ can stop at end() without the
-//   need for a idx variable.
-//
-// According to STL, order of templates has effect on throughput. That's why I've moved the
-// boolean to the front.
-// https://www.reddit.com/r/cpp/comments/ahp6iu/compile_time_binary_size_reductions_and_cs_future/eeguck4/
-template <bool IsFlat, size_t MaxLoadFactor100, typename Key, typename T, typename Hash,
-          typename KeyEqual>
-class Table
-    : public WrapHash<Hash>,
-      public WrapKeyEqual<KeyEqual>,
-      detail::NodeAllocator<
-          typename std::conditional<
-              std::is_void<T>::value, Key,
-              robin_hood::pair<typename std::conditional<IsFlat, Key, Key const>::type, T>>::type,
-          4, 16384, IsFlat> {
-public:
-    static constexpr bool is_flat = IsFlat;
-    static constexpr bool is_map = !std::is_void<T>::value;
-    static constexpr bool is_set = !is_map;
-    static constexpr bool is_transparent =
-        has_is_transparent<Hash>::value && has_is_transparent<KeyEqual>::value;
-
-    using key_type = Key;
-    using mapped_type = T;
-    using value_type = typename std::conditional<
-        is_set, Key,
-        robin_hood::pair<typename std::conditional<is_flat, Key, Key const>::type, T>>::type;
-    using size_type = size_t;
-    using hasher = Hash;
-    using key_equal = KeyEqual;
-    using Self = Table<IsFlat, MaxLoadFactor100, key_type, mapped_type, hasher, key_equal>;
-
-private:
-    static_assert(MaxLoadFactor100 > 10 && MaxLoadFactor100 < 100,
-                  "MaxLoadFactor100 needs to be >10 && < 100");
-
-    using WHash = WrapHash<Hash>;
-    using WKeyEqual = WrapKeyEqual<KeyEqual>;
-
-    // configuration defaults
-
-    // make sure we have 8 elements, needed to quickly rehash mInfo
-    static constexpr size_t InitialNumElements = sizeof(uint64_t);
-    static constexpr uint32_t InitialInfoNumBits = 5;
-    static constexpr uint8_t InitialInfoInc = 1U << InitialInfoNumBits;
-    static constexpr size_t InfoMask = InitialInfoInc - 1U;
-    static constexpr uint8_t InitialInfoHashShift = 0;
-    using DataPool = detail::NodeAllocator<value_type, 4, 16384, IsFlat>;
-
-    // type needs to be wider than uint8_t.
-    using InfoType = uint32_t;
-
-    // DataNode ////////////////////////////////////////////////////////
-
-    // Primary template for the data node. We have special implementations for small and big
-    // objects. For large objects it is assumed that swap() is fairly slow, so we allocate these
-    // on the heap so swap merely swaps a pointer.
-    template <typename M, bool>
-    class DataNode {};
-
-    // Small: just allocate on the stack.
-    template <typename M>
-    class DataNode<M, true> final {
-    public:
-        template <typename... Args>
-        explicit DataNode(M& ROBIN_HOOD_UNUSED(map) /*unused*/, Args&&... args) noexcept(
-            noexcept(value_type(std::forward<Args>(args)...)))
-            : mData(std::forward<Args>(args)...) {}
-
-        DataNode(M& ROBIN_HOOD_UNUSED(map) /*unused*/, DataNode<M, true>&& n) noexcept(
-            std::is_nothrow_move_constructible<value_type>::value)
-            : mData(std::move(n.mData)) {}
-
-        // doesn't do anything
-        void destroy(M& ROBIN_HOOD_UNUSED(map) /*unused*/) noexcept {}
-        void destroyDoNotDeallocate() noexcept {}
-
-        value_type const* operator->() const noexcept {
-            return &mData;
-        }
-        value_type* operator->() noexcept {
-            return &mData;
-        }
-
-        const value_type& operator*() const noexcept {
-            return mData;
-        }
-
-        value_type& operator*() noexcept {
-            return mData;
-        }
-
-        template <typename VT = value_type>
-        ROBIN_HOOD(NODISCARD)
-        typename std::enable_if<is_map, typename VT::first_type&>::type getFirst() noexcept {
-            return mData.first;
-        }
-        template <typename VT = value_type>
-        ROBIN_HOOD(NODISCARD)
-        typename std::enable_if<is_set, VT&>::type getFirst() noexcept {
-            return mData;
-        }
-
-        template <typename VT = value_type>
-        ROBIN_HOOD(NODISCARD)
-        typename std::enable_if<is_map, typename VT::first_type const&>::type
-            getFirst() const noexcept {
-            return mData.first;
-        }
-        template <typename VT = value_type>
-        ROBIN_HOOD(NODISCARD)
-        typename std::enable_if<is_set, VT const&>::type getFirst() const noexcept {
-            return mData;
-        }
-
-        template <typename MT = mapped_type>
-        ROBIN_HOOD(NODISCARD)
-        typename std::enable_if<is_map, MT&>::type getSecond() noexcept {
-            return mData.second;
-        }
-
-        template <typename MT = mapped_type>
-        ROBIN_HOOD(NODISCARD)
-        typename std::enable_if<is_set, MT const&>::type getSecond() const noexcept {
-            return mData.second;
-        }
-
-        void swap(DataNode<M, true>& o) noexcept(
-            noexcept(std::declval<value_type>().swap(std::declval<value_type>()))) {
-            mData.swap(o.mData);
-        }
-
-    private:
-        value_type mData;
-    };
-
-    // big object: allocate on heap.
-    template <typename M>
-    class DataNode<M, false> {
-    public:
-        template <typename... Args>
-        explicit DataNode(M& map, Args&&... args)
-            : mData(map.allocate()) {
-            ::new (static_cast<void*>(mData)) value_type(std::forward<Args>(args)...);
-        }
-
-        DataNode(M& ROBIN_HOOD_UNUSED(map) /*unused*/, DataNode<M, false>&& n) noexcept
-            : mData(std::move(n.mData)) {}
-
-        void destroy(M& map) noexcept {
-            // don't deallocate, just put it into list of datapool.
-            mData->~value_type();
-            map.deallocate(mData);
-        }
-
-        void destroyDoNotDeallocate() noexcept {
-            mData->~value_type();
-        }
-
-        value_type const* operator->() const noexcept {
-            return mData;
-        }
-
-        value_type* operator->() noexcept {
-            return mData;
-        }
-
-        const value_type& operator*() const {
-            return *mData;
-        }
-
-        value_type& operator*() {
-            return *mData;
-        }
-
-        template <typename VT = value_type>
-        ROBIN_HOOD(NODISCARD)
-        typename std::enable_if<is_map, typename VT::first_type&>::type getFirst() noexcept {
-            return mData->first;
-        }
-        template <typename VT = value_type>
-        ROBIN_HOOD(NODISCARD)
-        typename std::enable_if<is_set, VT&>::type getFirst() noexcept {
-            return *mData;
-        }
-
-        template <typename VT = value_type>
-        ROBIN_HOOD(NODISCARD)
-        typename std::enable_if<is_map, typename VT::first_type const&>::type
-            getFirst() const noexcept {
-            return mData->first;
-        }
-        template <typename VT = value_type>
-        ROBIN_HOOD(NODISCARD)
-        typename std::enable_if<is_set, VT const&>::type getFirst() const noexcept {
-            return *mData;
-        }
-
-        template <typename MT = mapped_type>
-        ROBIN_HOOD(NODISCARD)
-        typename std::enable_if<is_map, MT&>::type getSecond() noexcept {
-            return mData->second;
-        }
-
-        template <typename MT = mapped_type>
-        ROBIN_HOOD(NODISCARD)
-        typename std::enable_if<is_map, MT const&>::type getSecond() const noexcept {
-            return mData->second;
-        }
-
-        void swap(DataNode<M, false>& o) noexcept {
-            using std::swap;
-            swap(mData, o.mData);
-        }
-
-    private:
-        value_type* mData;
-    };
-
-    using Node = DataNode<Self, IsFlat>;
-
-    // helpers for doInsert: extract first entry (only const required)
-    ROBIN_HOOD(NODISCARD) key_type const& getFirstConst(Node const& n) const noexcept {
-        return n.getFirst();
-    }
-
-    // in case we have void mapped_type, we are not using a pair, thus we just route k through.
