// Copyright 2016 Google Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // //////////////////////////////////////////////////////////////////////////////// #include "compact_enc_det.h" #include // for sqrt #include // for size_t #include // for printf, fprintf, NULL, etc #include // for qsort #include // for memset, memcpy, memcmp, etc #include #include // for string, operator==, etc #include "compact_enc_det_hint_code.h" #include "util/string_util.h" #include "util/basictypes.h" #include "util/commandlineflags.h" #include "util/logging.h" using std::string; // TODO as of 2007.10.09: // // Consider font=TT-BHxxx as user-defined => binary // Demote GB18030 if no 8x3x pair // Map byte2 ascii punct to 0x60, digits to 0x7e, gets them into hires // Consider removing/ignoring bytes 01-1F to avoid crap pollution // Possibly boost declared encoding in robust scan // googlebot tiny files // look for ranges of encodings // consider tags just as > < within aligned block of 32 // flag too few characters in postproc (Latin 6 problem) // Remove slow scan beyond 16KB // Consider removing kMostLikelyEncoding or cut it in half // A note on mixed encodings // // The most common encoding error on the web is a page containing a mixture of // CP-1252 and UTF-8. A less common encoding error is a third-party feed that // has been converted from CP-1252 to UTF-8 and then those bytes converted a // second time to UTF-8. CED originally attempted to detect these error cases // by using two synthetic encodings, UTF8CP1252 and UTF8UTF8. The intended // implementation was to start these just below CP1252 and UTF8 respectively in // overall liklihood, and allow 1252 and UTF8 to fall behind if mixtures are // found. // // The UTF8UTF8 encoding is a possible outcome from CED, but unfortunately the // UTF8CP1252 internal encoding was added late and not put into encodings.proto, // so at the final step it is mapped to UTF8UTF8 also. This was a bad idea and // is removed in this November 2011 CL. // // Mixed encoding detection never worked out as well as envisioned, so the // ced_allow_utf8utf8 flag normally disables all this. // // The effect is that CP-1252 and UTF-8 mixtures will usually be detected as // UTF8, and the inputconverter code for UTF8 normally will convert bare // CP-1252 bytes to UTF-8, instead of the less-helpful FFFD substitution. UTF-8 // and double-UTF-8 mixtures will be detected as UTF-8, and the double // conversion will stand. // // However, it is occasionally useful to use CED to detect double-converted // UTF-8 coming from third-party data feeds, so they can be fixed at the source. // For this purpose, the UTF8UTF8 encoding remains available under the // ced_allow_utf8utf8 flag. // // When UTF8UTF8 is detected, the inputconverter code will undo the double // conversion, giving good text. // Norbert Runge has noted these words in CP1252 that are mistakenly identified // as UTF-8 because of the last pair of characters: // NESTLÉ® 0xC9 0xAE U+00C9 U+00AE C9AE = U+026E;SMALL LEZH // drauß\u2019 0xDF 0x92 U+00DF U+2019 DF92 = U+07D2;NKO LETTER N // Mutterschoß\u201c 0xDF 0x93 U+00DF U+201C DF93 = U+07D3;NKO LETTER BA // Schoß\u201c 0xDF 0x93 U+00DF U+201C // weiß\u201c 0xDF 0x93 U+00DF U+00AB // Schnellfuß\u201c 0xDF 0x93 U+00DF U+201C // süß« 0xDF 0xAB U+00DF U+00AB DFAB = U+07EB;NKO HIGH TONE // These four byte combinations now explicitly boost Latin1/CP1252. // And for reference, here are a couple of Portuguese spellings // that may be mistaken as double-byte encodings. // informações 0xE7 0xF5 // traição 0xE7 0xE3 static const char* kVersion = "2.2"; DEFINE_bool(ced_allow_utf8utf8, false, "Allow the UTF8UTF8 encoding, " "to handle mixtures of CP1252 " "converted to UTF-8 zero, one, " "or two times"); DEFINE_int32(enc_detect_slow_max_kb, 16, "Maximum number of Kbytes to examine for " "7-bit-only (2022, Hz, UTF7) encoding detect. " "You are unlikely to want to change this."); DEFINE_int32(enc_detect_fast_max_kb, 256, "Maximum number of Kbytes to examine for encoding detect. " "You are unlikely to want to change this."); DEFINE_int32(ced_reliable_difference, 300, "30 * Bits of minimum probablility " "difference 1st - 2nd to be considered reliable \n" " 2 corresponds to min 4x difference\n" " 4 corresponds to min 16x difference\n" " 8 corresponds to min 256x difference\n" " 10 corresponds to min 1024x difference\n" " 20 corresponds to min 1Mx difference."); // Text debug output options DEFINE_bool(enc_detect_summary, false, "Print first 16 interesting pairs at exit."); DEFINE_bool(counts, false, "Count major-section usage"); // PostScript debug output options DEFINE_bool(enc_detect_detail, false, "Print PostScript of every update, to stderr."); DEFINE_bool(enc_detect_detail2, false, "More PostScript detail of every update, to stderr."); DEFINE_bool(enc_detect_source, false, "Include source text in detail"); // Encoding name must exactly match FIRST column of kI18NInfoByEncoding in // lang_enc.cc // Following flags are not in use. Replace them with constants to // avoid static initialization. //DEFINE_string(enc_detect_watch1, "", "Do detail2 about this encoding name."); //DEFINE_string(enc_detect_watch2, "", "Do detail2 about this encoding name."); static const char* const FLAGS_enc_detect_watch1 = ""; static const char* const FLAGS_enc_detect_watch2 = ""; // Only for experiments. Delete soon. DEFINE_bool(force127, false, "Force Latin1, Latin2, Latin7 based on trigrams"); // Demo-mode/debugging experiment DEFINE_bool(demo_nodefault, false, "Default to all equal; no boost for declared encoding."); DEFINE_bool(dirtsimple, false, "Just scan and count for all encodings"); DEFINE_bool(ced_echo_input, false, "Echo ced input to stderr"); static const int XDECILOG2 = 3; // Multiplier for log base 2 ** n/10 static const int XLOG2 = 30; // Multiplier for log base 2 ** n static const int kFinalPruneDifference = 10 * XLOG2; // Final bits of minimum // probability difference 1st-nth // to be pruned static const int kInititalPruneDifference = kFinalPruneDifference * 4; // Initial bits of minimum // probability difference 1st-nth // to be pruned // static const int kPruneDiffDecrement = kFinalPruneDifference; // Decrements bits of minimum // probability difference 1st-nth // to be pruned static const int kSmallInitDiff = 2 * XLOG2; // bits of minimum // probability difference, base to // superset encodings static const int kBoostInitial = 20 * XLOG2; // bits of boost for // initial byte patterns (BOM, 00) static const int kBadPairWhack = 20 * XLOG2; // bits of whack for // one bad pair static const int kBoostOnePair = 20 * XLOG2; // bits of boost for // one good pair in Hz, etc. static const int kGentleOnePair = 4 * XLOG2; // bits of boost for // one good sequence // static const int kGentlePairWhack = 2 * XLOG2; // bits of whack // for ill-formed sequence static const int kGentlePairBoost = 2 * XLOG2; // bits of boost // for well-formed sequence static const int kDeclaredEncBoost = 5 * XDECILOG2; // bits/10 of boost for // best declared encoding per bigram static const int kBestEncBoost = 5 * XDECILOG2; // bits/10 of boost for // best encoding per bigram static const int kTrigramBoost = 2 * XLOG2; // bits of boost for Latin127 tri static const int kMaxPairs = 48; // Max interesting pairs to look at // If you change this, // adjust *PruneDiff* static const int kPruneMask = 0x07; // Prune every 8 interesting pairs static const int kBestPairsCount = 16; // For first N pairs, do extra boost // based on most likely encoding // of pair over entire web static const int kDerateHintsBelow = 12; // If we have fewer than N bigrams, // weaken the hints enough that // unhinted encodings have a hope of // rising to the top static const int kMinRescanLength = 800; // Don't bother rescanning for // unreliable encoding if fewer // than this many bytes unscanned. // We will rescan at most last half // of this. static const int kStrongBinary = 12; // Make F_BINARY the only encoding static const int kWeakerBinary = 4; // Make F_BINARY likely encoding // These are byte counts from front of file static const int kBinaryHardAsciiLimit = 6 * 1024; // Not binary if all ASCII static const int kBinarySoftAsciiLimit = 8 * 1024; // " if mostly ASCII // We try here to avoid having title text dominate the encoding detection, // for the not-infrequent error case of title in encoding1, body in encoding2: // we want to bias toward encoding2 winning. // // kMaxBigramsTagTitleText should be a multiple of 2, 3, and 4, so that we // rarely cut off mid-character in the original (not-yet-detected) encoding. // This matters most for UTF-8 two- and three-byte codes and for // Shift-JIS three-byte codes. static const int kMaxBigramsTagTitleText = 12; // Keep only some tag text static const int kWeightshiftForTagTitleText = 4; // Give text in tags, etc. // 1/16 normal weight static const int kStrongPairs = 6; // Let reliable enc with this many // pairs overcome missing hint enum CEDInternalFlags { kCEDNone = 0, // The empty flag kCEDRescanning = 1, // Do not further recurse kCEDSlowscore = 2, // Do extra scoring kCEDForceTags = 4, // Always examine text inside tags }; // Forward declaration Encoding InternalDetectEncoding( CEDInternalFlags flags, const char* text, int text_length, const char* url_hint, const char* http_charset_hint, const char* meta_charset_hint, const int encoding_hint, const Language language_hint, // User interface lang const CompactEncDet::TextCorpusType corpus_type, bool ignore_7bit_mail_encodings, int* bytes_consumed, bool* is_reliable, Encoding* second_best_enc); typedef struct { const uint8* hires[4]; // Pointers to possible high-resolution bigram deltas uint8 x_bar; // Average byte2 value uint8 y_bar; // Average byte1 value uint8 x_stddev; // Standard deviation of byte2 value uint8 y_stddev; // Standard deviation of byte1 value int so; // Scaling offset -- add to probabilities below uint8 b1[256]; // Unigram probability for first byte of aligned bigram uint8 b2[256]; // Unigram probability for second byte of aligned bigram uint8 b12[256]; // Unigram probability for cross bytes of aligned bigram } UnigramEntry; //typedef struct { // uint8 b12[256*256]; // Bigram probability for aligned bigram //} FullBigramEntry; // Include all the postproc-generated tables here: // RankedEncoding // kMapToEncoding // unigram_table // kMostLIkelyEncoding // kTLDHintProbs // kCharsetHintProbs // HintEntry, kMaxTldKey kMaxTldVector, etc. // ============================================================================= #include "compact_enc_det_generated_tables.h" #define F_ASCII F_Latin1 // "ASCII" is a misnomer, so this code uses "Latin1" #define F_BINARY F_X_BINARYENC // We are mid-update for name change #define F_UTF8UTF8 F_X_UTF8UTF8 // We are mid-update for name change #define F_BIG5_CP950 F_BIG5 // We are mid-update for name change #define F_Unicode F_UTF_16LE // We are mid-update for name change // ============================================================================= // 7-bit encodings have at least one "interesting" byte value < 0x80 // (00 0E 1B + ~) // JIS 2022-cn 2022-kr hz utf7 // Unicode UTF-16 UTF-32 // 8-bit encodings have no interesting byte values < 0x80 static const uint32 kSevenBitActive = 0x00000001; // needs <80 to detect static const uint32 kUTF7Active = 0x00000002; // <80 and + static const uint32 kHzActive = 0x00000004; // <80 and ~ static const uint32 kIso2022Active = 0x00000008; // <80 and 1B 0E 0F static const uint32 kUTF8Active = 0x00000010; static const uint32 kUTF8UTF8Active = 0x00000020; static const uint32 kUTF1632Active = 0x00000040; // <80 and 00 static const uint32 kBinaryActive = 0x00000080; // <80 and 00 static const uint32 kTwobyteCode = 0x00000100; // Needs 8xxx static const uint32 kIsIndicCode = 0x00000200; // static const uint32 kHighAlphaCode = 0x00000400; // full alphabet in 8x-Fx static const uint32 kHighAccentCode = 0x00000800; // accents in 8x-Fx static const uint32 kEUCJPActive = 0x00001000; // Have to mess with phase // Debug only. not thread safe static int encdet_used = 0; static int rescore_used = 0; static int rescan_used = 0; static int robust_used = 0; static int looking_used = 0; static int doing_used = 0; // For debugging only -- about 256B/entry times about 500 = 128KB // TODO: only allocate this if being used typedef struct { int offset; int best_enc; // Best ranked encoding for this bigram, or // -1 for overhead entries string label; int detail_enc_prob[NUM_RANKEDENCODING]; } DetailEntry; static int watch1_rankedenc = -1; // Debug. not threadsafe static int watch2_rankedenc = -1; // Debug. not threadsafe ////static int next_detail_entry = 0; // Debug. not threadsafe ////static DetailEntry details[kMaxPairs * 10]; // Allow 10 details per bigram // End For debugging only // Must match kTestPrintableAsciiTildePlus exit codes, minus one enum PairSet {AsciiPair = 0, OtherPair = 1, NUM_PAIR_SETS = 2}; // The reasons for pruning enum PruneReason {PRUNE_NORMAL, PRUNE_SLOWEND, PRUNE_FINAL}; static const char* kWhatSetName[] = {"Ascii", "Other"}; // State for encodings that do shift-out/shift-in between one- and two-byte // regions (ISO-2022-xx, HZ) enum StateSoSi {SOSI_NONE, SOSI_ERROR, SOSI_ONEBYTE, SOSI_TWOBYTE}; typedef struct { const uint8* initial_src; // For calculating byte offsets const uint8* limit_src; // Range of input source const uint8* prior_src; // Source consumed by prior call to BoostPrune const uint8* last_pair; // Last pair inserted into interesting_pairs DetailEntry* debug_data; // Normally NULL. Ptr to debug data for // FLAGS_enc_detect_detail PostScript data int next_detail_entry; // Debug bool done; bool reliable; bool hints_derated; int declared_enc_1; // From http/meta hint int declared_enc_2; // from http/meta hint int prune_count; // Number of times we have pruned int trigram_highwater_mark; // Byte offset of last trigram processing bool looking_for_latin_trigrams; // True if we should test for doing // Latin1/2/7 trigram processing bool do_latin_trigrams; // True if we actually are scoring trigrams // Miscellaneous state variables for difficult encodings int binary_quadrants_count; // Number of four bigram quadrants seen: // 0xxxxxxx0xxxxxxx 0xxxxxxx1xxxxxx // 1xxxxxxx0xxxxxxx 1xxxxxxx1xxxxxx int binary_8x4_count; // Number of 8x4 buckets seen: uint32 binary_quadrants_seen; // Bit[i] set if bigram i.......i....... seen uint32 binary_8x4_seen; // Bit[i] set if bigram iii.....ii...... seen int utf7_starts; // Count of possible UTF-7 beginnings seen int prior_utf7_offset; // Source consumed by prior UTF-7 string int next_utf8_ministate; // Mini state for UTF-8 sequences int utf8_minicount[6]; // Number of correct 2- 3- 4-byte seq, errors int next_utf8utf8_ministate; // Mini state for UTF8UTF8 sequences int utf8utf8_odd_byte; // UTF8UTF8 seq has odd number of bytes int utf8utf8_minicount[6]; // Number of correct 2- 3- 4-byte seq, errors StateSoSi next_2022_state; // Mini state for 2022 sequences StateSoSi next_hz_state; // Mini state for HZ sequences bool next_eucjp_oddphase; // Mini state for EUC-JP sequences int byte32_count[8]; // Count of top 3 bits of byte1 of bigram // 0x1x 2x3x 4x5x 6x7x 8x9x AxBx CxDx ExFx uint32 active_special; // Bits showing which special cases are active Encoding tld_hint; // Top TLD encoding or UNKNOWN Encoding http_hint; // What the document says about itself or Encoding meta_hint; // UNKNOWN_ENCODING. BOM is initial byte Encoding bom_hint; // order mark for UTF-xx // small cache of previous interesting bigrams int next_prior_bigram; int prior_bigram[4]; int prior_binary[1]; int top_rankedencoding; // Top two probabilities and families int second_top_rankedencoding; int top_prob; int second_top_prob; int prune_difference; // Prune things this much below the top prob int rankedencoding_list_len; // Number of active encodings int rankedencoding_list[NUM_RANKEDENCODING]; // List of active encodings // int enc_prob[NUM_RANKEDENCODING]; // Cumulative probability per enc // This is where all the action is int hint_prob[NUM_RANKEDENCODING]; // Initial hint probabilities int hint_weight[NUM_RANKEDENCODING]; // Number of hints for this enc // Two sets -- one for printable ASCII, one for the rest int prior_interesting_pair[NUM_PAIR_SETS]; // Pairs consumed by prior call int next_interesting_pair[NUM_PAIR_SETS]; // Next pair to write char interesting_pairs[NUM_PAIR_SETS][kMaxPairs * 2]; // Two bytes per pair int interesting_offsets[NUM_PAIR_SETS][kMaxPairs]; // Src offset of pair int interesting_weightshift[NUM_PAIR_SETS][kMaxPairs]; // weightshift of pair } DetectEncodingState; // Record a debug event that changes probabilities void SetDetailsEncProb(DetectEncodingState* destatep, int offset, int best_enc, const char* label) { int next = destatep->next_detail_entry; destatep->debug_data[next].offset = offset; destatep->debug_data[next].best_enc = best_enc; destatep->debug_data[next].label = label; memcpy(&destatep->debug_data[next].detail_enc_prob, &destatep->enc_prob, sizeof(destatep->enc_prob)); ++destatep->next_detail_entry; } // Record a debug event that changes probabilities, copy offset void SetDetailsEncProbCopyOffset(DetectEncodingState* destatep, int best_enc, const char* label) { int next = destatep->next_detail_entry; destatep->debug_data[next].offset = destatep->debug_data[next - 1].offset; destatep->debug_data[next].best_enc = best_enc; destatep->debug_data[next].label = label; memcpy(&destatep->debug_data[next].detail_enc_prob, &destatep->enc_prob, sizeof(destatep->enc_prob)); ++destatep->next_detail_entry; } // Record a debug event that changes probs and has simple text label void SetDetailsEncLabel(DetectEncodingState* destatep, const char* label) { int next = destatep->next_detail_entry; destatep->debug_data[next].offset = destatep->debug_data[next - 1].offset; destatep->debug_data[next].best_enc = -1; destatep->debug_data[next].label = label; memcpy(&destatep->debug_data[next].detail_enc_prob, &destatep->enc_prob, sizeof(destatep->enc_prob)); ++destatep->next_detail_entry; } // Record a debug event that is just a text label, no change in probs void SetDetailsLabel(DetectEncodingState* destatep, const char* label) { int next = destatep->next_detail_entry; destatep->debug_data[next].offset = destatep->debug_data[next - 1].offset; destatep->debug_data[next].best_enc = -1; destatep->debug_data[next].label = label; memcpy(&destatep->debug_data[next].detail_enc_prob, &destatep->debug_data[next - 1].detail_enc_prob, sizeof(destatep->enc_prob)); ++destatep->next_detail_entry; } // Maps superset encodings to base, to see if 2 encodings are compatible // (Non-identity mappings are marked "-->" below.) static const Encoding kMapEncToBaseEncoding[] = { ISO_8859_1, // 0: Teragram ASCII ISO_8859_2, // 1: Teragram Latin2 ISO_8859_3, // 2: in BasisTech but not in Teragram ISO_8859_4, // 3: Teragram Latin4 ISO_8859_5, // 4: Teragram ISO-8859-5 ISO_8859_6, // 5: Teragram Arabic ISO_8859_7, // 6: Teragram Greek MSFT_CP1255, // 7: Teragram Hebrew --> 36 ISO_8859_9, // 8: in BasisTech but not in Teragram ISO_8859_10, // 9: in BasisTech but not in Teragram JAPANESE_EUC_JP, // 10: Teragram EUC_JP JAPANESE_SHIFT_JIS, // 11: Teragram SJS JAPANESE_JIS, // 12: Teragram JIS CHINESE_BIG5, // 13: Teragram BIG5 CHINESE_GB, // 14: Teragram GB CHINESE_EUC_CN, // 15: Teragram EUC-CN KOREAN_EUC_KR, // 16: Teragram KSC UNICODE, // 17: Teragram Unicode CHINESE_EUC_CN, // 18: Teragram EUC --> 15 CHINESE_EUC_CN, // 19: Teragram CNS --> 15 CHINESE_BIG5, // 20: Teragram BIG5_CP950 --> 13 JAPANESE_SHIFT_JIS, // 21: Teragram CP932 --> 11 UTF8, // 22 UNKNOWN_ENCODING, // 23 ISO_8859_1, // 24: ISO_8859_1 with all characters <= 127 --> 0 RUSSIAN_KOI8_R, // 25: Teragram KOI8R RUSSIAN_CP1251, // 26: Teragram CP1251 ISO_8859_1, // 27: CP1252 aka MSFT euro ascii --> 0 RUSSIAN_KOI8_RU, // 28: CP21866 aka KOI8_RU, used for Ukrainian MSFT_CP1250, // 29: CP1250 aka MSFT eastern european ISO_8859_1, // 30: aka ISO_8859_0 aka ISO_8859_1 euroized --> 0 ISO_8859_9, // 31: used for Turkish ISO_8859_13, // 32: used in Baltic countries --> 43 ISO_8859_11, // 33: aka TIS-620, used for Thai ISO_8859_11, // 34: used for Thai --> 33 MSFT_CP1256, // 35: used for Arabic MSFT_CP1255, // 36: Logical Hebrew Microsoft MSFT_CP1255, // 37: Iso Hebrew Logical --> 36 MSFT_CP1255, // 38: Iso Hebrew Visual --> 36 CZECH_CP852, // 39 ISO_8859_2, // 40: aka ISO_IR_139 aka KOI8_CS --> 1 MSFT_CP1253, // 41: used for Greek, but NOT a superset of 8859-7 RUSSIAN_CP866, // 42 ISO_8859_13, // 43 ISO_2022_KR, // 44 CHINESE_GB, // 45 GBK --> 14 CHINESE_GB, // 46 GB18030 --> 14 CHINESE_BIG5, // 47 BIG5_HKSCS --> 13 ISO_2022_KR, // 48 ISO_2022_CN --> 44 TSCII, // 49 Indic encoding TAMIL_MONO, // 50 Indic encoding - Tamil TAMIL_BI, // 51 Indic encoding - Tamil JAGRAN, // 52 Indic encoding - Devanagari MACINTOSH_ROMAN, // 53 UTF7, // 54 BHASKAR, // 55 Indic encoding - Devanagari HTCHANAKYA, // 56 Indic encoding - Devanagari UTF16BE, // 57 UTF16LE, // 58 UTF32BE, // 59 UTF32LE, // 60 BINARYENC, // 61 HZ_GB_2312, // 62 UTF8UTF8, // 63 TAM_ELANGO, // 64 Elango - Tamil TAM_LTTMBARANI, // 65 Barani - Tamil TAM_SHREE, // 66 Shree - Tamil TAM_TBOOMIS, // 67 TBoomis - Tamil TAM_TMNEWS, // 68 TMNews - Tamil TAM_WEBTAMIL, // 69 Webtamil - Tamil KDDI_SHIFT_JIS, // 70 KDDI Shift_JIS DOCOMO_SHIFT_JIS, // 71 DoCoMo Shift_JIS SOFTBANK_SHIFT_JIS, // 72 SoftBank Shift_JIS KDDI_ISO_2022_JP, // 73 KDDI ISO-2022-JP SOFTBANK_ISO_2022_JP, // 74 SOFTBANK ISO-2022-JP }; COMPILE_ASSERT(arraysize(kMapEncToBaseEncoding) == NUM_ENCODINGS, kMapEncToBaseEncoding_has_incorrect_size); // Maps base encodings to 0, supersets to 1+, undesired to -1 // (Non-identity mappings are marked "-->" below.) static const int kMapEncToSuperLevel[] = { 0, // 0: Teragram ASCII 0, // 1: Teragram Latin2 0, // 2: in BasisTech but not in Teragram 0, // 3: Teragram Latin4 0, // 4: Teragram ISO-8859-5 0, // 5: Teragram Arabic 0, // 6: Teragram Greek 0, // 7: Teragram Hebrew 0, // 8: in BasisTech but not in Teragram 0, // 9: in BasisTech but not in Teragram 0, // 10: Teragram EUC_JP 0, // 11: Teragram SJS 0, // 12: Teragram JIS 0, // 13: Teragram BIG5 0, // 14: Teragram GB 0, // 15: Teragram EUC-CN 0, // 16: Teragram KSC 0, // 17: Teragram Unicode -1, // 18: Teragram EUC --> 15 -1, // 19: Teragram CNS --> 15 1, // 20: Teragram BIG5_CP950 --> 13 1, // 21: Teragram CP932 --> 11 0, // 22 -1, // 23 -1, // 24: ISO_8859_1 with all characters <= 127 --> 0 0, // 25: Teragram KOI8R 0, // 26: Teragram CP1251 1, // 27: CP1252 aka MSFT euro ascii --> 0 0, // 28: CP21866 aka KOI8_RU, used for Ukrainian 0, // 29: CP1250 aka MSFT eastern european 1, // 30: aka ISO_8859_0 aka ISO_8859_1 euroized --> 0 0, // 31: used for Turkish 1, // 32: used in Baltic countries --> 43 0, // 33: aka TIS-620, used for Thai 1, // 34: used for Thai --> 33 0, // 35: used for Arabic 0, // 36: Logical Hebrew Microsoft -1, // 37: Iso Hebrew Logical --> 36 -1, // 38: Iso Hebrew Visual --> 7 0, // 39 1, // 40: aka ISO_IR_139 aka KOI8_CS --> 1 0, // 41: used for Greek, NOT superset of 8859-7 0, // 42 0, // 43 0, // 44 1, // 45 GBK --> 14 1, // 46 GB18030 --> 14 1, // 47 BIG5_HKSCS --> 13 1, // 48 ISO_2022_CN --> 44 0, // 49 Indic encoding 0, // 50 Indic encoding - Tamil 0, // 51 Indic encoding - Tamil 0, // 52 Indic encoding - Devanagari 0, // 53 0, // 54 0, // 55 Indic encoding - Devanagari 0, // 56 Indic encoding - Devanagari 0, // 57 0, // 58 0, // 59 0, // 60 0, // 61 0, // 62 2, // 63 0, 0, 0, 0, 0, 0, // add six more Tamil 0, 0, 0, 0, 0, // add five encodings with emoji }; COMPILE_ASSERT(arraysize(kMapEncToSuperLevel) == NUM_ENCODINGS, kMapEncToSuperLevel_has_incorrect_size); // Subscripted by Encoding enum value static const uint32 kSpecialMask[] = { kHighAccentCode, // 0 kHighAccentCode, kHighAccentCode, kHighAccentCode, kHighAlphaCode, // 4 kHighAlphaCode, kHighAlphaCode, kHighAlphaCode, kHighAccentCode, kHighAccentCode, kTwobyteCode + kEUCJPActive, // 10 euc-jp kTwobyteCode, kSevenBitActive + kIso2022Active, // jis kTwobyteCode, kTwobyteCode, kTwobyteCode, kTwobyteCode, kSevenBitActive + kUTF1632Active, // Unicode kTwobyteCode, kTwobyteCode, kTwobyteCode, // 20 kTwobyteCode, kUTF8Active, // UTF-8 0, 0, kHighAlphaCode, // 25 kHighAlphaCode, kHighAccentCode, kHighAlphaCode, kHighAccentCode, kHighAccentCode, // 30 kHighAccentCode, kHighAccentCode, kHighAlphaCode, kHighAlphaCode, kHighAlphaCode, // 35 kHighAlphaCode, kHighAlphaCode, kHighAlphaCode, 0, 0, // 40 kHighAlphaCode, kHighAlphaCode, kHighAccentCode, kSevenBitActive + kIso2022Active, // 2022-kr kTwobyteCode, kTwobyteCode, kTwobyteCode, kSevenBitActive + kIso2022Active, // 2022-cn kHighAlphaCode + kIsIndicCode, // 49 TSCII kHighAlphaCode + kIsIndicCode, // 50 TAMIL_MONO kHighAlphaCode + kIsIndicCode, // 51 TAMIL_BI kHighAlphaCode + kIsIndicCode, // 52 JAGRAN kHighAccentCode, // 53 MACINTOSH_ROMAN kSevenBitActive + kUTF7Active, // 54 UTF-7 kHighAlphaCode + kIsIndicCode, // 55 BHASKAR Indic encoding - Devanagari kHighAlphaCode + kIsIndicCode, // 56 HTCHANAKYA Indic encoding - Devanagari kSevenBitActive + kUTF1632Active, // 57 UTF16BE kSevenBitActive + kUTF1632Active, // 58 UTF16LE kSevenBitActive + kUTF1632Active, // 59 UTF32BE kSevenBitActive + kUTF1632Active, // 60 UTF32LE kSevenBitActive + kBinaryActive, // 61 BINARYENC kSevenBitActive + kHzActive, // 62 HZ_GB_2312 kHighAccentCode + kUTF8Active + kUTF8UTF8Active, // 63 UTF8UTF8 kHighAlphaCode + kIsIndicCode, // 64 Elango - Tamil kHighAlphaCode + kIsIndicCode, // 65 Barani - Tamil kHighAlphaCode + kIsIndicCode, // 66 Shree - Tamil kHighAlphaCode + kIsIndicCode, // 67 TBoomis - Tamil kHighAlphaCode + kIsIndicCode, // 68 TMNews - Tamil kHighAlphaCode + kIsIndicCode, // 69 Webtamil - Tamil kTwobyteCode, // 70 KDDI Shift_JIS kTwobyteCode, // 71 DoCoMo Shift_JIS kTwobyteCode, // 72 SoftBank Shift_JIS kSevenBitActive + kIso2022Active, // 73 KDDI-ISO-2022-JP kSevenBitActive + kIso2022Active, // 74 SOFTBANK-ISO-2022-JP }; COMPILE_ASSERT(arraysize(kSpecialMask) == NUM_ENCODINGS, kSpecialMask_has_incorrect_size); /*** kHighAlphaCode -- full alphabet in 8x-Fx range, not just accents ISO_8859_5, // 4: Teragram ISO-8859-5 Cyrl UL bd RUSSIAN_CP1251, // 26: Teragram CP1251 UL cdef RUSSIAN_KOI8_R, // 25: Teragram KOI8R LU cdef RUSSIAN_KOI8_RU, // 28: CP21866 aka KOI8_RU, LU cdef RUSSIAN_CP866, // 42 89ae ISO_8859_6, // 5: Teragram Arabic nocase cde MSFT_CP1256, // 35: used for Arabic nocase cde ISO_8859_7, // 6: Teragram Greek UL cdef MSFT_CP1253, // 41: used for Greek UL cdef ISO_8859_8, // 7: Teragram Hebrew nocase ef MSFT_CP1255, // 36: Logical Hebrew Microsoft nocase ef ISO_8859_8_I, // 37: Iso Hebrew Logical nocase ef HEBREW_VISUAL, // 38: Iso Hebrew Visual nocase ef ISO_8859_11, // 33: aka TIS-620, used for Thai nocase abcde MSFT_CP874, // 34: used for Thai nocase abcde TSCII, // 49 8-f TAMIL_MONO, // 50 TAMIL_BI, // 51 JAGRAN, // 52 BHASKAR, // 55 Indic encoding - Devanagari HTCHANAKYA, // 56 Indic encoding - Devanagari ***/ // We can scan bytes using this at about 500 MB/sec 2.8GHz P4 // Slow scan uses this, stopping on NUL ESC SO SI bad C0 and + ~ // We allow FF, 0x0C, here because it gives a better result for old // Ascii text formatted for a TTY // non-zero exits scan loop -- 1 for printable ASCII, 2 otherwise static const char kTestPrintableAsciiTildePlus[256] = { 2,2,2,2,2,2,2,2, 2,0,0,2,0,0,2,2, 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2, 0,0,0,0,0,0,0,0, 0,0,0,1,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,1,2, 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2, }; // We can scan bytes using this at about 550 MB/sec 2.8GHz P4 // Slow scan uses this, stopping on NUL ESC SO SI and bad C0 // after Hz and UTF7 are pruned away // We allow Form Feed, 0x0C, here static const char kTestPrintableAscii[256] = { 2,2,2,2,2,2,2,2, 2,0,0,2,0,0,2,2, 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,2, 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2, }; // Used in first-four-byte testing static const char kIsPrintableAscii[256] = { 0,0,0,0,0,0,0,0, 