-    // No need to disable this because it's just not used if not applicable.
-    ROBIN_HOOD(NODISCARD) key_type const& getFirstConst(key_type const& k) const noexcept {
-        return k;
-    }
-
-    // in case we have non-void mapped_type, we have a standard robin_hood::pair
-    template <typename Q = mapped_type>
-    ROBIN_HOOD(NODISCARD)
-    typename std::enable_if<!std::is_void<Q>::value, key_type const&>::type
-        getFirstConst(value_type const& vt) const noexcept {
-        return vt.first;
-    }
-
-    // Cloner //////////////////////////////////////////////////////////
-
-    template <typename M, bool UseMemcpy>
-    struct Cloner;
-
-    // fast path: Just copy data, without allocating anything.
-    template <typename M>
-    struct Cloner<M, true> {
-        void operator()(M const& source, M& target) const {
-            auto const* const src = reinterpret_cast<char const*>(source.mKeyVals);
-            auto* tgt = reinterpret_cast<char*>(target.mKeyVals);
-            auto const numElementsWithBuffer = target.calcNumElementsWithBuffer(target.mMask + 1);
-            std::copy(src, src + target.calcNumBytesTotal(numElementsWithBuffer), tgt);
-        }
-    };
-
-    template <typename M>
-    struct Cloner<M, false> {
-        void operator()(M const& s, M& t) const {
-            auto const numElementsWithBuffer = t.calcNumElementsWithBuffer(t.mMask + 1);
-            std::copy(s.mInfo, s.mInfo + t.calcNumBytesInfo(numElementsWithBuffer), t.mInfo);
-
-            for (size_t i = 0; i < numElementsWithBuffer; ++i) {
-                if (t.mInfo[i]) {
-                    ::new (static_cast<void*>(t.mKeyVals + i)) Node(t, *s.mKeyVals[i]);
-                }
-            }
-        }
-    };
-
-    // Destroyer ///////////////////////////////////////////////////////
-
-    template <typename M, bool IsFlatAndTrivial>
-    struct Destroyer {};
-
-    template <typename M>
-    struct Destroyer<M, true> {
-        void nodes(M& m) const noexcept {
-            m.mNumElements = 0;
-        }
-
-        void nodesDoNotDeallocate(M& m) const noexcept {
-            m.mNumElements = 0;
-        }
-    };
-
-    template <typename M>
-    struct Destroyer<M, false> {
-        void nodes(M& m) const noexcept {
-            m.mNumElements = 0;
-            // clear also resets mInfo to 0, that's sometimes not necessary.
-            auto const numElementsWithBuffer = m.calcNumElementsWithBuffer(m.mMask + 1);
-
-            for (size_t idx = 0; idx < numElementsWithBuffer; ++idx) {
-                if (0 != m.mInfo[idx]) {
-                    Node& n = m.mKeyVals[idx];
-                    n.destroy(m);
-                    n.~Node();
-                }
-            }
-        }
-
-        void nodesDoNotDeallocate(M& m) const noexcept {
-            m.mNumElements = 0;
-            // clear also resets mInfo to 0, that's sometimes not necessary.
-            auto const numElementsWithBuffer = m.calcNumElementsWithBuffer(m.mMask + 1);
-            for (size_t idx = 0; idx < numElementsWithBuffer; ++idx) {
-                if (0 != m.mInfo[idx]) {
-                    Node& n = m.mKeyVals[idx];
-                    n.destroyDoNotDeallocate();
-                    n.~Node();
-                }
-            }
-        }
-    };
-
-    // Iter ////////////////////////////////////////////////////////////
-
-    struct fast_forward_tag {};
-
-    // generic iterator for both const_iterator and iterator.
-    template <bool IsConst>
-    // NOLINTNEXTLINE(hicpp-special-member-functions,cppcoreguidelines-special-member-functions)
-    class Iter {
-    private:
-        using NodePtr = typename std::conditional<IsConst, Node const*, Node*>::type;
-
-    public:
-        using difference_type = std::ptrdiff_t;
-        using value_type = typename Self::value_type;
-        using reference = typename std::conditional<IsConst, value_type const&, value_type&>::type;
-        using pointer = typename std::conditional<IsConst, value_type const*, value_type*>::type;
-        using iterator_category = std::forward_iterator_tag;
-
-        // default constructed iterator can be compared to itself, but WON'T return true when
-        // compared to end().
-        Iter() = default;
-
-        // Rule of zero: nothing specified. The conversion constructor is only enabled for
-        // iterator to const_iterator, so it doesn't accidentally work as a copy ctor.
-
-        // Conversion constructor from iterator to const_iterator.
-        template <bool OtherIsConst,
-                  typename = typename std::enable_if<IsConst && !OtherIsConst>::type>
-        // NOLINTNEXTLINE(hicpp-explicit-conversions)
-        Iter(Iter<OtherIsConst> const& other) noexcept
-            : mKeyVals(other.mKeyVals)
-            , mInfo(other.mInfo) {}
-
-        Iter(NodePtr valPtr, uint8_t const* infoPtr) noexcept
-            : mKeyVals(valPtr)
-            , mInfo(infoPtr) {}
-
-        Iter(NodePtr valPtr, uint8_t const* infoPtr,
-             fast_forward_tag ROBIN_HOOD_UNUSED(tag) /*unused*/) noexcept
-            : mKeyVals(valPtr)
-            , mInfo(infoPtr) {
-            fastForward();
-        }
-
-        template <bool OtherIsConst,
-                  typename = typename std::enable_if<IsConst && !OtherIsConst>::type>
-        Iter& operator=(Iter<OtherIsConst> const& other) noexcept {
-            mKeyVals = other.mKeyVals;
-            mInfo = other.mInfo;
-            return *this;
-        }
-
-        // prefix increment. Undefined behavior if we are at end()!
-        Iter& operator++() noexcept {
-            mInfo++;
-            mKeyVals++;
-            fastForward();
-            return *this;
-        }
-
-        Iter operator++(int) noexcept {
-            Iter tmp = *this;
-            ++(*this);
-            return tmp;
-        }
-
-        reference operator*() const {
-            return **mKeyVals;
-        }
-
-        pointer operator->() const {
-            return &**mKeyVals;
-        }
-
-        template <bool O>
-        bool operator==(Iter<O> const& o) const noexcept {
-            return mKeyVals == o.mKeyVals;
-        }
-
-        template <bool O>
-        bool operator!=(Iter<O> const& o) const noexcept {
-            return mKeyVals != o.mKeyVals;
-        }
-
-    private:
-        // fast forward to the next non-free info byte
-        // I've tried a few variants that don't depend on intrinsics, but unfortunately they are
-        // quite a bit slower than this one. So I've reverted that change again. See map_benchmark.
-        void fastForward() noexcept {
-            size_t n = 0;
-            while (0U == (n = detail::unaligned_load<size_t>(mInfo))) {
-                mInfo += sizeof(size_t);
-                mKeyVals += sizeof(size_t);
-            }
-#if defined(ROBIN_HOOD_DISABLE_INTRINSICS)
-            // we know for certain that within the next 8 bytes we'll find a non-zero one.