0,1,1,0,0,1,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0, }; static const signed char kBase64Value[256] = { -1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,62,-1,-1,-1,63, 52,53,54,55,56,57,58,59, 60,61,-1,-1,-1,-1,-1,-1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14, 15,16,17,18,19,20,21,22, 23,24,25,-1,-1,-1,-1,-1, -1,26,27,28,29,30,31,32, 33,34,35,36,37,38,39,40, 41,42,43,44,45,46,47,48, 49,50,51,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1, -1,-1,-1,-1,-1,-1,-1,-1, }; // Subscripted by // Accepts Cx->8x Dx->8x Ex->8x->8x Fx->8x->8x->8x // // Fixed Problem: GB has sequences like B2DB B8D6 BDE1 B9B9 // which we can mis-parse as an error byte followed by good UTF-8: // B2 DBB8 D6BD E1B9B9 // To counteract this, we now require an ASCII7 byte to resync out // of the error state // Next problem: good UTF-8 with bad byte // efbc a012 eea4 bee7 b280 c2b7 // efbca0 12 eea4be e7b280 c2b7 // ^^ bad byte // fix: change state0 byte 1x to be don't-care // // Short UTF-8 ending in ASCII7 byte should resync immediately: // E0 20 E0 A6 AA should give one error and resync at 2nd E0 // static const char kMiniUTF8State[8][16] = { {0,0,0,0,0,0,0,0, 7,7,7,7,1,1,2,4,}, // [0] start char (allow cr/lf/ht) {0,7,0,0,0,0,0,0, 0,0,0,0,7,7,7,7,}, // [1] continue 1 of 2 {0,7,0,0,0,0,0,0, 3,3,3,3,7,7,7,7,}, // [2] continue 1 of 3 {0,7,0,0,0,0,0,0, 0,0,0,0,7,7,7,7,}, // [3] continue 2 of 3 {0,7,0,0,0,0,0,0, 5,5,5,5,7,7,7,7,}, // [4] continue 1 of 4 {0,7,0,0,0,0,0,0, 6,6,6,6,7,7,7,7,}, // [5] continue 2 of 4 {0,7,0,0,0,0,0,0, 0,0,0,0,7,7,7,7,}, // [6] continue 3 of 4 {0,7,0,0,0,0,0,0, 7,7,7,7,7,7,7,7,}, // [7] error, soak up continues, // ONLY resync after Ascii char // then restart }; // Counter to increment: 0-don'tcare 1-error 2-good_2B 3-good_3B 4-good_4B static const char kMiniUTF8Count[8][16] = { {0,0,0,0,0,0,0,0, 1,1,1,1,0,0,0,0,}, // [0] start char (allow cr/lf/ht) {1,1,1,1,1,1,1,1, 2,2,2,2,1,1,1,1,}, // [1] continue 1 of 2 {1,1,1,1,1,1,1,1, 0,0,0,0,1,1,1,1,}, // [2] continue 1 of 3 {1,1,1,1,1,1,1,1, 3,3,3,3,1,1,1,1,}, // [3] continue 2 of 3 {1,1,1,1,1,1,1,1, 0,0,0,0,1,1,1,1,}, // [4] continue 1 of 4 {1,1,1,1,1,1,1,1, 0,0,0,0,1,1,1,1,}, // [5] continue 2 of 4 {1,1,1,1,1,1,1,1, 4,4,4,4,1,1,1,1,}, // [6] continue 3 of 4 {0,1,0,0,0,0,0,0, 1,1,1,1,1,1,1,1,}, // [7] error, soak up continues, // then restart }; // Subscripted by // where f(x)= E2->4, Cx->8 and C3->12 and 0 otherwise // and g(x) = (x >> 4) & 3 8x->0 9x->1 Ax->2 Bx->3 Cx->0, etc. // (no checking for illegal bytes) // Here are example patterns of CP1252 converted to UTF-8 0/1/2 times. We want // to detect two, so we can back-convert to one. // zero one two pattern // ---- ------ ---------------- ----------------- // 81 C281 C382C281 C3->8x->C2->xx // 98 CB9C C38BC593 C3->8x->C5->xx // C3 C383 C383C692 C3->8x->C6->xx // C8 C388 C383CB86 C3->8x->CB->xx // 83 C692 C386E28099 C3->8x->E2->xx->8x // 80 E282AC C3A2E2809AC2AC C3->A2->E2->xx->xx->Cx->xx // 92 E28099 C3A2E282ACE284A2 C3->A2->E2->xx->xx->E2->xx->xx // // We also want to detect bare-byte extra UTF-8 conversions: // zero one two pattern // ---- ------ ---------------- ----------------- // C3 C3 C383 C3->8x->C2->xx // D3 D3 C393 C3->9x->C2->xx->C2->xx // E3 E3 C3A3 C3->Ax->C2->xx->C2->xx->C2->xx // F3 F3 C3B2 C3->Bx->C2->xx->C2->xx->C2->xx->C2->xx // /** CP1252 => UTF8 => UTF8UTF8 80 => E282AC => C3A2E2809AC2AC 81 => C281 => C382C281 82 => E2809A => C3A2E282ACC5A1 83 => C692 => C386E28099 84 => E2809E => C3A2E282ACC5BE 85 => E280A6 => C3A2E282ACC2A6 86 => E280A0 => C3A2E282ACC2A0 87 => E280A1 => C3A2E282ACC2A1 88 => CB86 => C38BE280A0 89 => E280B0 => C3A2E282ACC2B0 8A => C5A0 => C385C2A0 8B => E280B9 => C3A2E282ACC2B9 8C => C592 => C385E28099 8D => C28D => C382C28D 8E => C5BD => C385C2BD 8F => C28F => C382C28F 90 => C290 => C382C290 91 => E28098 => C3A2E282ACCB9C 92 => E28099 => C3A2E282ACE284A2 93 => E2809C => C3A2E282ACC593 94 => E2809D => C3A2E282ACC29D 95 => E280A2 => C3A2E282ACC2A2 96 => E28093 => C3A2E282ACE2809C 97 => E28094 => C3A2E282ACE2809D 98 => CB9C => C38BC593 99 => E284A2 => C3A2E2809EC2A2 9A => C5A1 => C385C2A1 9B => E280BA => C3A2E282ACC2BA 9C => C593 => C385E2809C 9D => C29D => C382C29D 9E => C5BE => C385C2BE 9F => C5B8 => C385C2B8 A0 => C2A0 => C382C2A0 A1 => C2A1 => C382C2A1 A2 => C2A2 => C382C2A2 A3 => C2A3 => C382C2A3 A4 => C2A4 => C382C2A4 A5 => C2A5 => C382C2A5 A6 => C2A6 => C382C2A6 A7 => C2A7 => C382C2A7 A8 => C2A8 => C382C2A8 A9 => C2A9 => C382C2A9 AA => C2AA => C382C2AA AB => C2AB => C382C2AB AC => C2AC => C382C2AC AD => C2AD => C382C2AD AE => C2AE => C382C2AE AF => C2AF => C382C2AF B0 => C2B0 => C382C2B0 B1 => C2B1 => C382C2B1 B2 => C2B2 => C382C2B2 B3 => C2B3 => C382C2B3 B4 => C2B4 => C382C2B4 B5 => C2B5 => C382C2B5 B6 => C2B6 => C382C2B6 B7 => C2B7 => C382C2B7 B8 => C2B8 => C382C2B8 B9 => C2B9 => C382C2B9 BA => C2BA => C382C2BA BB => C2BB => C382C2BB BC => C2BC => C382C2BC BD => C2BD => C382C2BD BE => C2BE => C382C2BE BF => C2BF => C382C2BF C0 => C380 => C383E282AC C1 => C381 => C383C281 C2 => C382 => C383E2809A C3 => C383 => C383C692 C4 => C384 => C383E2809E C5 => C385 => C383E280A6 C6 => C386 => C383E280A0 C7 => C387 => C383E280A1 C8 => C388 => C383CB86 C9 => C389 => C383E280B0 CA => C38A => C383C5A0 CB => C38B => C383E280B9 CC => C38C => C383C592 CD => C38D => C383C28D CE => C38E => C383C5BD CF => C38F => C383C28F D0 => C390 => C383C290 D1 => C391 => C383E28098 D2 => C392 => C383E28099 D3 => C393 => C383E2809C D4 => C394 => C383E2809D D5 => C395 => C383E280A2 D6 => C396 => C383E28093 D7 => C397 => C383E28094 D8 => C398 => C383CB9C D9 => C399 => C383E284A2 DA => C39A => C383C5A1 DB => C39B => C383E280BA DC => C39C => C383C593 DD => C39D => C383C29D DE => C39E => C383C5BE DF => C39F => C383C5B8 E0 => C3A0 => C383C2A0 E1 => C3A1 => C383C2A1 E2 => C3A2 => C383C2A2 E3 => C3A3 => C383C2A3 E4 => C3A4 => C383C2A4 E5 => C3A5 => C383C2A5 E6 => C3A6 => C383C2A6 E7 => C3A7 => C383C2A7 E8 => C3A8 => C383C2A8 E9 => C3A9 => C383C2A9 EA => C3AA => C383C2AA EB => C3AB => C383C2AB EC => C3AC => C383C2AC ED => C3AD => C383C2AD EE => C3AE => C383C2AE EF => C3AF => C383C2AF F0 => C3B0 => C383C2B0 F1 => C3B1 => C383C2B1 F2 => C3B2 => C383C2B2 F3 => C3B3 => C383C2B3 F4 => C3B4 => C383C2B4 F5 => C3B5 => C383C2B5 F6 => C3B6 => C383C2B6 F7 => C3B7 => C383C2B7 F8 => C3B8 => C383C2B8 F9 => C3B9 => C383C2B9 FA => C3BA => C383C2BA FB => C3BB => C383C2BB FC => C3BC => C383C2BC FD => C3BD => C383C2BD FE => C3BE => C383C2BE FF => C3BF => C383C2BF **/ // Subscripted by // where f(x)= E2->4, C2/5/6/B->8 and C3->12 and 0 otherwise // and g(x) = (x >> 4) & 3 8x->0 9x->1 Ax->2 Bx->3 Cx->0, etc. // 81 C281 C382C281 C3->8x->C2->xx // 98 CB9C C38BC593 C3->8x->C5->xx // C3 C383 C383C692 C3->8x->C6->xx // C8 C388 C383CB86 C3->8x->CB->xx // [0] [2] [0] // 83 C692 C386E28099 C3->8x->E2->xx->xx // odd_byte=0 [0] [2] [0+] odd_byte flipped // odd_byte=1 [0+] [2] [0] [0] odd_byte unflipped // 80 E282AC C3A2E2809AC2AC C3->A2->E2->xx->xx->Cx->xx // odd_byte=0 [0] [3] [4] [0+] // odd_byte=1 [0+] [3] [4] [4] [0] // 92 E28099 C3A2E282ACE284A2 C3->A2->E2->xx->xx->E2->xx->xx // odd_byte=0 [0] [3] [4] [0] [0] // odd_byte=1 [0+] [3] [4] [4] [0+] // // When an E2xxxx sequence is encountered, we absorb the two bytes E2xx and flip // the odd_byte state. If that goes from 0 to 1, the next pair is offset up // by one byte, picking up the two bytes just after E2xxxx. If odd_byte goes // from 1 to 0, the next two bytes picked up are the two bytes xxxx of E2xxxx. // These are absorbed with no error in state 0 or state 4 // // C3 C3 C383 C3->8x->C2->xx // D3 D3 C393 C3->9x->C2->xx->C2->xx // E3 E3 C3A3 C3->Ax->C2->xx->C2->xx->C2->xx // F3 F3 C3B2 C3->Bx->C2->xx->C2->xx->C2->xx->C2->xx // Counter3 for Fx Ex sequences is incremented at last C2 static const char kMiniUTF8UTF8State[8][16] = { // xxxx E2xx CXxx C3xx // 8 9 a b 8 9 a b 8 9 a b {0,0,0,0,1,1,1,1, 1,1,1,1,2,2,3,5,}, // [0] looking for C38x/C3Ax/2020/8x8x, or err {0,0,0,0,1,1,1,1, 1,1,1,1,2,2,3,5,}, // [1] error, back to looking {1,1,1,1,0,0,0,0, 0,0,0,0,1,1,1,1,}, // [2] C38x looking for CXxx/E2xxxx // + + + + // E2xxxx flips odd_byte {1,1,1,1,4,4,4,4, 7,7,7,7,1,1,1,1,}, // [3] C3Ax looking for E2xx or C2xxC2xx // + + + + // E2xxxx flips odd_byte {4,4,4,4,0,0,0,0, 0,0,0,0,1,1,1,1,}, // [4] C3AxE2xx-- looking for C2xx/E2xxxx // + + + + // E2xxxx flips odd_byte {1,1,1,1,1,1,1,1, 6,6,6,6,1,1,1,1,}, // [5] C3Bx -- looking for C2xxC2xxC2xx {1,1,1,1,1,1,1,1, 7,7,7,7,1,1,1,1,}, // [6] C3Bx -- looking for C2xxC2xx {1,1,1,1,1,1,1,1, 0,0,0,0,1,1,1,1,}, // [7] C3Bx -- looking for C2xx }; // Counter to increment: 0-don'tcare 1-error 2-good_2B 3-good_3B 4-good_4B static const char kMiniUTF8UTF8Count[8][16] = { // xxxx E2xx C2Xx C3xx // 8 9 a b 8 9 a b 8 9 a b {0,0,0,0,1,1,1,1, 1,1,1,1,0,0,0,0,}, // [0] looking for C38x/C3Ax/2020/8x8x, or err {0,0,0,0,1,1,1,1, 1,1,1,1,0,0,0,0,}, // [1] error, back to looking {1,1,1,1,3,3,3,3, 2,2,2,2,1,1,1,1,}, // [2] C38x looking for CXxx/E2xxxx // + + + + // E2xxxx flips odd_byte {1,1,1,1,0,0,0,0, 0,0,0,0,1,1,1,1,}, // [3] C3Ax looking for E2xx // + + + + // E2xxxx flips odd_byte {1,1,1,1,4,4,4,4, 4,4,4,4,1,1,1,1,}, // [4] C3AxE2xx-- looking for C2xx/E2xxxx // + + + + // E2xxxx flips odd_byte {1,1,1,1,1,1,1,1, 0,0,0,0,1,1,1,1,}, // [5] C3Bx -- looking for C2xxC2xxC2xx {1,1,1,1,1,1,1,1, 0,0,0,0,1,1,1,1,}, // [6] C3Bx -- looking for C2xxC2xx {1,1,1,1,1,1,1,1, 3,3,3,3,1,1,1,1,}, // [7] C3Bx -- looking for C2xx }; static const char kMiniUTF8UTF8Odd[8][16] = { // xxxx E2xx C2Xx C3xx // 8 9 a b 8 9 a b 8 9 a b {0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,}, // [0] looking for C38x/C3Ax/2020/8x8x, or err {0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,}, // [1] error, back to looking {0,0,0,0,1,1,1,1, 0,0,0,0,0,0,0,0,}, // [2] C38x looking for CXxx/E2xxxx // + + + + // E2xxxx flips odd_byte {0,0,0,0,1,1,1,1, 0,0,0,0,0,0,0,0,}, // [3] C3Ax looking for E2xx // + + + + // E2xxxx flips odd_byte {0,0,0,0,1,1,1,1, 0,0,0,0,0,0,0,0,}, // [4] C3AxE2xx-- looking for C2xx/E2xxxx // + + + + // E2xxxx flips odd_byte {0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,}, // [5] C3Bx -- looking for C2xxC2xxC2xx {0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,}, // [6] C3Bx -- looking for C2xxC2xx {0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,}, // [7] C3Bx -- looking for C2xx }; // Turn a pair of bytes into the subscript for UTF8UTF8 tables above int UTF88Sub(char s0, char s1) { int sub = (s1 >> 4) & 0x03; uint8 u0 = static_cast(s0); if (u0 == 0xc3) { sub += 12; } else if ((u0 & 0xf0) == 0xc0) { if ((u0 == 0xc2) || (u0 == 0xc5) || (u0 == 0xc6) || (u0 == 0xcb)) { sub += 8; } } else if (u0 == 0xe2) { sub += 4; } return sub; } // Default probability for an encoding rankedencoding // Based on a scan of 55M web pages // These values are 255 - log base 2**1/10 (occurrences / total) // Large values are most likely. This the reverse of some Google code // 255 = 1.0, 245 = 1/2, 235 = 1/4, 15 = 1/2**24, 0 = 0 (< 1/50M) // // TODO change this to be per encoding, not permuted // // Support function for unit test program // Return ranked encoding corresponding to enc // (also exported to compact_enc_det_text.cc) int CompactEncDet::BackmapEncodingToRankedEncoding(Encoding enc) { for (int i = 0; i < NUM_RANKEDENCODING; ++i) { if (kMapToEncoding[i] == enc) { return i; } } return -1; } string DecodeActive(uint32 active) { string temp(""); if (active & kBinaryActive) { temp.append("Binary "); } if (active & kUTF1632Active) { temp.append("UTF1632 "); } if (active & kUTF8UTF8Active) { temp.append("UTF8UTF8 "); } if (active & kUTF8Active) { temp.append("UTF8 "); } if (active & kIso2022Active) { temp.append("Iso2022 "); } if (active & kHzActive) { temp.append("Hz "); } if (active & kUTF7Active) { temp.append("UTF7A "); } if (active & kSevenBitActive) { temp.append("SevenBit "); } if (active & kIsIndicCode) { temp.append("Indic "); } if (active & kHighAlphaCode) { temp.append("HighAlpha "); } if (active & kHighAccentCode) { temp.append("HighAccent "); } if (active & kEUCJPActive) { temp.append("EUCJP "); } return temp; } static inline bool SevenBitEncoding(int enc) { return ((kSpecialMask[enc] & kSevenBitActive) != 0); } static inline bool TwoByteEncoding(int enc) { return ((kSpecialMask[enc] & kTwobyteCode) != 0); } static inline bool IndicEncoding(int enc) { return ((kSpecialMask[enc] & kIsIndicCode) != 0); } static inline bool HighAlphaEncoding(int enc) { return ((kSpecialMask[enc] & kHighAlphaCode) != 0); } static inline bool HighAccentEncoding(int enc) { return ((kSpecialMask[enc] & kHighAccentCode) != 0); } static inline bool AnyActive(DetectEncodingState* destatep) { return (destatep->active_special != 0); } static inline bool SevenBitActive(DetectEncodingState* destatep) { return (destatep->active_special & kSevenBitActive) != 0; } static inline bool HzActive(DetectEncodingState* destatep) { return (destatep->active_special & kHzActive) != 0; } static inline bool Iso2022Active(DetectEncodingState* destatep) { return (destatep->active_special & kIso2022Active) != 0; } static inline bool UTF8Active(DetectEncodingState* destatep) { return (destatep->active_special & kUTF8Active) != 0; } static inline bool UTF8UTF8Active(DetectEncodingState* destatep) { return (destatep->active_special & kUTF8UTF8Active) != 0; } static inline bool UTF1632Active(DetectEncodingState* destatep) { return (destatep->active_special & kUTF1632Active) != 0; } static inline bool BinaryActive(DetectEncodingState* destatep) { return (destatep->active_special & kBinaryActive) != 0; } static inline bool UTF7OrHzActive(DetectEncodingState* destatep) { return (destatep->active_special & (kHzActive + kUTF7Active)) != 0; } static inline bool EUCJPActive(DetectEncodingState* destatep) { return ((destatep->active_special & kEUCJPActive) != 0); } static inline bool OtherActive(DetectEncodingState* destatep) { return (destatep->active_special & (kIso2022Active + kBinaryActive + kUTF8Active + kUTF8UTF8Active + kUTF1632Active + kEUCJPActive)) != 0; } static inline bool CEDFlagRescanning(CEDInternalFlags flags) { return (flags & kCEDRescanning) != 0; } static inline bool CEDFlagForceTags(CEDInternalFlags flags) { return (flags & kCEDForceTags) != 0; } static inline int maxint(int a, int b) {return (a > b) ? a : b;} static inline int minint(int a, int b) {return (a < b) ? a : b;} static inline const char* MyRankedEncName(int r_enc) { return MyEncodingName(kMapToEncoding[r_enc]); } // Only for debugging. not thread safe static const int kPsSourceWidth = 32; static int pssourcenext = 0; // debug only. not threadsafe. dump only >= this static int pssourcewidth = 0; // debug only. static char* pssource_mark_buffer = NULL; int next_do_src_line; int do_src_offset[16]; void PsSourceInit(int len) { pssourcenext = 0; pssourcewidth = len; delete[] pssource_mark_buffer; // Allocate 2 Ascii characters per input byte pssource_mark_buffer = new char[(pssourcewidth * 2) + 8]; // 8 = overscan memset(pssource_mark_buffer, ' ', pssourcewidth * 2); memset(pssource_mark_buffer + (pssourcewidth * 2), '\0', 8); next_do_src_line = 0; memset(do_src_offset, 0, sizeof(do_src_offset)); } void PsSourceFinish() { // Print preceding mark buffer int j = (pssourcewidth * 2) - 1; while ((0 <= j) && (pssource_mark_buffer[j] == ' ')) {--j;} // trim pssource_mark_buffer[j + 1] = '\0'; fprintf(stderr, "( %s) do-src\n", pssource_mark_buffer); memset(pssource_mark_buffer, ' ', pssourcewidth * 2); memset(pssource_mark_buffer + (pssourcewidth * 2), '\0', 8); delete[] pssource_mark_buffer; pssource_mark_buffer = NULL; } // Dump aligned len bytes src... if not already dumped void PsSource(const uint8* src, const uint8* isrc, const uint8* srclimit) { int offset = src - isrc; offset -= (offset % pssourcewidth); // round down to multiple of len bytes if (offset < pssourcenext) { return; } pssourcenext = offset + pssourcewidth; // Min offset for next dump // Print preceding mark buffer int j = (pssourcewidth * 2) - 1; while ((0 <= j) && (pssource_mark_buffer[j] == ' ')) {--j;} // trim pssource_mark_buffer[j + 1] = '\0'; fprintf(stderr, "( %s) do-src\n", pssource_mark_buffer); memset(pssource_mark_buffer, ' ', pssourcewidth * 2); memset(pssource_mark_buffer + (pssourcewidth * 2), '\0', 8); // Print source bytes const uint8* src_aligned = isrc + offset; int length = srclimit - src_aligned; length = minint(pssourcewidth, length); fprintf(stderr, "(%05x ", offset); for (int i = 0; i < length; ++i) { char c = src_aligned[i]; if (c == '\n') {c = ' ';} if (c == '\r') {c = ' ';} if (c == '\t') {c = ' ';} if (c == '(') { fprintf(stderr, "%s", "\\( "); } else if (c == ')') { fprintf(stderr, "%s", "\\) "); } else if (c == '\\') { fprintf(stderr, "%s", "\\\\ "); } else if ((0x20 <= c) && (c <= 0x7e)) { fprintf(stderr, "%c ", c); } else { fprintf(stderr, "%02x", c); } } fprintf(stderr, ") do-src\n"); // Remember which source offsets are where, mod 16 do_src_offset[next_do_src_line & 0x0f] = offset; ++next_do_src_line; } // Mark bytes in just-previous source bytes void PsMark(const uint8* src, int len, const uint8* isrc, int weightshift) { int offset = src - isrc; offset = (offset % pssourcewidth); // mod len bytes char mark = (weightshift == 0) ? '-' : 'x'; pssource_mark_buffer[(offset * 2)] = '='; pssource_mark_buffer[(offset * 2) + 1] = '='; for (int i = 1; i < len; ++i) { pssource_mark_buffer[(offset + i) * 2] = mark; pssource_mark_buffer[((offset + i) * 2) + 1] = mark; } } // Highlight trigram bytes in just-previous source bytes // Unfortunately, we have to skip back N lines since source was printed for // up to 8 bigrams before we get here. Match on src+1 to handle 0/31 better void PsHighlight(const uint8* src, const uint8* isrc, int trigram_val, int n) { int offset = (src + 1) - isrc; int offset32 = (offset % pssourcewidth); // mod len bytes offset -= offset32; // round down to multiple of len bytes for (int i = 1; i <= 16; ++i) { if (do_src_offset[(next_do_src_line - i) & 0x0f] == offset) { fprintf(stderr, "%d %d %d do-highlight%d\n", i, offset32 - 1, trigram_val, n); break; } } } void InitDetectEncodingState(DetectEncodingState* destatep) { destatep->initial_src = NULL; // Filled in by caller destatep->limit_src = NULL; destatep->prior_src = NULL; destatep->last_pair = NULL; destatep->debug_data = NULL; destatep->next_detail_entry = 0; destatep->done = false; destatep->reliable = false; destatep->hints_derated = false; //destatep->declared_enc_1 init in ApplyHints //destatep->declared_enc_2 init in ApplyHints destatep->prune_count = 0; destatep->trigram_highwater_mark = 0; destatep->looking_for_latin_trigrams = false; destatep->do_latin_trigrams = false; // Miscellaneous state variables for difficult encodings destatep->binary_quadrants_count = 0; destatep->binary_8x4_count = 0; destatep->binary_quadrants_seen = 0; destatep->binary_8x4_seen = 0; destatep->utf7_starts = 0; destatep->prior_utf7_offset = 0; destatep->next_utf8_ministate = 0; for (int i = 0; i < 6; i++) {destatep->utf8_minicount[i] = 0;} destatep->next_utf8utf8_ministate = 0; destatep->utf8utf8_odd_byte = 0; for (int i = 0; i < 6; i++) {destatep->utf8utf8_minicount[i] = 0;} destatep->next_2022_state = SOSI_NONE; destatep->next_hz_state = SOSI_NONE; destatep->next_eucjp_oddphase = false; for (int i = 0; i < 8; i++) {destatep->byte32_count[i] = 0;} destatep->active_special = 0xffffffff; destatep->tld_hint = UNKNOWN_ENCODING; destatep->http_hint = UNKNOWN_ENCODING; destatep->meta_hint = UNKNOWN_ENCODING; destatep->bom_hint = UNKNOWN_ENCODING; destatep->top_rankedencoding = 0; // ASCII [seven-bit] is the default destatep->second_top_rankedencoding = 0; // ASCII [seven-bit] is the default destatep->top_prob = -1; destatep->second_top_prob = -1; // This is wide for first pruning, shrinks for 2nd and later destatep->prune_difference = kInititalPruneDifference; destatep->next_prior_bigram = 0; destatep->prior_bigram[0] = -1; destatep->prior_bigram[1] = -1; destatep->prior_bigram[2] = -1; destatep->prior_bigram[3] = -1; destatep->prior_binary[0] = -1; // Initialize with all but Indic encodings, which we never detect int k = 0; for (int rankedencoding = 0; rankedencoding < NUM_RANKEDENCODING; rankedencoding++) { Encoding enc = kMapToEncoding[rankedencoding]; if (!IndicEncoding(enc)) { destatep->rankedencoding_list[k++] = rankedencoding; } } destatep->rankedencoding_list_len = k; // This is where all the action is memset(destatep->enc_prob, 0, sizeof(destatep->enc_prob)); memset(destatep->hint_prob, 0, sizeof(destatep->hint_prob)); memset(destatep->hint_weight, 0, sizeof(destatep->hint_weight)); destatep->prior_interesting_pair[AsciiPair] = 0; destatep->prior_interesting_pair[OtherPair] = 0; destatep->next_interesting_pair[AsciiPair] = 0; destatep->next_interesting_pair[OtherPair] = 0; // interesting_pairs/offsets/weightshifts not initialized; no need } // Probability strings are uint8, with zeros removed via simple run-length: // ( )* // skip-take: // 00 end // x0 skip 16 x locations, take 0 data values // xy skip x locations, take y data values // Multiply all the incoming values by 3 to account for 3x unigram sums // // {{0x77,0x69,0x6e,0x64,0x31,0x32,0x35,0x35, // 0x01,0xc2,0x10,0x41,0xfe,0x71,0xba,0x00,}}, // "wind1255" // // Weight is 0..100 percent // // Returns subscript of largest (most probable) value // // {{0x6e,0x6c,0x5f,0x5f, 0x05,0xb2,0xae,0xa0,0x32,0xa1,0x36,0x31,0x42,0x39,0x3b,0x33,0x45,0x11,0x6f,0x00,}}, // "nl__" // // ASCII-7-bit=178 Latin1=174 UTF8=160 GB=50 CP1252=161 BIG5=49 Latin2=66 CP1251=57 CP1256=59 CP1250=51 Latin5=69 ISO-8859-15=111 [top ASCII-7-bit] int ApplyCompressedProb(const char* iprob, int len, int weight, DetectEncodingState* destatep) { int* dst = &destatep->enc_prob[0]; int* dst2 = &destatep->hint_weight[0]; const uint8* prob = reinterpret_cast(iprob); const uint8* problimit = prob + len; int largest = -1; int subscript_of_largest = 0; // Continue with first byte and subsequent ones while (prob < problimit) { int skiptake = *prob++; int skip = (skiptake & 0xf0) >> 4; int take = skiptake & 0x0f; if (skiptake == 00) { break; } else if (take == 0) { dst += (skip << 4); dst2 += (skip << 4); } else { dst += skip; // Normal case dst2 += skip; // Normal case for (int i = 0; i < take; i++) { int enc = static_cast(dst - &destatep->enc_prob[0]) + i; if (largest < prob[i]) { largest = prob[i]; subscript_of_largest = enc; } int increment = prob[i] * 3; // The actual increment // Do maximum of previous hints plus this new one if (weight > 0) { increment = (increment * weight) / 100; dst[i] = maxint(dst[i], increment); dst2[i] = 1; // New total weight } } prob += take; dst += take; dst2 += take; } } return subscript_of_largest; } // Returns subscript of largest (most probable) value [for unit test] int TopCompressedProb(const char* iprob, int len) { const uint8* prob = reinterpret_cast(iprob); const uint8* problimit = prob + len; int next_prob_sub = 0; int topprob = 0; int toprankenc = 0; while (prob < problimit) { int skiptake = *prob++; int skip = (skiptake & 0xf0) >> 4; int take = skiptake & 0x0f; if (skiptake == 0) { break; } else if (take == 0) { next_prob_sub += (skip << 4); } else { next_prob_sub += skip; // Normal case for (int i = 0; i < take; i++) { if (topprob < prob[i]) { topprob = prob[i]; toprankenc = next_prob_sub + i; } } prob += take; next_prob_sub += take; } } return toprankenc; } // Find subscript of matching key in first 8 bytes of sorted hint array, or -1 int HintBinaryLookup8(const HintEntry* hintprobs, int hintprobssize, const char* norm_key) { // Key is always in range [lo..hi) int lo = 0; int hi = hintprobssize; while (lo < hi) { int mid = (lo + hi) >> 1; int comp = memcmp(&hintprobs[mid].key_prob[0], norm_key, 8); if (comp < 0) { lo = mid + 1; } else if (comp > 0) { hi = mid; } else { return mid; } } return -1; } // Find subscript of matching key in first 4 bytes of sorted hint array, or -1 int HintBinaryLookup4(const HintEntry* hintprobs, int hintprobssize, const char* norm_key) { // Key is always in range [lo..hi) int lo = 0; int hi = hintprobssize; while (lo < hi) { int mid = (lo + hi) >> 1; int comp = memcmp(&hintprobs[mid].key_prob[0], norm_key, 4); if (comp < 0) { lo = mid + 1; } else if (comp > 0) { hi = mid; } else { return mid; } } return -1; } static inline void Boost(DetectEncodingState* destatep, int r_enc, int boost) { destatep->enc_prob[r_enc] += boost; } static inline void Whack(DetectEncodingState* destatep, int r_enc, int whack) { destatep->enc_prob[r_enc] -= whack; } // Apply initial probability hint based on top level domain name // Weight is 0..100 percent // Return 1 if name match found int ApplyTldHint(const char* url_tld_hint, int weight, DetectEncodingState* destatep) { if (url_tld_hint[0] == '~') { return 0; } string normalized_tld = MakeChar4(string(url_tld_hint)); int n = HintBinaryLookup4(kTLDHintProbs, kTLDHintProbsSize, normalized_tld.c_str()); if (n >= 0) { // TLD is four bytes, probability table is ~12 bytes int best_sub = ApplyCompressedProb((const char *)&kTLDHintProbs[n].key_prob[kMaxTldKey], kMaxTldVector, weight, destatep); // Never boost ASCII7; do CP1252 instead if (best_sub == F_ASCII_7_bit) {best_sub = F_CP1252;} destatep->declared_enc_1 = best_sub; if (destatep->debug_data != NULL) { // Show TLD hint SetDetailsEncProb(destatep, 0, best_sub, url_tld_hint); } return 1; } return 0; } // Apply initial probability hint based on charset= name // Weight is 0..100 percent // Return 1 if name match found int ApplyCharsetHint(const char* charset_hint, int weight, DetectEncodingState* destatep) { if (charset_hint[0] == '~') { return 0; } string normalized_charset = MakeChar44(string(charset_hint)); int n = HintBinaryLookup8(kCharsetHintProbs, kCharsetHintProbsSize, normalized_charset.c_str()); if (n >= 0) { // Charset is eight bytes, probability table is ~eight bytes int best_sub = ApplyCompressedProb((const char *)&kCharsetHintProbs[n].key_prob[kMaxCharsetKey], kMaxCharsetVector, weight, destatep); // Never boost ASCII7; do CP1252 instead if (best_sub == F_ASCII_7_bit) {best_sub = F_CP1252;} destatep->declared_enc_1 = best_sub; // If first explicitly declared charset is confusable with Latin1/1252, put // both declared forms in declared_enc_*, displacing Latin1/1252. // This avoids a bit of Latin1 creep. // Also boost the declared encoding and its pair // TODO: This should all be folded into postproc-enc-detect.cc if ((destatep->http_hint == UNKNOWN_ENCODING) && (destatep->meta_hint == UNKNOWN_ENCODING)) { // This is the first charset=hint switch (best_sub) { case F_Latin2: // 8859-2 Latin2, east euro destatep->declared_enc_2 = F_CP1250; Boost(destatep, F_Latin2, kGentleOnePair); Boost(destatep, F_CP1250, kGentleOnePair); break; case F_CP1250: destatep->declared_enc_2 = F_Latin2; Boost(destatep, F_Latin2, kGentleOnePair); Boost(destatep, F_CP1250, kGentleOnePair); break; case F_Latin3: // 8859-3 Latin3, south euro, Esperanto destatep->declared_enc_2 = F_ASCII_7_bit; Boost(destatep, F_Latin3, kGentleOnePair); break; case F_Latin4: // 8859-4 Latin4, north euro destatep->declared_enc_2 = F_ASCII_7_bit; Boost(destatep, F_Latin4, kGentleOnePair); break; case F_ISO_8859_5: // 8859-5 Cyrillic destatep->declared_enc_2 = F_ASCII_7_bit; // Don't boost 1251 Boost(destatep, F_ISO_8859_5, kGentleOnePair); // (too different) break; case F_CP1251: destatep->declared_enc_2 = F_ASCII_7_bit; // Don't boost -5 Boost(destatep, F_CP1251, kGentleOnePair); // (too different) break; case F_Arabic: // 8859-6 Arabic destatep->declared_enc_2 = F_CP1256; Boost(destatep, F_Arabic, kGentleOnePair); Boost(destatep, F_CP1256, kGentleOnePair); break; case F_CP1256: destatep->declared_enc_2 = F_Arabic; Boost(destatep, F_Arabic, kGentleOnePair); Boost(destatep, F_CP1256, kGentleOnePair); break; case F_Greek: // 8859-7 Greek destatep->declared_enc_2 = F_CP1253; Boost(destatep, F_Greek, kGentleOnePair); Boost(destatep, F_CP1253, kGentleOnePair); break; case F_CP1253: destatep->declared_enc_2 = F_Greek; Boost(destatep, F_Greek, kGentleOnePair); Boost(destatep, F_CP1253, kGentleOnePair); break; case F_Hebrew: // 8859-8 Hebrew destatep->declared_enc_2 = F_CP1255; Boost(destatep, F_Hebrew, kGentleOnePair); Boost(destatep, F_CP1255, kGentleOnePair); break; case F_CP1255: destatep->declared_enc_2 = F_Hebrew; Boost(destatep, F_Hebrew, kGentleOnePair); Boost(destatep, F_CP1255, kGentleOnePair); break; case F_Latin5: // 8859-9 Latin5, Turkish destatep->declared_enc_2 = F_ASCII_7_bit; // Don't boost 1254 Boost(destatep, F_Latin5, kGentleOnePair); // (too different) break; case F_CP1254: destatep->declared_enc_2 = F_ASCII_7_bit; // Don't boost Latin5 Boost(destatep, F_CP1254, kGentleOnePair); // (too different) break; case F_Latin6: // 8859-10 Latin6, Nordic destatep->declared_enc_2 = F_ASCII_7_bit; Boost(destatep, F_Latin6, kGentleOnePair); break; case F_ISO_8859_11: // 8859-11 Thai, destatep->declared_enc_2 = F_CP874; Boost(destatep, F_ISO_8859_11, kGentleOnePair); Boost(destatep, F_CP874, kGentleOnePair); break; case F_CP874: destatep->declared_enc_2 = F_ISO_8859_11; Boost(destatep, F_ISO_8859_11, kGentleOnePair); Boost(destatep, F_CP874, kGentleOnePair); break; case F_ISO_8859_13: // 8859-13 Latin7, Baltic destatep->declared_enc_2 = F_CP1257; Boost(destatep, F_ISO_8859_13, kGentleOnePair); Boost(destatep, F_CP1257, kGentleOnePair); break; case F_CP1257: destatep->declared_enc_2 = F_ISO_8859_13; Boost(destatep, F_ISO_8859_13, kGentleOnePair); Boost(destatep, F_CP1257, kGentleOnePair); break; case F_ISO_8859_15: // 8859-15 Latin9, Latin0, Euro-ized Latin1 destatep->declared_enc_2 = F_ASCII_7_bit; Boost(destatep, F_ISO_8859_15, kGentleOnePair); break; // Greek all-caps is confusable with KOI8x all-lower and Hebrew. // This turns some Greek documents into Cyrillic, etc. by mistake. // Greek and Hebrew are boosted explicitly above; do KOI8x here. // Boosting the declared encodingmakes it harder for the wrong one to // creep up. case F_KOI8R: Boost(destatep, F_KOI8R, kGentleOnePair); break; case F_KOI8U: Boost(destatep, F_KOI8U, kGentleOnePair); break; default: break; } } if (destatep->debug_data != NULL) { // Show charset hint SetDetailsEncProb(destatep, 0, best_sub, charset_hint); } // // Some fix-ups for the declared encodings // // If non-UTF8, non-Latin1/1252 encoding declared, disable UTF8 combos // TODO: This should all be folded into postproc-enc-detect.cc if ((best_sub != F_UTF8) && (best_sub != F_Latin1) && (best_sub != F_CP1252)) { Whack(destatep, F_UTF8UTF8, kBadPairWhack * 4); // demote } // Latin2 and CP1250 differ in the overlap part, such as B1 or B9 // The initial probabilites for charset=Latin2 explicitly put CP1250 // down twice as far as normal, and vice versa. This is done in // postproc-enc-detect.cc // If charset=user-defined, treat as Binary -- // we can safely only do low ASCII, might be Indic if (normalized_charset.substr(0,4) == "user") { Boost(destatep, F_BINARY, kBoostInitial * kStrongBinary); } return 1; } return 0; } // Apply initial probability hint based on caller-supplied encoding // Negative hint whacks ~encoding, non-negative boosts encoding // // Negative hints are an experiment to see if they might be useful. // Not operator used instead of unary minus to allow specifying not-zero int ApplyEncodingHint(const int encoding_hint, int weight, DetectEncodingState* destatep) { Encoding enc_hint = static_cast((encoding_hint < 0) ? ~encoding_hint : encoding_hint); // Map to the right internal subscript int rankedenc_hint = CompactEncDet::BackmapEncodingToRankedEncoding(enc_hint); // I'm not sure how strong this hint should be. Weight 100% = 1 bigram int increment = (kBoostOnePair * weight) / 100; if (encoding_hint < 0) { destatep->enc_prob[rankedenc_hint] -= increment; } else { destatep->enc_prob[rankedenc_hint] += increment; } if (destatep->debug_data != NULL) { // Show encoding hint SetDetailsEncProb(destatep, 0, -1, MyEncodingName(enc_hint)); } return 1; } // Apply initial probability hint based on user interface language // Weight is 0..100 percent // Return 1 if name match found int ApplyUILanguageHint(const Language language_hint, int weight, DetectEncodingState* destatep) { if (language_hint == UNKNOWN_LANGUAGE) { return 0; } string normalized_lang = MakeChar8(LanguageName(language_hint)); int n = HintBinaryLookup8(kLangHintProbs, kLangHintProbsSize, normalized_lang.c_str()); if (n >= 0) { // Language is eight bytes, probability table is ~eight bytes int best_sub = ApplyCompressedProb((const char *)&kLangHintProbs[n].key_prob[kMaxLangKey], kMaxLangVector, weight, destatep); // Never boost ASCII7; do CP1252 instead if (best_sub == F_ASCII_7_bit) {best_sub = F_CP1252;} destatep->declared_enc_1 = best_sub; if (destatep->debug_data != NULL) { // Show language hint SetDetailsEncProb(destatep, 0, best_sub, normalized_lang.c_str()); } return 1; } return 0; } // Apply initial probability hint based on corpus type (web, email, etc) // Return 1 if name match found int ApplyDefaultHint(const CompactEncDet::TextCorpusType corpus_type, DetectEncodingState* destatep) { for (int i = 0; i < NUM_RANKEDENCODING; i++) { // Set the default probability destatep->enc_prob[i] = kDefaultProb[i] * 3; // Deliberately set 2022 seven-bit encodings to zero, // so we can look for actual use // TODO: This should all be folded into postproc-enc-detect.cc if (SevenBitEncoding(kMapToEncoding[i])) { destatep->enc_prob[i] = 0; } } // A little corpus distinction switch (corpus_type) { case CompactEncDet::WEB_CORPUS: case CompactEncDet::XML_CORPUS: // Allow double-converted UTF-8 to start nearly equal to normal UTF-8 destatep->enc_prob[F_UTF8UTF8] = destatep->enc_prob[F_UTF8] - kSmallInitDiff; break; case CompactEncDet::QUERY_CORPUS: case CompactEncDet::EMAIL_CORPUS: default: break; } if (FLAGS_demo_nodefault) { // Demo, make initial probs all zero for (int i = 0; i < NUM_RANKEDENCODING; i++) { destatep->enc_prob[i] = 0; } } if (destatep->debug_data != NULL) { // Show default hint SetDetailsEncProb(destatep, 0, -1, "Default"); } return 1; } // Do reverse search for c in [str..str+len) // Note: initial pointer is to FRONT of string, not back const char* MyMemrchr(const char* str, char c, size_t len) { const char* ret = str + len; while (str <= --ret) { if (*ret == c) {return ret;} } return NULL; } // Minimum real URL is 11 bytes: "http://a.bc" -- shorter is assumed to be TLD // Now that we are no longer trying to do Indic font-based encodigns, we // don't need the full URL and can go back to simple TLD. This test remains for // backwards compatility with any caller using full URL. static const int kMinURLLength = 11; // Extract TLD from a full URL or just a TLD // Return hostname and length if a full URL void ExtractTLD(const char* url_hint, char* tld_hint, int tld_hint_len, const char** ret_host_start, int* ret_host_len) { // url_hint can either be a full URL (preferred) or just top-level domain name // Extract the TLD from a full URL and use it for // a normal TLD hint strncpy(tld_hint, "~", tld_hint_len); tld_hint[tld_hint_len - 1] = '\0'; *ret_host_start = NULL; *ret_host_len = 0; int url_len = (url_hint != NULL) ? strlen(url_hint) : 0; if (url_len == 0) { // Empty TLD return; } // Minimum real URL is 11 bytes: "http://a.bc" -- shorter is assumed to be TLD if (kMinURLLength <= url_len) { // See if it really is a URL const char* first_slash = strchr(url_hint, '/'); if ((first_slash != NULL) && (first_slash != url_hint) && (first_slash[-1] == ':') && (first_slash[1] == '/') && (memrchr(url_hint, '.', first_slash - url_hint) == NULL)) { // We found :// and no dot in front of it, so declare a real URL const char* hostname_start = first_slash + 2; const char* hostname_end = strchr(hostname_start, '/'); if (hostname_end == NULL) { // No slash; end is first byte off end of the URL string hostname_end = url_hint + url_len; } size_t hostname_len = hostname_end - hostname_start; const char* port_start = (const char*)memchr(hostname_start, ':', hostname_len); if (port_start != NULL) { // Port; shorten hostname hostname_end = port_start; hostname_len = hostname_end - hostname_start; } const char* tld_start = MyMemrchr(hostname_start, '.', hostname_len); if (tld_start != NULL) { // Remember the TLD we just found int tld_len = hostname_start + hostname_len - tld_start - 1; if (tld_len > (tld_hint_len - 1)) { tld_len = tld_hint_len - 1; } memcpy(tld_hint, tld_start + 1, tld_len); tld_hint[tld_len] = '\0'; } *ret_host_start = hostname_start; *ret_host_len = hostname_len; return; } } else { strncpy(tld_hint, url_hint, tld_hint_len); tld_hint[tld_hint_len - 1] = '\0'; } } // Apply hints, if any, to probabilities // NOTE: Encoding probabilites are all zero at this point void ApplyHints(const char* url_hint, const char* http_charset_hint, const char* meta_charset_hint, const int encoding_hint, const Language language_hint, const CompactEncDet::TextCorpusType corpus_type, DetectEncodingState* destatep) { int hint_count = 0; // url_hint can either be a full URL (preferred) or just top-level domain name // Extract the TLD from a full URL and use it for // a normal TLD hint char tld_hint[16]; const char* hostname_start = NULL; int hostname_len = 0; ExtractTLD(url_hint, tld_hint, sizeof(tld_hint), &hostname_start, &hostname_len); // Initial hints give slight boost to Ascii-7-bit and code page 1252 // ApplyXxx routines copy enc_1 to enc_2 then update declared_enc_1 // This gives a boost to 1252 if one of HTTP/META is specified, // but this could be the wrong thing to do if Latin2/3/4/etc. is specified destatep->declared_enc_1 = F_CP1252; destatep->declared_enc_2 = F_ASCII_7_bit; // Applying various hints takes max of new hint and any old hint. // This does better on multiple hints that a weighted average // Weight is 0..100 percent if ((http_charset_hint != NULL) && (http_charset_hint[0] != '~')) { destatep->declared_enc_2 = destatep->declared_enc_1; hint_count += ApplyCharsetHint(http_charset_hint, 100, destatep); destatep->http_hint = kMapToEncoding[destatep->declared_enc_1]; if ((destatep->declared_enc_1 == F_CP1252) || (destatep->declared_enc_1 == F_Latin1)) { destatep->looking_for_latin_trigrams = true; } } if ((meta_charset_hint != NULL) && (meta_charset_hint[0] != '~')) { destatep->declared_enc_2 = destatep->declared_enc_1; hint_count += ApplyCharsetHint(meta_charset_hint, 100, destatep); destatep->meta_hint = kMapToEncoding[destatep->declared_enc_1]; if ((destatep->declared_enc_1 == F_CP1252) || (destatep->declared_enc_1 == F_Latin1)) { destatep->looking_for_latin_trigrams = true; } } if (encoding_hint != UNKNOWN_ENCODING) { destatep->declared_enc_2 = destatep->declared_enc_1; hint_count += ApplyEncodingHint(encoding_hint, 50, destatep); } if (language_hint != UNKNOWN_LANGUAGE) { destatep->declared_enc_2 = destatep->declared_enc_1; hint_count += ApplyUILanguageHint(language_hint, 50, destatep); } // Use top level domain if not .com and <=1 other hint was available if (url_hint != NULL) { destatep->tld_hint = CompactEncDet::TopEncodingOfTLDHint(tld_hint); if (hint_count == 0) { // Apply with weight 100% destatep->declared_enc_2 = destatep->declared_enc_1; hint_count += ApplyTldHint(tld_hint, 100, destatep); if ((destatep->declared_enc_1 == F_CP1252) || (destatep->declared_enc_1 == F_Latin1)) { destatep->looking_for_latin_trigrams = true; } if (strcmp("hu", tld_hint) == 0) { // Hungarian is particularly difficult to separate Latin2 from Latin1, // so always look for trigram scanning if bare TLD=hu hint destatep->looking_for_latin_trigrams = true; } // Treat .com as no TLD hint at all } else if ((hint_count == 1) && (strcmp("com", tld_hint) != 0)) { // Either shift weighting or consider doing no TLD here -- seems to // distract from correct charset= hints. Or perhaps apply only if // charset = Latin1/1252... // Apply with weight 50% destatep->declared_enc_2 = destatep->declared_enc_1; hint_count += ApplyTldHint(tld_hint, 50, destatep); if ((destatep->declared_enc_1 == F_CP1252) || (destatep->declared_enc_1 == F_Latin1)) { destatep->looking_for_latin_trigrams = true; // These need trigrams } } // Else ignore TLD hint entirely } // Use all-web default distribution if not even a TLD hint if (hint_count == 0) { destatep->looking_for_latin_trigrams = true; // Default needs trigrams destatep->declared_enc_2 = destatep->declared_enc_1; hint_count += ApplyDefaultHint(corpus_type, destatep); } // ISO-Microsoft Pairs // F_Latin1, F_CP1252, // F_Latin2, F_CP1250, NOT really strict subset/superset pairs // F_Latin3, // F_Latin4, // F_ISO_8859_5, F_CP1251, // F_Arabic, F_CP1256, NOT // F_Greek, F_CP1253, NOT really pairs // (or upgrade incvt to make Greek use CP) // F_Hebrew, F_CP1255, NOT really pairs // F_Latin5, F_CP1254, // F_Latin6, // F_ISO_8859_11, // F_ISO_8859_13, F_CP1257, // F_ISO_8859_15, // ISO-Microsoft Pairs // Get important families started together // // This should fall out of the initializatoin vectors for charset, // but we need to get rid of families alltogetrher // // TODO make this more graceful // Add small bias for subsets // Subtract small bias for supersets destatep->enc_prob[F_CP932] = destatep->enc_prob[F_SJS] - kSmallInitDiff; destatep->enc_prob[F_GBK] = destatep->enc_prob[F_GB] - kSmallInitDiff; destatep->enc_prob[F_GB18030] = destatep->enc_prob[F_GB] - kSmallInitDiff; destatep->enc_prob[F_BIG5_CP950] = destatep->enc_prob[F_BIG5] - kSmallInitDiff; destatep->enc_prob[F_BIG5_HKSCS] = destatep->enc_prob[F_BIG5] - kSmallInitDiff; // Deliberate over-bias Ascii7 and underbias Binary [unneeded] // destatep->enc_prob[F_ASCII_7_bit] = destatep->enc_prob[F_ASCII_7_bit] + kSmallInitDiff; // destatep->enc_prob[F_BINARY] = destatep->enc_prob[F_BINARY] - (kBoostInitial / 2); if (destatep->debug_data != NULL) { // Show state at end of hints SetDetailsEncProb(destatep, 0, -1, "Endhints"); if(FLAGS_enc_detect_detail2) { // Add a line showing the watched encoding(s) if (watch1_rankedenc >= 0) { SetDetailsEncProb(destatep, 0, watch1_rankedenc, FLAGS_enc_detect_watch1); } if (watch2_rankedenc >= 0) { SetDetailsEncProb(destatep, 0, watch2_rankedenc, FLAGS_enc_detect_watch2); } } // End detail2 } // If duplicate hints, set second one to ASCII_7BIT to prevent double-boost