-            if (ROBIN_HOOD_UNLIKELY(0U == detail::unaligned_load<uint32_t>(mInfo))) {
-                mInfo += 4;
-                mKeyVals += 4;
-            }
-            if (ROBIN_HOOD_UNLIKELY(0U == detail::unaligned_load<uint16_t>(mInfo))) {
-                mInfo += 2;
-                mKeyVals += 2;
-            }
-            if (ROBIN_HOOD_UNLIKELY(0U == *mInfo)) {
-                mInfo += 1;
-                mKeyVals += 1;
-            }
-#else
-#    if ROBIN_HOOD(LITTLE_ENDIAN)
-            auto inc = ROBIN_HOOD_COUNT_TRAILING_ZEROES(n) / 8;
-#    else
-            auto inc = ROBIN_HOOD_COUNT_LEADING_ZEROES(n) / 8;
-#    endif
-            mInfo += inc;
-            mKeyVals += inc;
-#endif
-        }
-
-        friend class Table<IsFlat, MaxLoadFactor100, key_type, mapped_type, hasher, key_equal>;
-        NodePtr mKeyVals{nullptr};
-        uint8_t const* mInfo{nullptr};
-    };
-
-    ////////////////////////////////////////////////////////////////////
-
-    // highly performance relevant code.
-    // Lower bits are used for indexing into the array (2^n size)
-    // The upper 1-5 bits need to be a reasonable good hash, to save comparisons.
-    template <typename HashKey>
-    void keyToIdx(HashKey&& key, size_t* idx, InfoType* info) const {
-        // for a user-specified hash that is *not* robin_hood::hash, apply robin_hood::hash as
-        // an additional mixing step. This serves as a bad hash prevention, if the given data is
-        // badly mixed.
-        using Mix =
-            typename std::conditional<std::is_same<::robin_hood::hash<key_type>, hasher>::value,
-                                      ::robin_hood::detail::identity_hash<size_t>,
-                                      ::robin_hood::hash<size_t>>::type;
-
-        // the lower InitialInfoNumBits are reserved for info.
-        auto h = Mix{}(WHash::operator()(key));
-        *info = mInfoInc + static_cast<InfoType>((h & InfoMask) >> mInfoHashShift);
-        *idx = (h >> InitialInfoNumBits) & mMask;
-    }
-
-    // forwards the index by one, wrapping around at the end
-    void next(InfoType* info, size_t* idx) const noexcept {
-        *idx = *idx + 1;
-        *info += mInfoInc;
-    }
-
-    void nextWhileLess(InfoType* info, size_t* idx) const noexcept {
-        // unrolling this by hand did not bring any speedups.
-        while (*info < mInfo[*idx]) {
-            next(info, idx);
-        }
-    }
-
-    // Shift everything up by one element. Tries to move stuff around.
-    void
-    shiftUp(size_t startIdx,
-            size_t const insertion_idx) noexcept(std::is_nothrow_move_assignable<Node>::value) {
-        auto idx = startIdx;
-        ::new (static_cast<void*>(mKeyVals + idx)) Node(std::move(mKeyVals[idx - 1]));
-        while (--idx != insertion_idx) {
-            mKeyVals[idx] = std::move(mKeyVals[idx - 1]);
-        }
-
-        idx = startIdx;
-        while (idx != insertion_idx) {
-            ROBIN_HOOD_COUNT(shiftUp)
-            mInfo[idx] = static_cast<uint8_t>(mInfo[idx - 1] + mInfoInc);
-            if (ROBIN_HOOD_UNLIKELY(mInfo[idx] + mInfoInc > 0xFF)) {
-                mMaxNumElementsAllowed = 0;
-            }
-            --idx;
-        }
-    }
-
-    void shiftDown(size_t idx) noexcept(std::is_nothrow_move_assignable<Node>::value) {
-        // until we find one that is either empty or has zero offset.
-        // TODO(martinus) we don't need to move everything, just the last one for the same
-        // bucket.
-        mKeyVals[idx].destroy(*this);
-
-        // until we find one that is either empty or has zero offset.
-        while (mInfo[idx + 1] >= 2 * mInfoInc) {
-            ROBIN_HOOD_COUNT(shiftDown)
-            mInfo[idx] = static_cast<uint8_t>(mInfo[idx + 1] - mInfoInc);
-            mKeyVals[idx] = std::move(mKeyVals[idx + 1]);
-            ++idx;
-        }
-
-        mInfo[idx] = 0;
-        // don't destroy, we've moved it
-        // mKeyVals[idx].destroy(*this);
-        mKeyVals[idx].~Node();
-    }
-
-    // copy of find(), except that it returns iterator instead of const_iterator.
-    template <typename Other>
-    ROBIN_HOOD(NODISCARD)
-    size_t findIdx(Other const& key) const {
-        size_t idx{};
-        InfoType info{};
-        keyToIdx(key, &idx, &info);
-
-        do {
-            // unrolling this twice gives a bit of a speedup. More unrolling did not help.
-            if (info == mInfo[idx] &&
-                ROBIN_HOOD_LIKELY(WKeyEqual::operator()(key, mKeyVals[idx].getFirst()))) {
-                return idx;
-            }
-            next(&info, &idx);
-            if (info == mInfo[idx] &&
-                ROBIN_HOOD_LIKELY(WKeyEqual::operator()(key, mKeyVals[idx].getFirst()))) {
-                return idx;
-            }
-            next(&info, &idx);
-        } while (info <= mInfo[idx]);
-
-        // nothing found!
-        return mMask == 0 ? 0
-                          : static_cast<size_t>(std::distance(
-                                mKeyVals, reinterpret_cast_no_cast_align_warning<Node*>(mInfo)));
-    }
-
-    void cloneData(const Table& o) {
-        Cloner<Table, IsFlat && ROBIN_HOOD_IS_TRIVIALLY_COPYABLE(Node)>()(o, *this);
-    }
-
-    // inserts a keyval that is guaranteed to be new, e.g. when the hashmap is resized.
-    // @return index where the element was created
-    size_t insert_move(Node&& keyval) {
-        // we don't retry, fail if overflowing
-        // don't need to check max num elements
-        if (0 == mMaxNumElementsAllowed && !try_increase_info()) {
-            throwOverflowError(); // impossible to reach LCOV_EXCL_LINE
-        }
-
-        size_t idx{};
-        InfoType info{};
-        keyToIdx(keyval.getFirst(), &idx, &info);
-
-        // skip forward. Use <= because we are certain that the element is not there.
-        while (info <= mInfo[idx]) {
-            idx = idx + 1;
-            info += mInfoInc;
-        }
-
-        // key not found, so we are now exactly where we want to insert it.
-        auto const insertion_idx = idx;
-        auto const insertion_info = static_cast<uint8_t>(info);
-        if (ROBIN_HOOD_UNLIKELY(insertion_info + mInfoInc > 0xFF)) {
-            mMaxNumElementsAllowed = 0;
-        }
-
-        // find an empty spot
-        while (0 != mInfo[idx]) {
-            next(&info, &idx);
-        }
-
-        auto& l = mKeyVals[insertion_idx];
-        if (idx == insertion_idx) {
-            ::new (static_cast<void*>(&l)) Node(std::move(keyval));
-        } else {
-            shiftUp(idx, insertion_idx);
-            l = std::move(keyval);
-        }
-
-        // put at empty spot
-        mInfo[insertion_idx] = insertion_info;
-
-        ++mNumElements;
-        return insertion_idx;
-    }
-
-public:
-    using iterator = Iter<false>;
-    using const_iterator = Iter<true>;
-
-    Table() noexcept(noexcept(Hash()) && noexcept(KeyEqual()))
-        : WHash()
-        , WKeyEqual() {
-        ROBIN_HOOD_TRACE(this)
-    }
-
-    // Creates an empty hash map. Nothing is allocated yet, this happens at the first insert.
-    // This tremendously speeds up ctor & dtor of a map that never receives an element. The
-    // penalty is payed at the first insert, and not before. Lookup of this empty map works
-    // because everybody points to DummyInfoByte::b. parameter bucket_count is dictated by the
-    // standard, but we can ignore it.
-    explicit Table(
-        size_t ROBIN_HOOD_UNUSED(bucket_count) /*unused*/, const Hash& h = Hash{},
-        const KeyEqual& equal = KeyEqual{}) noexcept(noexcept(Hash(h)) && noexcept(KeyEqual(equal)))
-        : WHash(h)
-        , WKeyEqual(equal) {
-        ROBIN_HOOD_TRACE(this)
-    }
-
-    template <typename Iter>
-    Table(Iter first, Iter last, size_t ROBIN_HOOD_UNUSED(bucket_count) /*unused*/ = 0,
-          const Hash& h = Hash{}, const KeyEqual& equal = KeyEqual{})
-        : WHash(h)
-        , WKeyEqual(equal) {
-        ROBIN_HOOD_TRACE(this)
-        insert(first, last);
-    }
-
-    Table(std::initializer_list<value_type> initlist,
-          size_t ROBIN_HOOD_UNUSED(bucket_count) /*unused*/ = 0, const Hash& h = Hash{},
-          const KeyEqual& equal = KeyEqual{})
-        : WHash(h)
-        , WKeyEqual(equal) {
-        ROBIN_HOOD_TRACE(this)
-        insert(initlist.begin(), initlist.end());
-    }
-
-    Table(Table&& o) noexcept
-        : WHash(std::move(static_cast<WHash&>(o)))
-        , WKeyEqual(std::move(static_cast<WKeyEqual&>(o)))
-        , DataPool(std::move(static_cast<DataPool&>(o))) {
-        ROBIN_HOOD_TRACE(this)
-        if (o.mMask) {
-            mKeyVals = std::move(o.mKeyVals);
-            mInfo = std::move(o.mInfo);
-            mNumElements = std::move(o.mNumElements);
-            mMask = std::move(o.mMask);
-            mMaxNumElementsAllowed = std::move(o.mMaxNumElementsAllowed);
-            mInfoInc = std::move(o.mInfoInc);
-            mInfoHashShift = std::move(o.mInfoHashShift);
-            // set other's mask to 0 so its destructor won't do anything
-            o.init();
-        }
-    }
-
-    Table& operator=(Table&& o) noexcept {
-        ROBIN_HOOD_TRACE(this)
-        if (&o != this) {
-            if (o.mMask) {
-                // only move stuff if the other map actually has some data
-                destroy();
-                mKeyVals = std::move(o.mKeyVals);
-                mInfo = std::move(o.mInfo);
-                mNumElements = std::move(o.mNumElements);
-                mMask = std::move(o.mMask);
-                mMaxNumElementsAllowed = std::move(o.mMaxNumElementsAllowed);
-                mInfoInc = std::move(o.mInfoInc);
-                mInfoHashShift = std::move(o.mInfoHashShift);
-                WHash::operator=(std::move(static_cast<WHash&>(o)));
-                WKeyEqual::operator=(std::move(static_cast<WKeyEqual&>(o)));
-                DataPool::operator=(std::move(static_cast<DataPool&>(o)));
-
-                o.init();
-
-            } else {
-                // nothing in the other map => just clear us.
-                clear();
-            }
-        }
-        return *this;
-    }
-
-    Table(const Table& o)
-        : WHash(static_cast<const WHash&>(o))
-        , WKeyEqual(static_cast<const WKeyEqual&>(o))
-        , DataPool(static_cast<const DataPool&>(o)) {
-        ROBIN_HOOD_TRACE(this)
-        if (!o.empty()) {
-            // not empty: create an exact copy. it is also possible to just iterate through all
-            // elements and insert them, but copying is probably faster.
-
-            auto const numElementsWithBuffer = calcNumElementsWithBuffer(o.mMask + 1);
-            auto const numBytesTotal = calcNumBytesTotal(numElementsWithBuffer);
-
-            ROBIN_HOOD_LOG("std::malloc " << numBytesTotal << " = calcNumBytesTotal("
-                                          << numElementsWithBuffer << ")")
-            mKeyVals = static_cast<Node*>(
-                detail::assertNotNull<std::bad_alloc>(std::malloc(numBytesTotal)));
-            // no need for calloc because clonData does memcpy
-            mInfo = reinterpret_cast<uint8_t*>(mKeyVals + numElementsWithBuffer);
-            mNumElements = o.mNumElements;
-            mMask = o.mMask;
-            mMaxNumElementsAllowed = o.mMaxNumElementsAllowed;
-            mInfoInc = o.mInfoInc;
-            mInfoHashShift = o.mInfoHashShift;
-            cloneData(o);
-        }
-    }
-
-    // Creates a copy of the given map. Copy constructor of each entry is used.
-    // Not sure why clang-tidy thinks this doesn't handle self assignment, it does
-    // NOLINTNEXTLINE(bugprone-unhandled-self-assignment,cert-oop54-cpp)
-    Table& operator=(Table const& o) {
-        ROBIN_HOOD_TRACE(this)
-        if (&o == this) {
-            // prevent assigning of itself
-            return *this;
-        }
-
-        // we keep using the old allocator and not assign the new one, because we want to keep
-        // the memory available. when it is the same size.
-        if (o.empty()) {
-            if (0 == mMask) {
-                // nothing to do, we are empty too
-                return *this;
-            }
-
-            // not empty: destroy what we have there
-            // clear also resets mInfo to 0, that's sometimes not necessary.
-            destroy();
-            init();
-            WHash::operator=(static_cast<const WHash&>(o));
-            WKeyEqual::operator=(static_cast<const WKeyEqual&>(o));
-            DataPool::operator=(static_cast<DataPool const&>(o));
-
-            return *this;
-        }
-
-        // clean up old stuff
-        Destroyer<Self, IsFlat && std::is_trivially_destructible<Node>::value>{}.nodes(*this);
-
-        if (mMask != o.mMask) {
-            // no luck: we don't have the same array size allocated, so we need to realloc.
-            if (0 != mMask) {
-                // only deallocate if we actually have data!
-                ROBIN_HOOD_LOG("std::free")
-                std::free(mKeyVals);
-            }
-
-            auto const numElementsWithBuffer = calcNumElementsWithBuffer(o.mMask + 1);
-            auto const numBytesTotal = calcNumBytesTotal(numElementsWithBuffer);
-            ROBIN_HOOD_LOG("std::malloc " << numBytesTotal << " = calcNumBytesTotal("
-                                          << numElementsWithBuffer << ")")
-            mKeyVals = static_cast<Node*>(
-                detail::assertNotNull<std::bad_alloc>(std::malloc(numBytesTotal)));
-
-            // no need for calloc here because cloneData performs a memcpy.
-            mInfo = reinterpret_cast<uint8_t*>(mKeyVals + numElementsWithBuffer);
-            // sentinel is set in cloneData
-        }
-        WHash::operator=(static_cast<const WHash&>(o));
-        WKeyEqual::operator=(static_cast<const WKeyEqual&>(o));
-        DataPool::operator=(static_cast<DataPool const&>(o));
-        mNumElements = o.mNumElements;
-        mMask = o.mMask;
-        mMaxNumElementsAllowed = o.mMaxNumElementsAllowed;
-        mInfoInc = o.mInfoInc;
-        mInfoHashShift = o.mInfoHashShift;
-        cloneData(o);
-
-        return *this;
-    }
-
-    // Swaps everything between the two maps.
-    void swap(Table& o) {
-        ROBIN_HOOD_TRACE(this)
-        using std::swap;
-        swap(o, *this);
-    }
-
-    // Clears all data, without resizing.
-    void clear() {
-        ROBIN_HOOD_TRACE(this)
-        if (empty()) {
-            // don't do anything! also important because we don't want to write to
-            // DummyInfoByte::b, even though we would just write 0 to it.
-            return;
-        }
-
-        Destroyer<Self, IsFlat && std::is_trivially_destructible<Node>::value>{}.nodes(*this);
-
-        auto const numElementsWithBuffer = calcNumElementsWithBuffer(mMask + 1);
-        // clear everything, then set the sentinel again
-        uint8_t const z = 0;
-        std::fill(mInfo, mInfo + calcNumBytesInfo(numElementsWithBuffer), z);
-        mInfo[numElementsWithBuffer] = 1;
-
-        mInfoInc = InitialInfoInc;
-        mInfoHashShift = InitialInfoHashShift;
-    }
-
-    // Destroys the map and all it's contents.
-    ~Table() {
-        ROBIN_HOOD_TRACE(this)
-        destroy();
-    }
-
-    // Checks if both tables contain the same entries. Order is irrelevant.
-    bool operator==(const Table& other) const {
-        ROBIN_HOOD_TRACE(this)
-        if (other.size() != size()) {
-            return false;
-        }
-        for (auto const& otherEntry : other) {
-            if (!has(otherEntry)) {
-                return false;
-            }
-        }
-
-        return true;
-    }
-
-    bool operator!=(const Table& other) const {
-        ROBIN_HOOD_TRACE(this)
-        return !operator==(other);
-    }
-
-    template <typename Q = mapped_type>
-    typename std::enable_if<!std::is_void<Q>::value, Q&>::type operator[](const key_type& key) {
-        ROBIN_HOOD_TRACE(this)
-        return doCreateByKey(key);
-    }
-
-    template <typename Q = mapped_type>
-    typename std::enable_if<!std::is_void<Q>::value, Q&>::type operator[](key_type&& key) {
-        ROBIN_HOOD_TRACE(this)
-        return doCreateByKey(std::move(key));
-    }
-
-    template <typename Iter>
-    void insert(Iter first, Iter last) {
-        for (; first != last; ++first) {
-            // value_type ctor needed because this might be called with std::pair's
-            insert(value_type(*first));
-        }
-    }
-
-    template <typename... Args>
-    std::pair<iterator, bool> emplace(Args&&... args) {
-        ROBIN_HOOD_TRACE(this)
-        Node n{*this, std::forward<Args>(args)...};
-        auto r = doInsert(std::move(n));
-        if (!r.second) {
-            // insertion not possible: destroy node
-            // NOLINTNEXTLINE(bugprone-use-after-move)
-            n.destroy(*this);
-        }
-        return r;
-    }
-
-    template <typename... Args>
-    std::pair<iterator, bool> try_emplace(const key_type& key, Args&&... args) {
-        return try_emplace_impl(key, std::forward<Args>(args)...);
-    }
-
-    template <typename... Args>
-    std::pair<iterator, bool> try_emplace(key_type&& key, Args&&... args) {
-        return try_emplace_impl(std::move(key), std::forward<Args>(args)...);
-    }
-
-    template <typename... Args>
-    std::pair<iterator, bool> try_emplace(const_iterator hint, const key_type& key,
-                                          Args&&... args) {
-        (void)hint;
-        return try_emplace_impl(key, std::forward<Args>(args)...);
-    }
-
-    template <typename... Args>
-    std::pair<iterator, bool> try_emplace(const_iterator hint, key_type&& key, Args&&... args) {
-        (void)hint;
-        return try_emplace_impl(std::move(key), std::forward<Args>(args)...);
-    }
-
-    template <typename Mapped>
-    std::pair<iterator, bool> insert_or_assign(const key_type& key, Mapped&& obj) {
-        return insert_or_assign_impl(key, std::forward<Mapped>(obj));
-    }
-
-    template <typename Mapped>
-    std::pair<iterator, bool> insert_or_assign(key_type&& key, Mapped&& obj) {
-        return insert_or_assign_impl(std::move(key), std::forward<Mapped>(obj));
-    }
-
-    template <typename Mapped>
-    std::pair<iterator, bool> insert_or_assign(const_iterator hint, const key_type& key,
-                                               Mapped&& obj) {
-        (void)hint;
-        return insert_or_assign_impl(key, std::forward<Mapped>(obj));
-    }
-
-    template <typename Mapped>
-    std::pair<iterator, bool> insert_or_assign(const_iterator hint, key_type&& key, Mapped&& obj) {
-        (void)hint;
-        return insert_or_assign_impl(std::move(key), std::forward<Mapped>(obj));
-    }
-
-    std::pair<iterator, bool> insert(const value_type& keyval) {
-        ROBIN_HOOD_TRACE(this)
-        return doInsert(keyval);
-    }
-
-    std::pair<iterator, bool> insert(value_type&& keyval) {
-        return doInsert(std::move(keyval));
-    }
-
-    // Returns 1 if key is found, 0 otherwise.
-    size_t count(const key_type& key) const { // NOLINT(modernize-use-nodiscard)
-        ROBIN_HOOD_TRACE(this)
-        auto kv = mKeyVals + findIdx(key);
-        if (kv != reinterpret_cast_no_cast_align_warning<Node*>(mInfo)) {
-            return 1;
-        }
-        return 0;
-    }
-
-    template <typename OtherKey, typename Self_ = Self>
-    // NOLINTNEXTLINE(modernize-use-nodiscard)
-    typename std::enable_if<Self_::is_transparent, size_t>::type count(const OtherKey& key) const {
-        ROBIN_HOOD_TRACE(this)
-        auto kv = mKeyVals + findIdx(key);
-        if (kv != reinterpret_cast_no_cast_align_warning<Node*>(mInfo)) {
-            return 1;
-        }
-        return 0;
-    }
-
-    bool contains(const key_type& key) const { // NOLINT(modernize-use-nodiscard)
-        return 1U == count(key);
-    }
-
-    template <typename OtherKey, typename Self_ = Self>
-    // NOLINTNEXTLINE(modernize-use-nodiscard)
-    typename std::enable_if<Self_::is_transparent, bool>::type contains(const OtherKey& key) const {
-        return 1U == count(key);
-    }
-
-    // Returns a reference to the value found for key.
-    // Throws std::out_of_range if element cannot be found
-    template <typename Q = mapped_type>
-    // NOLINTNEXTLINE(modernize-use-nodiscard)
-    typename std::enable_if<!std::is_void<Q>::value, Q&>::type at(key_type const& key) {
-        ROBIN_HOOD_TRACE(this)
-        auto kv = mKeyVals + findIdx(key);
-        if (kv == reinterpret_cast_no_cast_align_warning<Node*>(mInfo)) {
-            doThrow<std::out_of_range>("key not found");
-        }
-        return kv->getSecond();
-    }
-
-    // Returns a reference to the value found for key.
-    // Throws std::out_of_range if element cannot be found
-    template <typename Q = mapped_type>
-    // NOLINTNEXTLINE(modernize-use-nodiscard)
-    typename std::enable_if<!std::is_void<Q>::value, Q const&>::type at(key_type const& key) const {
-        ROBIN_HOOD_TRACE(this)
-        auto kv = mKeyVals + findIdx(key);
-        if (kv == reinterpret_cast_no_cast_align_warning<Node*>(mInfo)) {
-            doThrow<std::out_of_range>("key not found");
-        }
-        return kv->getSecond();
-    }
-
-    const_iterator find(const key_type& key) const { // NOLINT(modernize-use-nodiscard)
-        ROBIN_HOOD_TRACE(this)
-        const size_t idx = findIdx(key);
-        return const_iterator{mKeyVals + idx, mInfo + idx};
-    }
-
-    template <typename OtherKey>
-    const_iterator find(const OtherKey& key, is_transparent_tag /*unused*/) const {
-        ROBIN_HOOD_TRACE(this)
-        const size_t idx = findIdx(key);
-        return const_iterator{mKeyVals + idx, mInfo + idx};
-    }
-
-    template <typename OtherKey, typename Self_ = Self>
-    typename std::enable_if<Self_::is_transparent, // NOLINT(modernize-use-nodiscard)
-                            const_iterator>::type  // NOLINT(modernize-use-nodiscard)
-    find(const OtherKey& key) const {              // NOLINT(modernize-use-nodiscard)
-        ROBIN_HOOD_TRACE(this)
-        const size_t idx = findIdx(key);
-        return const_iterator{mKeyVals + idx, mInfo + idx};
-    }
-
-    iterator find(const key_type& key) {
-        ROBIN_HOOD_TRACE(this)
-        const size_t idx = findIdx(key);
-        return iterator{mKeyVals + idx, mInfo + idx};
-    }
-
-    template <typename OtherKey>
-    iterator find(const OtherKey& key, is_transparent_tag /*unused*/) {
-        ROBIN_HOOD_TRACE(this)
-        const size_t idx = findIdx(key);
-        return iterator{mKeyVals + idx, mInfo + idx};
-    }
-
-    template <typename OtherKey, typename Self_ = Self>
-    typename std::enable_if<Self_::is_transparent, iterator>::type find(const OtherKey& key) {
-        ROBIN_HOOD_TRACE(this)
-        const size_t idx = findIdx(key);
-        return iterator{mKeyVals + idx, mInfo + idx};
-    }
-
-    iterator begin() {
-        ROBIN_HOOD_TRACE(this)
-        if (empty()) {
-            return end();
-        }
-        return iterator(mKeyVals, mInfo, fast_forward_tag{});
-    }
-    const_iterator begin() const { // NOLINT(modernize-use-nodiscard)
-        ROBIN_HOOD_TRACE(this)
-        return cbegin();
-    }
-    const_iterator cbegin() const { // NOLINT(modernize-use-nodiscard)
-        ROBIN_HOOD_TRACE(this)
-        if (empty()) {
-            return cend();
-        }
-        return const_iterator(mKeyVals, mInfo, fast_forward_tag{});
-    }
-
-    iterator end() {
-        ROBIN_HOOD_TRACE(this)
-        // no need to supply valid info pointer: end() must not be dereferenced, and only node
-        // pointer is compared.
-        return iterator{reinterpret_cast_no_cast_align_warning<Node*>(mInfo), nullptr};
-    }
-    const_iterator end() const { // NOLINT(modernize-use-nodiscard)
-        ROBIN_HOOD_TRACE(this)
-        return cend();
-    }
-    const_iterator cend() const { // NOLINT(modernize-use-nodiscard)
-        ROBIN_HOOD_TRACE(this)
-        return const_iterator{reinterpret_cast_no_cast_align_warning<Node*>(mInfo), nullptr};
-    }
-
-    iterator erase(const_iterator pos) {
-        ROBIN_HOOD_TRACE(this)
-        // its safe to perform const cast here
-        // NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
-        return erase(iterator{const_cast<Node*>(pos.mKeyVals), const_cast<uint8_t*>(pos.mInfo)});
-    }
-
-    // Erases element at pos, returns iterator to the next element.
-    iterator erase(iterator pos) {
-        ROBIN_HOOD_TRACE(this)
-        // we assume that pos always points to a valid entry, and not end().
-        auto const idx = static_cast<size_t>(pos.mKeyVals - mKeyVals);
-
-        shiftDown(idx);
-        --mNumElements;
-
-        if (*pos.mInfo) {
-            // we've backward shifted, return this again
-            return pos;
-        }
-
-        // no backward shift, return next element
-        return ++pos;
-    }
-
-    size_t erase(const key_type& key) {
-        ROBIN_HOOD_TRACE(this)
-        size_t idx{};
-        InfoType info{};
-        keyToIdx(key, &idx, &info);
-
-        // check while info matches with the source idx
-        do {
-            if (info == mInfo[idx] && WKeyEqual::operator()(key, mKeyVals[idx].getFirst())) {
-                shiftDown(idx);
-                --mNumElements;
-                return 1;
-            }
-            next(&info, &idx);
-        } while (info <= mInfo[idx]);
-
-        // nothing found to delete
-        return 0;
-    }
-
-    // reserves space for the specified number of elements. Makes sure the old data fits.
-    // exactly the same as reserve(c).
-    void rehash(size_t c) {
-        // forces a reserve
-        reserve(c, true);
-    }
-
-    // reserves space for the specified number of elements. Makes sure the old data fits.
-    // Exactly the same as rehash(c). Use rehash(0) to shrink to fit.
-    void reserve(size_t c) {
-        // reserve, but don't force rehash
-        reserve(c, false);
-    }
-
-    size_type size() const noexcept { // NOLINT(modernize-use-nodiscard)
-        ROBIN_HOOD_TRACE(this)
-        return mNumElements;
-    }
-
-    size_type max_size() const noexcept { // NOLINT(modernize-use-nodiscard)
-        ROBIN_HOOD_TRACE(this)
-        return static_cast<size_type>(-1);
-    }
-
-    ROBIN_HOOD(NODISCARD) bool empty() const noexcept {
-        ROBIN_HOOD_TRACE(this)
-        return 0 == mNumElements;
-    }
-
-    float max_load_factor() const noexcept { // NOLINT(modernize-use-nodiscard)
-        ROBIN_HOOD_TRACE(this)
-        return MaxLoadFactor100 / 100.0F;
-    }
-
-    // Average number of elements per bucket. Since we allow only 1 per bucket
-    float load_factor() const noexcept { // NOLINT(modernize-use-nodiscard)
-        ROBIN_HOOD_TRACE(this)
-        return static_cast<float>(size()) / static_cast<float>(mMask + 1);
-    }
-
-    ROBIN_HOOD(NODISCARD) size_t mask() const noexcept {
-        ROBIN_HOOD_TRACE(this)
-        return mMask;
-    }
-
-    ROBIN_HOOD(NODISCARD) size_t calcMaxNumElementsAllowed(size_t maxElements) const noexcept {
-        if (ROBIN_HOOD_LIKELY(maxElements <= (std::numeric_limits<size_t>::max)() / 100)) {
-            return maxElements * MaxLoadFactor100 / 100;
-        }
-
-        // we might be a bit inprecise, but since maxElements is quite large that doesn't matter
-        return (maxElements / 100) * MaxLoadFactor100;
-    }
-
-    ROBIN_HOOD(NODISCARD) size_t calcNumBytesInfo(size_t numElements) const noexcept {
-        // we add a uint64_t, which houses the sentinel (first byte) and padding so we can load
-        // 64bit types.
-        return numElements + sizeof(uint64_t);
-    }
-
-    ROBIN_HOOD(NODISCARD)
-    size_t calcNumElementsWithBuffer(size_t numElements) const noexcept {
-        auto maxNumElementsAllowed = calcMaxNumElementsAllowed(numElements);
-        return numElements + (std::min)(maxNumElementsAllowed, (static_cast<size_t>(0xFF)));
-    }
-
-    // calculation only allowed for 2^n values
-    ROBIN_HOOD(NODISCARD) size_t calcNumBytesTotal(size_t numElements) const {
-#if ROBIN_HOOD(BITNESS) == 64
-        return numElements * sizeof(Node) + calcNumBytesInfo(numElements);
-#else
-        // make sure we're doing 64bit operations, so we are at least safe against 32bit overflows.
-        auto const ne = static_cast<uint64_t>(numElements);
-        auto const s = static_cast<uint64_t>(sizeof(Node));
-        auto const infos = static_cast<uint64_t>(calcNumBytesInfo(numElements));
-
-        auto const total64 = ne * s + infos;
-        auto const total = static_cast<size_t>(total64);
-
-        if (ROBIN_HOOD_UNLIKELY(static_cast<uint64_t>(total) != total64)) {
-            throwOverflowError();
-        }
-        return total;
-#endif
-    }
-
-private:
-    template <typename Q = mapped_type>
-    ROBIN_HOOD(NODISCARD)
-    typename std::enable_if<!std::is_void<Q>::value, bool>::type has(const value_type& e) const {
-        ROBIN_HOOD_TRACE(this)
-        auto it = find(e.first);
-        return it != end() && it->second == e.second;
-    }
-
-    template <typename Q = mapped_type>
-    ROBIN_HOOD(NODISCARD)
-    typename std::enable_if<std::is_void<Q>::value, bool>::type has(const value_type& e) const {
-        ROBIN_HOOD_TRACE(this)
-        return find(e) != end();
-    }
-
-    void reserve(size_t c, bool forceRehash) {
-        ROBIN_HOOD_TRACE(this)
-        auto const minElementsAllowed = (std::max)(c, mNumElements);
-        auto newSize = InitialNumElements;
-        while (calcMaxNumElementsAllowed(newSize) < minElementsAllowed && newSize != 0) {
-            newSize *= 2;
-        }
-        if (ROBIN_HOOD_UNLIKELY(newSize == 0)) {
-            throwOverflowError();
-        }
-
-        ROBIN_HOOD_LOG("newSize > mMask + 1: " << newSize << " > " << mMask << " + 1")
-
-        // only actually do anything when the new size is bigger than the old one. This prevents to
-        // continuously allocate for each reserve() call.
-        if (forceRehash || newSize > mMask + 1) {
-            rehashPowerOfTwo(newSize);
-        }
-    }
-
-    // reserves space for at least the specified number of elements.
-    // only works if numBuckets if power of two
-    void rehashPowerOfTwo(size_t numBuckets) {
-        ROBIN_HOOD_TRACE(this)
-
-        Node* const oldKeyVals = mKeyVals;
-        uint8_t const* const oldInfo = mInfo;
-
-        const size_t oldMaxElementsWithBuffer = calcNumElementsWithBuffer(mMask + 1);
-
-        // resize operation: move stuff
-        init_data(numBuckets);
-        if (oldMaxElementsWithBuffer > 1) {
-            for (size_t i = 0; i < oldMaxElementsWithBuffer; ++i) {
-                if (oldInfo[i] != 0) {
-                    insert_move(std::move(oldKeyVals[i]));
-                    // destroy the node but DON'T destroy the data.
-                    oldKeyVals[i].~Node();
-                }
-            }
-
-            // this check is not necessary as it's guarded by the previous if, but it helps silence
-            // g++'s overeager "attempt to free a non-heap object 'map'
-            // [-Werror=free-nonheap-object]" warning.
-            if (oldKeyVals != reinterpret_cast_no_cast_align_warning<Node*>(&mMask)) {
-                // don't destroy old data: put it into the pool instead
-                DataPool::addOrFree(oldKeyVals, calcNumBytesTotal(oldMaxElementsWithBuffer));
-            }
-        }
-    }
-
-    ROBIN_HOOD(NOINLINE) void throwOverflowError() const {
-#if ROBIN_HOOD(HAS_EXCEPTIONS)
-        throw std::overflow_error("robin_hood::map overflow");
-#else
-        abort();
-#endif
-    }
-
-    template <typename OtherKey, typename... Args>
-    std::pair<iterator, bool> try_emplace_impl(OtherKey&& key, Args&&... args) {
-        ROBIN_HOOD_TRACE(this)
-        auto it = find(key);
-        if (it == end()) {
-            return emplace(std::piecewise_construct,
-                           std::forward_as_tuple(std::forward<OtherKey>(key)),
-                           std::forward_as_tuple(std::forward<Args>(args)...));
-        }
-        return {it, false};
-    }
-
-    template <typename OtherKey, typename Mapped>
-    std::pair<iterator, bool> insert_or_assign_impl(OtherKey&& key, Mapped&& obj) {
-        ROBIN_HOOD_TRACE(this)
-        auto it = find(key);
-        if (it == end()) {
-            return emplace(std::forward<OtherKey>(key), std::forward<Mapped>(obj));
-        }
-        it->second = std::forward<Mapped>(obj);
-        return {it, false};
-    }
-
-    void init_data(size_t max_elements) {
-        mNumElements = 0;
-        mMask = max_elements - 1;
-        mMaxNumElementsAllowed = calcMaxNumElementsAllowed(max_elements);
-
-        auto const numElementsWithBuffer = calcNumElementsWithBuffer(max_elements);
-
-        // calloc also zeroes everything
-        auto const numBytesTotal = calcNumBytesTotal(numElementsWithBuffer);
-        ROBIN_HOOD_LOG("std::calloc " << numBytesTotal << " = calcNumBytesTotal("
-                                      << numElementsWithBuffer << ")")
-        mKeyVals = reinterpret_cast<Node*>(
-            detail::assertNotNull<std::bad_alloc>(std::calloc(1, numBytesTotal)));
-        mInfo = reinterpret_cast<uint8_t*>(mKeyVals + numElementsWithBuffer);
-
-        // set sentinel
-        mInfo[numElementsWithBuffer] = 1;
-
-        mInfoInc = InitialInfoInc;
-        mInfoHashShift = InitialInfoHashShift;
-    }
-
-    template <typename Arg, typename Q = mapped_type>
-    typename std::enable_if<!std::is_void<Q>::value, Q&>::type doCreateByKey(Arg&& key) {
-        while (true) {
-            size_t idx{};
-            InfoType info{};
-            keyToIdx(key, &idx, &info);
-            nextWhileLess(&info, &idx);
-
-            // while we potentially have a match. Can't do a do-while here because when mInfo is
-            // 0 we don't want to skip forward
-            while (info == mInfo[idx]) {
-                if (WKeyEqual::operator()(key, mKeyVals[idx].getFirst())) {
-                    // key already exists, do not insert.
-                    return mKeyVals[idx].getSecond();
-                }
-                next(&info, &idx);
-            }
-
-            // unlikely that this evaluates to true
-            if (ROBIN_HOOD_UNLIKELY(mNumElements >= mMaxNumElementsAllowed)) {
-                increase_size();
-                continue;
-            }
-
-            // key not found, so we are now exactly where we want to insert it.
-            auto const insertion_idx = idx;
-            auto const insertion_info = info;
-            if (ROBIN_HOOD_UNLIKELY(insertion_info + mInfoInc > 0xFF)) {
-                mMaxNumElementsAllowed = 0;
-            }
-
-            // find an empty spot
-            while (0 != mInfo[idx]) {
-                next(&info, &idx);
-            }
-
-            auto& l = mKeyVals[insertion_idx];
-            if (idx == insertion_idx) {
-                // put at empty spot. This forwards all arguments into the node where the object
-                // is constructed exactly where it is needed.
-                ::new (static_cast<void*>(&l))
-                    Node(*this, std::piecewise_construct,
-                         std::forward_as_tuple(std::forward<Arg>(key)), std::forward_as_tuple());
-            } else {
-                shiftUp(idx, insertion_idx);
-                l = Node(*this, std::piecewise_construct,
-                         std::forward_as_tuple(std::forward<Arg>(key)), std::forward_as_tuple());
-            }
-
-            // mKeyVals[idx].getFirst() = std::move(key);
-            mInfo[insertion_idx] = static_cast<uint8_t>(insertion_info);
-
-            ++mNumElements;
-            return mKeyVals[insertion_idx].getSecond();
-        }
-    }
-
-    // This is exactly the same code as operator[], except for the return values
-    template <typename Arg>
-    std::pair<iterator, bool> doInsert(Arg&& keyval) {
-        while (true) {
-            size_t idx{};
-            InfoType info{};
-            keyToIdx(getFirstConst(keyval), &idx, &info);
-            nextWhileLess(&info, &idx);
-
-            // while we potentially have a match
-            while (info == mInfo[idx]) {
-                if (WKeyEqual::operator()(getFirstConst(keyval), mKeyVals[idx].getFirst())) {
-                    // key already exists, do NOT insert.
-                    // see http://en.cppreference.com/w/cpp/container/unordered_map/insert
-                    return std::make_pair<iterator, bool>(iterator(mKeyVals + idx, mInfo + idx),
-                                                          false);
-                }
-                next(&info, &idx);
-            }
-
-            // unlikely that this evaluates to true
-            if (ROBIN_HOOD_UNLIKELY(mNumElements >= mMaxNumElementsAllowed)) {
-                increase_size();
-                continue;
-            }
-
-            // key not found, so we are now exactly where we want to insert it.
-            auto const insertion_idx = idx;
-            auto const insertion_info = info;
-            if (ROBIN_HOOD_UNLIKELY(insertion_info + mInfoInc > 0xFF)) {
-                mMaxNumElementsAllowed = 0;
-            }
-
-            // find an empty spot
-            while (0 != mInfo[idx]) {
-                next(&info, &idx);
-            }
-
-            auto& l = mKeyVals[insertion_idx];
-            if (idx == insertion_idx) {
-                ::new (static_cast<void*>(&l)) Node(*this, std::forward<Arg>(keyval));
-            } else {
-                shiftUp(idx, insertion_idx);
-                l = Node(*this, std::forward<Arg>(keyval));
-            }
-
-            // put at empty spot
-            mInfo[insertion_idx] = static_cast<uint8_t>(insertion_info);
-
-            ++mNumElements;
-            return std::make_pair(iterator(mKeyVals + insertion_idx, mInfo + insertion_idx), true);
-        }
-    }
-
-    bool try_increase_info() {
-        ROBIN_HOOD_LOG("mInfoInc=" << mInfoInc << ", numElements=" << mNumElements
-                                   << ", maxNumElementsAllowed="
-                                   << calcMaxNumElementsAllowed(mMask + 1))
-        if (mInfoInc <= 2) {
-            // need to be > 2 so that shift works (otherwise undefined behavior!)
-            return false;
-        }
-        // we got space left, try to make info smaller
-        mInfoInc = static_cast<uint8_t>(mInfoInc >> 1U);
-
-        // remove one bit of the hash, leaving more space for the distance info.
-        // This is extremely fast because we can operate on 8 bytes at once.
-        ++mInfoHashShift;
-        auto const numElementsWithBuffer = calcNumElementsWithBuffer(mMask + 1);
-
-        for (size_t i = 0; i < numElementsWithBuffer; i += 8) {
-            auto val = unaligned_load<uint64_t>(mInfo + i);
-            val = (val >> 1U) & UINT64_C(0x7f7f7f7f7f7f7f7f);
-            std::memcpy(mInfo + i, &val, sizeof(val));
-        }
-        // update sentinel, which might have been cleared out!
-        mInfo[numElementsWithBuffer] = 1;
-
-        mMaxNumElementsAllowed = calcMaxNumElementsAllowed(mMask + 1);
-        return true;
-    }
-
-    void increase_size() {
-        // nothing allocated yet? just allocate InitialNumElements
-        if (0 == mMask) {
-            init_data(InitialNumElements);
-            return;
-        }
-
-        auto const maxNumElementsAllowed = calcMaxNumElementsAllowed(mMask + 1);
-        if (mNumElements < maxNumElementsAllowed && try_increase_info()) {
-            return;
-        }
-
-        ROBIN_HOOD_LOG("mNumElements=" << mNumElements << ", maxNumElementsAllowed="
-                                       << maxNumElementsAllowed << ", load="
-                                       << (static_cast<double>(mNumElements) * 100.0 /
-                                           (static_cast<double>(mMask) + 1)))
-        // it seems we have a really bad hash function! don't try to resize again
-        if (mNumElements * 2 < calcMaxNumElementsAllowed(mMask + 1)) {
-            throwOverflowError();
-        }
-
-        rehashPowerOfTwo((mMask + 1) * 2);
-    }
-
-    void destroy() {
-        if (0 == mMask) {
-            // don't deallocate!
-            return;
-        }
-
-        Destroyer<Self, IsFlat && std::is_trivially_destructible<Node>::value>{}
-            .nodesDoNotDeallocate(*this);
-
-        // This protection against not deleting mMask shouldn't be needed as it's sufficiently
-        // protected with the 0==mMask check, but I have this anyways because g++ 7 otherwise
-        // reports a compile error: attempt to free a non-heap object 'fm'
-        // [-Werror=free-nonheap-object]
-        if (mKeyVals != reinterpret_cast_no_cast_align_warning<Node*>(&mMask)) {
-            ROBIN_HOOD_LOG("std::free")
-            std::free(mKeyVals);
-        }
-    }
-
-    void init() noexcept {
-        mKeyVals = reinterpret_cast_no_cast_align_warning<Node*>(&mMask);
-        mInfo = reinterpret_cast<uint8_t*>(&mMask);
-        mNumElements = 0;
-        mMask = 0;
-        mMaxNumElementsAllowed = 0;
-        mInfoInc = InitialInfoInc;
-        mInfoHashShift = InitialInfoHashShift;
-    }
-
-    // members are sorted so no padding occurs
-    Node* mKeyVals = reinterpret_cast_no_cast_align_warning<Node*>(&mMask); // 8 byte  8
-    uint8_t* mInfo = reinterpret_cast<uint8_t*>(&mMask);                    // 8 byte 16
-    size_t mNumElements = 0;                                                // 8 byte 24
-    size_t mMask = 0;                                                       // 8 byte 32
-    size_t mMaxNumElementsAllowed = 0;                                      // 8 byte 40
-    InfoType mInfoInc = InitialInfoInc;                                     // 4 byte 44
-    InfoType mInfoHashShift = InitialInfoHashShift;                         // 4 byte 48
-                                                    // 16 byte 56 if NodeAllocator
-};
-
-} // namespace detail
-
-// map
-
-template <typename Key, typename T, typename Hash = hash<Key>,
-          typename KeyEqual = std::equal_to<Key>, size_t MaxLoadFactor100 = 80>
-using unordered_flat_map = detail::Table<true, MaxLoadFactor100, Key, T, Hash, KeyEqual>;
-
-template <typename Key, typename T, typename Hash = hash<Key>,
-          typename KeyEqual = std::equal_to<Key>, size_t MaxLoadFactor100 = 80>
-using unordered_node_map = detail::Table<false, MaxLoadFactor100, Key, T, Hash, KeyEqual>;
-
-template <typename Key, typename T, typename Hash = hash<Key>,
-          typename KeyEqual = std::equal_to<Key>, size_t MaxLoadFactor100 = 80>
-using unordered_map =
-    detail::Table<sizeof(robin_hood::pair<Key, T>) <= sizeof(size_t) * 6 &&
-                      std::is_nothrow_move_constructible<robin_hood::pair<Key, T>>::value &&
-                      std::is_nothrow_move_assignable<robin_hood::pair<Key, T>>::value,
-                  MaxLoadFactor100, Key, T, Hash, KeyEqual>;
-
-// set
-
-template <typename Key, typename Hash = hash<Key>, typename KeyEqual = std::equal_to<Key>,
-          size_t MaxLoadFactor100 = 80>
-using unordered_flat_set = detail::Table<true, MaxLoadFactor100, Key, void, Hash, KeyEqual>;
-
-template <typename Key, typename Hash = hash<Key>, typename KeyEqual = std::equal_to<Key>,
-          size_t MaxLoadFactor100 = 80>
-using unordered_node_set = detail::Table<false, MaxLoadFactor100, Key, void, Hash, KeyEqual>;
-
-template <typename Key, typename Hash = hash<Key>, typename KeyEqual = std::equal_to<Key>,
-          size_t MaxLoadFactor100 = 80>
-using unordered_set = detail::Table<sizeof(Key) <= sizeof(size_t) * 6 &&
-                                        std::is_nothrow_move_constructible<Key>::value &&
-                                        std::is_nothrow_move_assignable<Key>::value,
-                                    MaxLoadFactor100, Key, void, Hash, KeyEqual>;
-
-} // namespace robin_hood
-
-#endif
-- 
cgit v1.2.3