if (destatep->declared_enc_1 == destatep->declared_enc_2) { destatep->declared_enc_2 = F_ASCII_7_bit; } if (FLAGS_force127) { destatep->do_latin_trigrams = true; if (FLAGS_enc_detect_source) { PsHighlight(0, destatep->initial_src, 0, 2); } } if (FLAGS_counts && destatep->looking_for_latin_trigrams) {++looking_used;} if (FLAGS_counts && destatep->do_latin_trigrams) {++doing_used;} // // At this point, destatep->enc_prob[] is an initial probability vector based // on the given hints/default. In general, it spreads out least-likely // encodings to be about 2**-25 below the most-likely encoding. // For input text with lots of bigrams, an unlikely encoding can rise to // the top at a rate of about 2**6 per bigram, and more commonly 2**2 per // bigram. So more than 4 bigrams and commonly more than 12 are // needed to overcome the initial hints when the least-likely encoding // is in fact the correct answer. So if the entire text has very few bigrams // (as a two-word query might), it can be impossible for the correct // encoding to win. // // To compensate for this, we take the initial hint vector and effectively // apply it at the rate of 1/16 every bigram for the first 16 bigrams. The // actual mechanism is done just before the last prune. // // Remember Initial hint probabilities memcpy(destatep->hint_prob, destatep->enc_prob, sizeof(destatep->enc_prob)); } // Look for specific high-value patterns in the first 4 bytes // Byte order marks (BOM) // EFBBBF UTF-8 // FEFF UTF-16 BE // FFFE UTF-16 LE // FFFE0000 UTF-32 BE // 0000FEFF UTF-32 LE // // Likely UTF-x of seven-bit ASCII // 00xx UTF-16 BE xx printable ASCII // xx00 UTF-16 LE // 000000xx UTF-32 BE // xx000000 UTF-32 LE // void InitialBytesBoost(const uint8* src, int text_length, DetectEncodingState* destatep) { if (text_length < 4) {return;} uint32 pair01 = (src[0] << 8) | src[1]; uint32 pair23 = (src[2] << 8) | src[3]; uint32 quad0123 = (pair01 << 16) | pair23; bool utf_16_indication = false; bool utf_32_indication = false; int best_enc = -1; // Byte order marks // UTF-8 if ((quad0123 & 0xffffff00) == 0xEFBBBF00) { destatep->bom_hint = UTF8; Boost(destatep, F_UTF8, kBoostInitial * 2); Boost(destatep, F_UTF8UTF8, kBoostInitial * 2); best_enc = F_UTF8; // UTF-32 (test before UTF-16) } else if (quad0123 == 0x0000FEFF) { destatep->bom_hint = UTF32BE; Boost(destatep, F_UTF_32BE, kBoostInitial * 2); best_enc = F_UTF_32BE; } else if (quad0123 == 0xFFFE0000) { destatep->bom_hint = UTF32LE; Boost(destatep, F_UTF_32LE, kBoostInitial * 2); best_enc = F_UTF_32LE; // UTF-16 } else if (pair01 == 0xFEFF) { destatep->bom_hint = UTF16BE; Boost(destatep, F_UTF_16BE, kBoostInitial * 3); best_enc = F_UTF_16BE; } else if (pair01 == 0xFFFE) { destatep->bom_hint = UTF16LE; Boost(destatep, F_UTF_16LE, kBoostInitial * 3); best_enc = F_UTF_16LE; // Possible seven-bit ASCII encoded as UTF-16/32 // UTF-32 (test before UTF-16) } else if (((quad0123 & 0xffffff00) == 0) && (kIsPrintableAscii[src[3]] != 0)) { Boost(destatep, F_UTF_32BE, kBoostInitial); Whack(destatep, F_UTF_32LE, kBadPairWhack); // Illegal char best_enc = F_UTF_32BE; } else if (((quad0123 & 0x00ffffff) == 0) && (kIsPrintableAscii[src[0]] != 0)) { Boost(destatep, F_UTF_32LE, kBoostInitial); Whack(destatep, F_UTF_32BE, kBadPairWhack); // Illegal char best_enc = F_UTF_32LE; } else if ((src[0] == 0x00) && (kIsPrintableAscii[src[1]] != 0)) { Boost(destatep, F_UTF_16BE, kBoostInitial); best_enc = F_UTF_16BE; } else if ((src[1] == 0x00) && (kIsPrintableAscii[src[0]] != 0)) { Boost(destatep, F_UTF_16LE, kBoostInitial); best_enc = F_UTF_16LE; // Whack if 0000 or FFFF // UTF-32 (test before UTF-16) } else if (quad0123 == 0x00000000) { Whack(destatep, F_UTF_32BE, kBadPairWhack); // Illegal char Whack(destatep, F_UTF_32LE, kBadPairWhack); Whack(destatep, F_UTF_16BE, kBadPairWhack); Whack(destatep, F_UTF_16LE, kBadPairWhack); best_enc = -1; } else if (quad0123 == 0xffffffff) { Whack(destatep, F_UTF_32BE, kBadPairWhack); // Illegal char Whack(destatep, F_UTF_32LE, kBadPairWhack); Whack(destatep, F_UTF_16BE, kBadPairWhack); Whack(destatep, F_UTF_16LE, kBadPairWhack); best_enc = -1; } else if (pair01 == 0x0000) { Whack(destatep, F_UTF_16BE, kBadPairWhack); // Illegal char Whack(destatep, F_UTF_16LE, kBadPairWhack); best_enc = -1; } else if (pair01 == 0xffff) { Whack(destatep, F_UTF_16BE, kBadPairWhack); // Illegal char Whack(destatep, F_UTF_16LE, kBadPairWhack); best_enc = -1; // These are the first four bytes of some known binary file formats // Boost BINARY bigtime if JPEG FFD8FFxx // Boost BINARY bigtime if png 89504E47 (.PNG) // Boost BINARY bigtime if gif 47494638 (GIF8) // Boost BINARY bigtime if zip 504B0304 (PK..) // Boost BINARY bigtime if gzip 1F8B08xx // Boost BINARY bigtime if gzip 78DAxxxx // Boost BINARY if PDF 25504446 (%PDF) // Boost BINARY if SWF (FWSx or CWSx where x <= 0x1f) } else if ((quad0123 & 0xffffff00) == 0xFFD8FF00) { // JPEG FFD8FFxx Boost(destatep, F_BINARY, kBoostInitial * kStrongBinary); } else if (quad0123 == 0x89504E47) { // Hex 89 P N G Boost(destatep, F_BINARY, kBoostInitial * kStrongBinary); } else if (quad0123 == 0x47494638) { // Hex GIF8 Boost(destatep, F_BINARY, kBoostInitial * kStrongBinary); } else if (quad0123 == 0x504B0304) { // Hex P K 03 04 Boost(destatep, F_BINARY, kBoostInitial * kStrongBinary); } else if ((quad0123 & 0xffffff00) == 0x1F8B0800) { // gzip 1F8B08xx Boost(destatep, F_BINARY, kBoostInitial * kStrongBinary); } else if (pair01 == 0x78DA) { // gzip 78DAxxxx Boost(destatep, F_BINARY, kBoostInitial * kStrongBinary); } else if (quad0123 == 0x25504446) { // Hex %PDF Boost(destatep, F_BINARY, kBoostInitial * kStrongBinary); } else if ((quad0123 & 0xffffff1f) == 0x66535700) { // Hex FWSx Boost(destatep, F_BINARY, kBoostInitial * kStrongBinary); } else if ((quad0123 & 0xffffff1f) == 0x63535700) { // Hex CWSx Boost(destatep, F_BINARY, kBoostInitial * kStrongBinary); // More binary detect prefixes // 7F E L F Executable and linking format // M M 00 * TIFF (little-endian) // * 00 M M TIFF (big-endian) // 01 f c p Final cut pro } else if (quad0123 == 0x7F454C46) { // Hex 7F E L F Boost(destatep, F_BINARY, kBoostInitial * kStrongBinary); } else if (quad0123 == 0x4D4D002A) { // Hex M M 00 * Boost(destatep, F_BINARY, kBoostInitial * kStrongBinary); } else if (quad0123 == 0x2A004D4D) { // Hex * 00 M M Boost(destatep, F_BINARY, kBoostInitial * kStrongBinary); } else if (quad0123 == 0x01666370) { // Hex 01 f c p Boost(destatep, F_BINARY, kBoostInitial * kStrongBinary); // More binary detect prefixes; all-ASCII names; heavy weight to avoid ASCII // prefix overcoming binary // C C S D USGS ISIS 3-D cube files // S I M P FITS image header "SIMPLE " } else if (quad0123 == 0x43435344) { // Hex C C S D Boost(destatep, F_BINARY, kBoostInitial * kStrongBinary); } else if (quad0123 == 0x53494D50) { // Hex S I M P Boost(destatep, F_BINARY, kBoostInitial * kStrongBinary); // More binary detect prefixes; all-ASCII names; lighter weight // H W P Hangul word processor // 8 B P S Photoshop // P D S _ xx "PDS_VERSION_ID " } else if (quad0123 == 0x48575020) { // Hex H W P if ((19 <= text_length) && (memcmp(src, "HWP.Document.File.V", 19) == 0)) { Boost(destatep, F_BINARY, kBoostInitial * kStrongBinary); } else if ((19 <= text_length) && (memcmp(src, "HWP Document File V", 19) == 0)) { Boost(destatep, F_BINARY, kBoostInitial * kStrongBinary); } else { Boost(destatep, F_BINARY, kBoostInitial * kWeakerBinary); } } else if (quad0123 == 0x38425053) { // Hex 8 B P S Boost(destatep, F_BINARY, kBoostInitial * kStrongBinary); } else if (quad0123 == 0x5044535F) { // Hex P D S _ if ((14 <= text_length) && (memcmp(src, "PDS_VERSION_ID", 14) == 0)) { Boost(destatep, F_BINARY, kBoostInitial * kStrongBinary); } else { Boost(destatep, F_BINARY, kBoostInitial * kWeakerBinary); } } // There are several main Windows EXE file formats. // Not examined here (prefix too short; never see them in Google pipeline) // M Z DOS .exe Mark Zbikowski // N E DOS 4.0 16-bit // L E OS/2 VxD drivers // L X OS/2 // P E Windows NT // More user-defined // http://www.freenet.am/armscii/ Armenian // If any hints or BOM, etc. keep UTF 16/32 around if ((destatep->enc_prob[F_UTF_16BE] > 0) || (destatep->enc_prob[F_UTF_16LE] > 0)) { utf_16_indication = true; } if ((destatep->enc_prob[F_UTF_32BE] > 0) || (destatep->enc_prob[F_UTF_32LE] > 0)) { utf_32_indication = true; } // Kill UTF16/32 right now if no positive indication of them // Otherwise, they tend to rise to the top in 7-bit files with an // occasional 0x02 byte in some comment or javascript if (!utf_16_indication) { Whack(destatep, F_UTF_16BE, kBadPairWhack * 8); Whack(destatep, F_UTF_16LE, kBadPairWhack * 8); Whack(destatep, F_Unicode, kBadPairWhack * 8); } if (!utf_32_indication) { Whack(destatep, F_UTF_32BE, kBadPairWhack * 8); Whack(destatep, F_UTF_32LE, kBadPairWhack * 8); } // Usually kill mixed encodings if (!FLAGS_ced_allow_utf8utf8) { Whack(destatep, F_UTF8UTF8, kBadPairWhack * 8); } // 2011.11.07 never use UTF8CP1252 -- answer will be UTF8 instead Whack(destatep, F_UTF8CP1252, kBadPairWhack * 8); if (destatep->debug_data != NULL) { // Show first four bytes of the input char buff[16]; snprintf(buff, sizeof(buff), "%04x%04x", pair01, pair23); SetDetailsEncProb(destatep, 0, best_enc, buff); } } // Descending order int IntCompare(const void* v1, const void* v2) { const int* p1 = reinterpret_cast(v1); const int* p2 = reinterpret_cast(v2); if (*p1 < *p2) {return 1;} if (*p1 > *p2) {return -1;} return 0; } bool Base64Char(uint8 c) { if (('A' <= c) && (c <= 'Z')) {return true;} if (('a' <= c) && (c <= 'z')) {return true;} if (('0' <= c) && (c <= '9')) {return true;} if ('+' == c) {return true;} if ('/' == c) {return true;} return false; } int Base64ScanLen(const uint8* start, const uint8* limit) { // We have a plausible beginning; scan entire base64 string const uint8* ib64str = start; const uint8* b64str = ib64str; const uint8* b64strlimit = limit; // if starts with + +++, assume it is drawing, so bogus if (((limit - start) > 3) && (start[0] == '+') && (start[1] == '+') && (start[2] == '+')) { return 81; } // Scan over base64 while ((b64str < b64strlimit) && (kBase64Value[*b64str++] >= 0)) { } b64str--; // We overshot by 1 return b64str - ib64str; } // Input is at least 8-character legal base64 string after +. // But might be say + "Presse+Termine" bool GoodUnicodeFromBase64(const uint8* start, const uint8* limit) { // Reject base64 string len N if density of '+' is > 1 + N/16 (expect 1/64) // Reject base64 string len N if density of A-Z is < 1 + N/16 (expect 26/64) // Reject base64 string len N if density of a-z is < 1 + N/16 (expect 26/64) // Reject base64 string len N if density of 0-9 is < 1 + N/32 (expect 10/64) // NOTE: this requires at least one lower AND one upper AND one digit to pass // int plus_count = 0; int lower_count = 0; int upper_count = 0; int digit_count = 0; int len = limit - start; for (const uint8* src = start; src < limit; ++src) { uint8 c = *src; if (('a' <= c) && (c <= 'z')) { ++lower_count; } else if (('A' <= c) && (c <= 'Z')) { ++upper_count; } else if (('0' <= c) && (c <= '0')) { ++digit_count; } else if (*src == '+') { ++plus_count; } } if (plus_count > (1 + (len >> 4))) {return false;} if (lower_count < (1 + (len >> 4))) {return false;} if (upper_count < (1 + (len >> 4))) {return false;} if (digit_count < (1 + (len >> 5))) {return false;} // checking the last character to reduce false positive // since the last character may be padded to 0 bits at the end. // refer to http://en.wikipedia.org/wiki/UTF-7 int nmod8 = len & 7; const uint8 last = *(start+len-1); // When UTF-7 string length%8=3, the last two bits must be padded as 0 if ((nmod8 == 3) && (kBase64Value[last] & 3)) {return false;} // When UTF-7 string length%8=6, the last four bits must be padded as 0 if ((nmod8 == 6) && (kBase64Value[last] & 15)) {return false;} return true; } // Prune here after N bytes // Boost here for seven-bit sequences (at every prune) // if (sevenbitrankedencoding) // + UTF7 scan and boost/demote len mod 8 = 0 3 6 // ~ Hz scan and boost/demote len mod 8 = 0 2 4 6 // 1B 2022 scan and boost/demote len mod 8 = 0 2 4 6 // 0E 2022 scan and boost/demote len mod 8 = 0 2 4 6 // [0F 2022 boost/demote] // 00 UTF16/32 scan and boost/demote offset = even/odd // // If still some seven-bit possibilities > pure ASCII, // scan each possibility for clearer prob, s.t. about // two good sequences is a clear win // A-Z 00-19 00xx-64xx (B = 04xx) // a-z 1A-33 68xx-CCxx (f = 7Cxx) // 0-9 34-3D D0xx-F4xx (1 = D4xx) // + 3E F8xx // / 3F FCxx // do another chunk with slow scan // Boost, whack, or leave alone UTF-7 probablilty void UTF7BoostWhack(DetectEncodingState* destatep, int next_pair, uint8 byte2) { int off = destatep->interesting_offsets[AsciiPair][next_pair]; if (off >= destatep->prior_utf7_offset) { // Not part of a previous successful UTF-7 string ++destatep->utf7_starts; if (byte2 == '-') { // +- encoding for '+' neutral } else if (!Base64Char(byte2)) { // Not base64 -- not UTF-7, whack Whack(destatep, F_UTF7, kBadPairWhack); // Illegal pair } else { // Starts with base64 byte, might be a good UTF7 sequence const uint8* start = destatep->initial_src + off + 1; // over the + int n = Base64ScanLen(start, destatep->limit_src); int nmod8 = n & 7; if ((n == 3) || (n == 6)) { // short but legal -- treat as neutral } else if ((nmod8 == 0) | (nmod8 == 3) | (nmod8 == 6)) { // Good length. Check for good Unicode. if (GoodUnicodeFromBase64(start, start + n)) { // Good length and Unicode, boost Boost(destatep, F_UTF7, kBoostOnePair); // Found good destatep->prior_utf7_offset = off + n + 1; } else { // Bad Unicode. Whack Whack(destatep, F_UTF7, kBadPairWhack); // Illegal length } } else { // Bad length. Whack Whack(destatep, F_UTF7, kBadPairWhack); // Illegal length } } } } // Boost, whack, or leave alone HZ probablilty void HzBoostWhack(DetectEncodingState* destatep, uint8 byte2) { if ((byte2 == '{') || (byte2 == '}')) { Boost(destatep, F_HZ_GB_2312, kBoostOnePair); // Found ~{ or ~} } else if ((byte2 == '~') || (byte2 == '\n')) { destatep->enc_prob[F_HZ_GB_2312] += 0; // neutral } else { Whack(destatep, F_HZ_GB_2312, kBadPairWhack); // Illegal pair } } // Boost, whack, or leave alone BINARY probablilty void BinaryBoostWhack(DetectEncodingState* destatep, uint8 byte1, uint8 byte2) { int quadrant = ((byte1 & 0x80) >> 6) | ((byte2 & 0x80) >> 7); int bucket8x4 = ((byte1 & 0xe0) >> 3) | ((byte2 & 0xc0) >> 6); uint32 quad_mask = 1 << quadrant; uint32 bucket8x4_mask = 1 << bucket8x4; if ((destatep->binary_quadrants_seen & quad_mask) == 0) { destatep->binary_quadrants_seen |= quad_mask; destatep->binary_quadrants_count += 1; if (destatep->binary_quadrants_count == 4) { Boost(destatep, F_BINARY, kBoostOnePair * 2); // Found all 4 quadrants, // boost 2 pairs } } if ((destatep->binary_8x4_seen & bucket8x4_mask) == 0) { destatep->binary_8x4_seen |= bucket8x4_mask; destatep->binary_8x4_count += 1; if (destatep->binary_8x4_count >= 11) { Boost(destatep, F_BINARY, kBoostOnePair * 4); // Found 11+/20 buckets, // boost 4 pairs each time } } } // Demote UTF-16/32 on 0000 or FFFF, favoring Binary void UTF1632BoostWhack(DetectEncodingState* destatep, int offset, uint8 byte1) { if (byte1 == 0) { // We have 0000 Whack(destatep, F_UTF_16BE, kBadPairWhack); // Illegal pair Whack(destatep, F_UTF_16LE, kBadPairWhack); // Illegal pair switch (offset & 3) { case 0: // We get called with 0 4 8, etc. for ASCII/BMP as UTF-32BE Whack(destatep, F_UTF_32LE, kBadPairWhack); // Illegal pair Boost(destatep, F_UTF_32BE, kSmallInitDiff); // Good pair break; case 1: // We get called with 1 5 9, etc. for ASCII as UTF-32LE case 2: // We get called with 2 6 10, etc. for BMP as UTF-32LE Whack(destatep, F_UTF_32BE, kBadPairWhack); // Illegal pair Boost(destatep, F_UTF_32LE, kSmallInitDiff); // Good pair break; case 3: // ambiguous break; } } else { // We have ffff Whack(destatep, F_UTF_32BE, kBadPairWhack); // Illegal pair Whack(destatep, F_UTF_32LE, kBadPairWhack); // Illegal pair Whack(destatep, F_UTF_16BE, kBadPairWhack); // Illegal pair Whack(destatep, F_UTF_16LE, kBadPairWhack); // Illegal pair } } // Make even offset void UTF16MakeEven(DetectEncodingState* destatep, int next_pair) { destatep->interesting_offsets[OtherPair][next_pair] &= ~1; } bool ConsecutivePair(DetectEncodingState* destatep, int i) { if (i <= 0) { return false; } return destatep->interesting_offsets[OtherPair][i] == (destatep->interesting_offsets[OtherPair][i - 1] + 2); } // boost, whack, or leave alone UTF-8 probablilty // Any whacks are also applied to UTF8UTF8; CheckUTF8UTF8Seq assumes good UTF8 // Returns total boost int CheckUTF8Seq(DetectEncodingState* destatep, int weightshift) { int startcount = destatep->prior_interesting_pair[OtherPair]; int endcount = destatep->next_interesting_pair[OtherPair]; int demotion_count = 0; for (int i = startcount; i < endcount; ++i) { int sub; char* s = &destatep->interesting_pairs[OtherPair][i * 2]; // Demote four byte patterns that are more likely Latin1 than UTF-8 // C9AE, DF92, DF93, DFAB. See note at top. // Demotion also boosts Latin1 and CP1252 uint8 s0 = static_cast(s[0]); uint8 s1 = static_cast(s[1]); if ((s0 == 0xc9) && (s1 == 0xae)) {++demotion_count;} if ((s0 == 0xdf) && (s1 == 0x92)) {++demotion_count;} if ((s0 == 0xdf) && (s1 == 0x93)) {++demotion_count;} if ((s0 == 0xdf) && (s1 == 0xab)) {++demotion_count;} if (!ConsecutivePair(destatep, i)) { // Insert a blank into the sequence; avoid wrong splices sub = (' ' >> 4) & 0x0f; ++destatep->utf8_minicount[ static_cast(kMiniUTF8Count[static_cast(destatep->next_utf8_ministate)][sub])]; destatep->next_utf8_ministate = kMiniUTF8State[destatep->next_utf8_ministate][sub]; } // Byte 0 sub = (s0 >> 4) & 0x0f; ++destatep->utf8_minicount[ static_cast(kMiniUTF8Count[static_cast(destatep->next_utf8_ministate)][sub])]; destatep->next_utf8_ministate = kMiniUTF8State[destatep->next_utf8_ministate][sub]; // Byte 1 sub = (s1 >> 4) & 0x0f; ++destatep->utf8_minicount[ static_cast(kMiniUTF8Count[static_cast(destatep->next_utf8_ministate)][sub])]; destatep->next_utf8_ministate = kMiniUTF8State[destatep->next_utf8_ministate][sub]; DCHECK((0 <= destatep->next_utf8_ministate) && (destatep->next_utf8_ministate < 8)); } // For the four specific byte combinations above, Latin1/CP1252 is more likely if (demotion_count > 0) { Boost(destatep, F_Latin1, kGentleOnePair * demotion_count); Boost(destatep, F_CP1252, kGentleOnePair * demotion_count); } // Boost UTF8 for completed good sequences int total_boost = 2 * destatep->utf8_minicount[2] + 3 * destatep->utf8_minicount[3] + 4 * destatep->utf8_minicount[4]; // But not so much for demoted bytes total_boost -= (3 * demotion_count); total_boost *= kGentleOnePair; total_boost >>= weightshift; // Design: boost both UTF8 and UTF8UTF8 for each good sequence Boost(destatep, F_UTF8, total_boost); Boost(destatep, F_UTF8UTF8, total_boost); destatep->utf8_minicount[5] += destatep->utf8_minicount[2]; // total chars destatep->utf8_minicount[5] += destatep->utf8_minicount[3]; // total chars destatep->utf8_minicount[5] += destatep->utf8_minicount[4]; // total chars destatep->utf8_minicount[2] = 0; destatep->utf8_minicount[3] = 0; destatep->utf8_minicount[4] = 0; // Whack (2 bytes) for errors int error_whack = 2 * destatep->utf8_minicount[1]; error_whack *= kGentlePairWhack; error_whack >>= weightshift; Whack(destatep, F_UTF8, error_whack); Whack(destatep, F_UTF8UTF8, error_whack); destatep->utf8_minicount[1] = 0; return total_boost - error_whack; } // Boost, whack, or leave alone UTF8UTF8 probablilty // // We are looking for // (1) chars ONLY in set UTF8(0080)..UTF8(00FF), including for 80..9F the // MS CP1252 mappings, and // (2) sequences of 2 or more such characters // // If so, we could be looking at some non-7-bit encoding extra-converted // to UTF-8. The most common observed is CP1252->UTF8 twice, // 1252=>UTF8 : 1252=>UTF8 // where the colon means "take those bytes and pretend that they are 1252". // We have a couple of examples of BIG5 bytes converted as though // they were 1252, // BIG5 : 1252=>UTF8 // // Of course, we don't want correctly converted 1252 to be flagged here // 1252=>UTF8 // So we want the input high bytes to be in pairs or longer, hence the // output UTF8 in groups of four bytes or more // // Good chars: C2xx, C3xx, // Good chars: C592, C593, C5A0, C5A1, C5B8, C5BD, C5BE, C692, CB86, CB9C // Good chars: E280xx E282AC E284A2 // C2xx 1100001x 10xxxxxx (128/128) // C5xx 11000101 10xx00xx (16/4) // C5xx 11000101 10111xxx (8/3) // C692 11000110 10010010 (1/1) // CBxx 11001011 100xx1x0 (8/2) // E28x 11100010 10000xx0 (4/3) // // Returns total boost int CheckUTF8UTF8Seq(DetectEncodingState* destatep, int weightshift) { int this_pair = destatep->prior_interesting_pair[OtherPair]; int startbyteoffset = this_pair * 2; int endbyteoffset = destatep->next_interesting_pair[OtherPair] * 2; char* startbyte = &destatep->interesting_pairs[OtherPair][startbyteoffset]; char* endbyte = &destatep->interesting_pairs[OtherPair][endbyteoffset]; int pair_number = this_pair; for (char* s = startbyte; s < endbyte; s += 2) { int next = destatep->next_utf8utf8_ministate; if (!ConsecutivePair(destatep, pair_number)) { // Insert two blanks into the sequence to avoid wrong splices // go back to no odd-byte offset destatep->utf8utf8_odd_byte = 0; int sub = UTF88Sub(' ', ' '); ++destatep->utf8utf8_minicount[static_cast(kMiniUTF8UTF8Count[next][sub])]; next = kMiniUTF8UTF8State[next][sub]; } int odd = destatep->utf8utf8_odd_byte; if (s + 1 + odd >= endbyte) continue; int sub = UTF88Sub(s[0 + odd], s[1 + odd]); destatep->utf8utf8_odd_byte ^= kMiniUTF8UTF8Odd[next][sub]; ++destatep->utf8utf8_minicount[ static_cast(kMiniUTF8UTF8Count[next][sub])]; destatep->next_utf8utf8_ministate = kMiniUTF8UTF8State[next][sub]; ++pair_number; } // Boost for completed good sequences; each count covers two chars. // Design: boost UTF8UTF8 above UTF8 for each good sequence int total_boost = (2) * destatep->utf8utf8_minicount[2] + (2) * destatep->utf8utf8_minicount[3] + (2) * destatep->utf8utf8_minicount[4]; total_boost *= kGentleOnePair; total_boost >>= weightshift; Boost(destatep, F_UTF8UTF8, total_boost); // Track total characters destatep->utf8utf8_minicount[5] += destatep->utf8utf8_minicount[2]; destatep->utf8utf8_minicount[5] += destatep->utf8utf8_minicount[3]; destatep->utf8utf8_minicount[5] += destatep->utf8utf8_minicount[4]; destatep->utf8utf8_minicount[2] = 0; destatep->utf8utf8_minicount[3] = 0; destatep->utf8utf8_minicount[4] = 0; // Design: Do not whack UTF8UTF8 below UTF8 for each bad sequence destatep->utf8utf8_minicount[1] = 0; return total_boost; } // We give a gentle boost for each paired SO ... SI, whack others void CheckIso2022ActiveSeq(DetectEncodingState* destatep) { int this_pair = destatep->prior_interesting_pair[OtherPair]; int startbyteoffset = this_pair * 2; int endbyteoffset = destatep->next_interesting_pair[OtherPair] * 2; char* startbyte = &destatep->interesting_pairs[OtherPair][startbyteoffset]; char* endbyte = &destatep->interesting_pairs[OtherPair][endbyteoffset]; // Initial char must precede SO/SI // HZ_GB_2312 has no alternation constraint on 1- and 2-byte segments // ISO-2022-JP (JIS) has no alternation constraint on 1- and 2-byte segments // ISO-2022-CN has no alternation constraint on 1- and 2-byte segments // ISO-2022-KR requires alternation between 1- and 2-byte segments // JIS: // ( B ISO-2022-JP [1b 28 42] SI to ASCII // ( J ISO-2022-JP [1b 28 4a] SI to X0201 // $ @ ISO-2022-JP [1b 24 40] SO to X0208-78 twobyte // $ B ISO-2022-JP [1b 24 42] SO to X0208-83 twobyte for (char* s = startbyte; s < endbyte; s += 2) { if (s[0] == 0x1b) { if (s[1] == 0x24) { // $ is SO destatep->next_2022_state = SOSI_TWOBYTE; // SO to two-byte } else if (s[1] == 0x28) { if (destatep->next_2022_state == SOSI_TWOBYTE) { Boost(destatep, F_JIS, kGentlePairBoost); } else if (destatep->next_2022_state == SOSI_ONEBYTE) { Whack(destatep, F_JIS, kGentlePairWhack); } destatep->next_2022_state = SOSI_ONEBYTE; // JIS SI to one-byte } else { Whack(destatep, F_JIS, kBadPairWhack); Whack(destatep, F_ISO_2022_CN, kBadPairWhack); Whack(destatep, F_ISO_2022_KR, kBadPairWhack); destatep->next_2022_state = SOSI_ERROR; // not 2022 } } else if (s[0] == 0x0e) { // Whack(destatep, F_JIS, kBadPairWhack); if (destatep->next_2022_state != SOSI_NONE) { destatep->next_2022_state = SOSI_TWOBYTE; // SO to two-byte } else { // ESC required before SO/SI Whack(destatep, F_ISO_2022_CN, kBadPairWhack * 4); Whack(destatep, F_ISO_2022_KR, kBadPairWhack * 4); destatep->next_2022_state = SOSI_ERROR; // SO not after SI } } else if (s[0] == 0x0f) { // Whack(destatep, F_JIS, kBadPairWhack); if (destatep->next_2022_state != SOSI_NONE) { if (destatep->next_2022_state == SOSI_TWOBYTE) { Boost(destatep, F_ISO_2022_CN, kGentlePairBoost); Boost(destatep, F_ISO_2022_KR, kGentlePairBoost); } else if (destatep->next_2022_state == SOSI_ONEBYTE) { Whack(destatep, F_ISO_2022_CN, kGentlePairWhack); Whack(destatep, F_ISO_2022_KR, kGentlePairWhack); } destatep->next_2022_state = SOSI_ONEBYTE; // SI to one-byte } else { // ESC required before SO/SI Whack(destatep, F_ISO_2022_CN, kBadPairWhack * 4); Whack(destatep, F_ISO_2022_KR, kBadPairWhack * 4); destatep->next_2022_state = SOSI_ERROR; // SI not after SO } } else if (s[0] <= 0x1f) { // Some other control code. Allow ht lf [ff] cr if ((s[0] != 0x09) && (s[0] != 0x0a) && (s[0] != 0x0c) && (s[0] != 0x0d)) { // Otherwise these can float to the top on bad bytes Whack(destatep, F_JIS, kBadPairWhack); Whack(destatep, F_ISO_2022_CN, kBadPairWhack); Whack(destatep, F_ISO_2022_KR, kBadPairWhack); } } } // If no start, keep the probability pinned at zero (or below) if (destatep->next_2022_state == SOSI_NONE) { destatep->enc_prob[F_ISO_2022_CN] = minint(0, destatep->enc_prob[F_ISO_2022_CN]); destatep->enc_prob[F_ISO_2022_KR] = minint(0, destatep->enc_prob[F_ISO_2022_KR]); destatep->enc_prob[F_JIS] = minint(0, destatep->enc_prob[F_JIS]); } } // We give a gentle boost for each paired ~{ ... ~}, whack others void CheckHzActiveSeq(DetectEncodingState* destatep) { int this_pair = destatep->prior_interesting_pair[AsciiPair]; int startbyteoffset = this_pair * 2; int endbyteoffset = destatep->next_interesting_pair[AsciiPair] * 2; char* startbyte = &destatep->interesting_pairs[AsciiPair][startbyteoffset]; char* endbyte = &destatep->interesting_pairs[AsciiPair][endbyteoffset]; for (char* s = startbyte; s < endbyte; s += 2) { // Look for initial ~{ pair if ((s[0] == '~') && (s[1] == '{')) { destatep->next_hz_state = SOSI_TWOBYTE; // SO to two-byte } // Also look for closing ~} pair if ((s[0] == '~') && (s[1] == '}')) { if (destatep->next_hz_state == SOSI_TWOBYTE) { Boost(destatep, F_HZ_GB_2312, kGentlePairBoost); } else if (destatep->next_hz_state == SOSI_ONEBYTE) { Whack(destatep, F_HZ_GB_2312, kGentlePairWhack); } destatep->next_hz_state = SOSI_ONEBYTE; // SI to one-byte } } // If no start, keep the probability pinned at zero (or below) if (destatep->next_hz_state == SOSI_NONE) { destatep->enc_prob[F_HZ_GB_2312] = minint(0, destatep->enc_prob[F_HZ_GB_2312]); } } // We give a gentle boost after an odd number of 8Fxxxx triples, which // put subsequent bigrams out of phase until a low byte or another 8Fxxxx void CheckEucJpSeq(DetectEncodingState* destatep) { int this_pair = destatep->prior_interesting_pair[OtherPair]; int startbyteoffset = this_pair * 2; int endbyteoffset = destatep->next_interesting_pair[OtherPair] * 2; char* startbyte = &destatep->interesting_pairs[OtherPair][startbyteoffset]; char* endbyte = &destatep->interesting_pairs[OtherPair][endbyteoffset]; for (char* s = startbyte; s < endbyte; s += 2) { // Boost if out of phase (otherwise, EUC-JP will score badly after 8Fxxxx) if (destatep->next_eucjp_oddphase) { //printf(" EucJp boost[%02x%02x]\n", s[0], s[1]); // TEMP Boost(destatep, F_EUC_JP, kGentlePairBoost * 2); } uint8 s0 = static_cast(s[0]); uint8 s1 = static_cast(s[1]); // Look for phase flip at 8F if ((s0 & 0x80) == 0x00) { destatep->next_eucjp_oddphase = false; } else if (s0 == 0x8f) { destatep->next_eucjp_oddphase = !destatep->next_eucjp_oddphase; } if ((s1 & 0x80) == 0x00) { destatep->next_eucjp_oddphase = false; } else if (s1 == 0x8f) { destatep->next_eucjp_oddphase = !destatep->next_eucjp_oddphase; } } } // Boost, whack, or leave alone BINARY probablilty // Also called if UTF 16/32 active void CheckBinaryDensity(const uint8* src, DetectEncodingState* destatep, int delta_otherpairs) { // No change if not much gathered information if (delta_otherpairs == 0) { // Only ASCII pairs this call return; } int next_pair = destatep->next_interesting_pair[OtherPair]; // Look at density of interesting pairs [0..src) int delta_offset = static_cast(src - destatep->initial_src); // actual // Look at density of interesting pairs [0..next_interesting) int low_byte = destatep->interesting_offsets[OtherPair][0]; //int high_byte = destatep->interesting_offsets[OtherPair][next_pair - 1] + 2; //int byte_span = high_byte - low_byte; int byte_span = delta_offset - low_byte; // If all ASCII for the first 4KB, reject // If mostly ASCII in the first 5KB, reject if ((low_byte >= kBinaryHardAsciiLimit) || (delta_offset >= kBinarySoftAsciiLimit)) { // Not binary early enough in text Whack(destatep, F_BINARY, kBadPairWhack * 4); Whack(destatep, F_UTF_32BE, kBadPairWhack * 4); Whack(destatep, F_UTF_32LE, kBadPairWhack * 4); Whack(destatep, F_UTF_16BE, kBadPairWhack * 4); Whack(destatep, F_UTF_16LE, kBadPairWhack * 4); return; } // Density 1.0 for N pairs takes 2*N bytes // Whack if < 1/16 after first non_ASCII pair if ((next_pair * 2 * 16) < byte_span) { // Not dense enough Whack(destatep, F_BINARY, kBadPairWhack * 4); Whack(destatep, F_UTF_32BE, kBadPairWhack * 4); Whack(destatep, F_UTF_32LE, kBadPairWhack * 4); Whack(destatep, F_UTF_16BE, kBadPairWhack * 4); Whack(destatep, F_UTF_16LE, kBadPairWhack * 4); } if (next_pair < 8) { // Fewer than 8 non-ASCII total; too soon to boost return; } // Density 1.0 for N pairs takes 2*N bytes // Boost if density >= 1/4, whack if < 1/16 if ((next_pair * 2 * 4) >= byte_span) { // Very dense // Only boost if at least 2 quadrants seen if (destatep->binary_quadrants_count >= 2) { Boost(destatep, F_BINARY, kSmallInitDiff); Boost(destatep, F_UTF_32BE, kSmallInitDiff); Boost(destatep, F_UTF_32LE, kSmallInitDiff); Boost(destatep, F_UTF_16BE, kSmallInitDiff); Boost(destatep, F_UTF_16LE, kSmallInitDiff); } } } // Look at a number of special-case encodings whose reliable detection depends // on sequencing or other properties // AsciiPair probibilities (UTF7 and HZ) are all done here void ActiveSpecialBoostWhack(const uint8* src, DetectEncodingState* destatep) { int delta_asciipairs = destatep->next_interesting_pair[AsciiPair] - destatep->prior_interesting_pair[AsciiPair]; int delta_otherpairs = destatep->next_interesting_pair[OtherPair] - destatep->prior_interesting_pair[OtherPair]; // The two pure ASCII encodings if (UTF7OrHzActive(destatep) && (delta_asciipairs > 0)) { // Adjust per pair for (int i = 0; i < delta_asciipairs; ++i) { int next_pair = destatep->prior_interesting_pair[AsciiPair] + i; uint8 byte1 = destatep->interesting_pairs[AsciiPair][next_pair * 2 + 0]; uint8 byte2 = destatep->interesting_pairs[AsciiPair][next_pair * 2 + 1]; if (byte1 == '+') { // Boost, whack, or leave alone UTF-7 probablilty UTF7BoostWhack(destatep, next_pair, byte2); if (destatep->debug_data != NULL) { // Show UTF7 entry char buff[16]; snprintf(buff, sizeof(buff), "%02x%02x+", byte1, byte2); SetDetailsEncProb(destatep, destatep->interesting_offsets[AsciiPair][next_pair], kMostLikelyEncoding[(byte1 << 8) + byte2], buff); } } else if (byte1 == '~') { // Boost, whack, or leave alone HZ probablilty HzBoostWhack(destatep, byte2); if (destatep->debug_data != NULL) { // Show Hz entry char buff[16]; snprintf(buff, sizeof(buff), "%02x%02x~", byte1, byte2); SetDetailsEncProb(destatep, destatep->interesting_offsets[AsciiPair][next_pair], kMostLikelyEncoding[(byte1 << 8) + byte2], buff); } } } // Kill UTF-7 now if at least 8 + pairs and not confirmed valid UTF-7 if ((destatep->utf7_starts >= 8) && (destatep->prior_utf7_offset == 0)) { Whack(destatep, F_UTF7, kBadPairWhack * 8); // flush } } // All the other encodings if (OtherActive(destatep) && (delta_otherpairs > 0)) { // Adjust per pair int biggest_weightshift = 0; for (int i = 0; i < delta_otherpairs; ++i) { int next_pair = destatep->prior_interesting_pair[OtherPair] + i; uint8 byte1 = destatep->interesting_pairs[OtherPair][next_pair * 2 + 0]; uint8 byte2 = destatep->interesting_pairs[OtherPair][next_pair * 2 + 1]; int off = destatep->interesting_offsets[OtherPair][next_pair]; int weightshift = destatep->interesting_weightshift[OtherPair][next_pair]; biggest_weightshift = maxint(biggest_weightshift, weightshift); if (byte1 == 0x00) { if (byte2 == 0x00) { UTF1632BoostWhack(destatep, off, byte1); } else if ((kIsPrintableAscii[byte2] != 0) && ((off & 1) != 0)) { // We have 00xx at an odd offset. Turn into preceding even offset // for possible Ascii text in UTF-16LE or UTF-32LE (vs BE) // This will cascade into caller's probability update // 00 is illegal for all other encodings, so it doesn't matter to them UTF16MakeEven(destatep, next_pair); } if (destatep->debug_data != NULL) { // Show 0000 detail entry for this bigram char buff[16]; snprintf(buff, sizeof(buff), "%02x%02xZ", byte1, byte2); SetDetailsEncProb(destatep, destatep->interesting_offsets[OtherPair][next_pair], kMostLikelyEncoding[(byte1 << 8) + byte2], buff); } } if (byte1 == 0xff) { if (byte2 == 0xff) { UTF1632BoostWhack(destatep, off, byte1); } if (destatep->debug_data != NULL) { // Show FFFF detail entry for this bigram char buff[16]; snprintf(buff, sizeof(buff), "%02x%02xF", byte1, byte2); SetDetailsEncProb(destatep, destatep->interesting_offsets[OtherPair][next_pair], kMostLikelyEncoding[(byte1 << 8) + byte2], buff); } } if (BinaryActive(destatep)) { BinaryBoostWhack(destatep, byte1, byte2); } } // End for i // Adjust per entire-pair-span if (UTF8Active(destatep)) { CheckUTF8Seq(destatep, biggest_weightshift); } if (UTF8UTF8Active(destatep)) { CheckUTF8UTF8Seq(destatep, biggest_weightshift); } if (Iso2022Active(destatep)) { CheckIso2022ActiveSeq(destatep); } if (HzActive(destatep)) { CheckHzActiveSeq(destatep); } if (EUCJPActive(destatep)) { CheckEucJpSeq(destatep); } if (BinaryActive(destatep) || UTF1632Active(destatep)) { CheckBinaryDensity(src, destatep, delta_otherpairs); } } // ISO-2022 do OK on their own, using stright probabilities? Not on bad bytes if (destatep->debug_data != NULL) { // Show sequencing result SetDetailsEncLabel(destatep, "seq"); } } void PrintTopEnc(DetectEncodingState* destatep, int n) { // Print top n or fewer int temp_sort[NUM_RANKEDENCODING]; for (int j = 0; j < destatep->rankedencoding_list_len; ++j) { int rankedencoding = destatep->rankedencoding_list[j]; temp_sort[j] = destatep->enc_prob[rankedencoding]; } qsort(temp_sort, destatep->rankedencoding_list_len, sizeof(temp_sort[0]), IntCompare); int top_n = minint(n, destatep->rankedencoding_list_len); int showme = temp_sort[top_n - 1]; // Print this value and above printf("rankedencodingList top %d: ", top_n); for (int j = 0; j < destatep->rankedencoding_list_len; ++j) { int rankedencoding = destatep->rankedencoding_list[j]; if (showme <= destatep->enc_prob[rankedencoding]) { printf("%s=%d ", MyEncodingName(kMapToEncoding[rankedencoding]), destatep->enc_prob[rankedencoding]); } } printf("\n\n"); } // If the same bigram repeats, don't boost its best encoding too much bool RepeatedBigram(DetectEncodingState* destatep, uint8 byte1, uint8 byte2) { int this_bigram = (byte1 << 8) | byte2; // If 00xx 01xx 02xx ... 1fxx, take out bottom 4 bits of xx. // This ignores parts of Yahoo 0255 0254 0243 0247 0245 0243 0250 0255 ... // It may screw up UTF-16BE // It may screw up ISO-2022 (1b24 suppresses 1b28) if (byte1 < 0x20) { this_bigram &= 0xfff0; } if (this_bigram == destatep->prior_bigram[0]) {return true;} if (this_bigram == destatep->prior_bigram[1]) {return true;} if (this_bigram == destatep->prior_bigram[2]) {return true;} if (this_bigram == destatep->prior_bigram[3]) {return true;} // Round-robin replacement destatep->prior_bigram[destatep->next_prior_bigram] = this_bigram; destatep->next_prior_bigram = (destatep->next_prior_bigram + 1) & 3; return false; } // Sometimes illegal bytes are used as markers between text that Javascript // is going to decode. Don't overboost the Binary encoding for markers 01-FF. // Just count first pair per 8x4 bucket bool RepeatedBinary(DetectEncodingState* destatep, uint8 byte1, uint8 byte2) { int bucket8x4 = ((byte1 & 0xe0) >> 3) | ((byte2 & 0xc0) >> 6); uint32 bucket8x4_mask = 1 << bucket8x4; if ((destatep->binary_8x4_seen & bucket8x4_mask) == 0) { destatep->binary_8x4_seen |= bucket8x4_mask; destatep->binary_8x4_count += 1; return false; } return true; } // Find current top two rankedencoding probabilities void ReRank(DetectEncodingState* destatep) { destatep->top_prob = -1; destatep->second_top_prob = -1; // Leave unchanged //destatep->top_rankedencoding = // destatep->rankedencoding_list[0]; // Just to make well-defined //destatep->second_top_rankedencoding = // destatep->rankedencoding_list[1]; // Just to make well-defined for (int j = 0; j < destatep->rankedencoding_list_len; j++) { int rankedencoding = destatep->rankedencoding_list[j]; if (destatep->top_prob < destatep->enc_prob[rankedencoding]) { // Make sure top 2 are in different superset groups if (kMapEncToBaseEncoding[kMapToEncoding[destatep->top_rankedencoding]] != kMapEncToBaseEncoding[kMapToEncoding[rankedencoding]]) { destatep->second_top_prob = destatep->top_prob; // old top to second destatep->second_top_rankedencoding = destatep->top_rankedencoding; // old top to second } destatep->top_prob = destatep->enc_prob[rankedencoding]; destatep->top_rankedencoding = rankedencoding; } else if (destatep->second_top_prob < destatep->enc_prob[rankedencoding]) { if (kMapEncToBaseEncoding[kMapToEncoding[destatep->top_rankedencoding]] != kMapEncToBaseEncoding[kMapToEncoding[rankedencoding]]) { destatep->second_top_prob = destatep->enc_prob[rankedencoding]; destatep->second_top_rankedencoding = rankedencoding; } } } } void SimplePrune(DetectEncodingState* destatep, int prune_diff) { // Prune the list of active encoding families int keep_prob = destatep->top_prob - prune_diff; destatep->active_special = 0; int k = 0; for (int j = 0; j < destatep->rankedencoding_list_len; j++) { bool keep = true; int rankedencoding = destatep->rankedencoding_list[j]; // If count is too low, ditch it if (destatep->enc_prob[rankedencoding] < keep_prob) {keep = false;} // Keep it. This will always keep at least top_prob rankedencoding if (keep) { destatep->active_special |= kSpecialMask[kMapToEncoding[rankedencoding]]; destatep->rankedencoding_list[k++] = rankedencoding; } } destatep->rankedencoding_list_len = k; } // Recalculate reliable void CalcReliable(DetectEncodingState* destatep) { // Encoding result is reliable if big difference in top two, or if // only Ascii7 ever encountered // Also reliable if exactly one OtherPair and it's best encoding matches top destatep->reliable = false; if (destatep->next_interesting_pair[OtherPair] == 0) { // Only 7-bit ASCII destatep->reliable = true; return; } if ((destatep->top_prob - destatep->second_top_prob) >= FLAGS_ced_reliable_difference) { destatep->reliable = true; return; } if (destatep->next_interesting_pair[OtherPair] == 1) { uint8 byte1 = destatep->interesting_pairs[OtherPair][0]; uint8 byte2 = destatep->interesting_pairs[OtherPair][1]; int best_enc = kMostLikelyEncoding[(byte1 << 8) + byte2]; if (best_enc == destatep->top_rankedencoding) { destatep->reliable = true; return; } } // If we pruned to one encoding, we are done if (destatep->rankedencoding_list_len == 1) { destatep->reliable = true; destatep->done = true; return; } // If we pruned to two or three encodings in the same *superset/subset // rankedencoding* and enough pairs, we are done. Else keep going if (destatep->rankedencoding_list_len == 2) { Encoding enc0 = kMapToEncoding[destatep->rankedencoding_list[0]]; Encoding enc1 = kMapToEncoding[destatep->rankedencoding_list[1]]; if (kMapEncToBaseEncoding[enc0] == kMapEncToBaseEncoding[enc1]) { if (destatep->prune_count >= 3) { destatep->reliable = true; destatep->done = true; return; } } } else if (destatep->rankedencoding_list_len == 3) { Encoding enc0 = kMapToEncoding[destatep->rankedencoding_list[0]]; Encoding enc1 = kMapToEncoding[destatep->rankedencoding_list[1]]; Encoding enc2 = kMapToEncoding[destatep->rankedencoding_list[2]]; Encoding base0 = kMapEncToBaseEncoding[enc0]; Encoding base1 = kMapEncToBaseEncoding[enc1]; Encoding base2 = kMapEncToBaseEncoding[enc2]; if ((base0 == base1) && (base0 == base2)) { if (destatep->prune_count >= 3) { destatep->reliable = true; destatep->done = true; return; } } } } // Find current top two rankedencoding probabilities void FindTop2(DetectEncodingState* destatep, int* first_renc, int* second_renc, int* first_prob, int* second_prob) { *first_prob = -1; *second_prob = -1; *first_renc = 0; *second_renc = 0; for (int j = 0; j < destatep->rankedencoding_list_len; j++) { int rankedencoding = destatep->rankedencoding_list[j]; if (*first_prob < destatep->enc_prob[rankedencoding]) { *second_prob = *first_prob; // old top to second *second_renc = *first_renc; // old top to second *first_prob = destatep->enc_prob[rankedencoding]; *first_renc = rankedencoding; } else if (*second_prob < destatep->enc_prob[rankedencoding]) { *second_prob = destatep->enc_prob[rankedencoding]; *second_renc = rankedencoding; } } } void PrintRankedEncodingList(DetectEncodingState* destatep, const char* str) { printf("Current ranked encoding list %s\n", str); for (int j = 0; j < destatep->rankedencoding_list_len; j++) { int rankedencoding = destatep->rankedencoding_list[j]; if ((rankedencoding < 0) || (rankedencoding > NUM_RANKEDENCODING)) { printf(" [%d] BOGUS rankedencoding = %d\n", j, rankedencoding); } else { printf(" [%d] rankedencoding = %d %-12.12s enc_prob = %d\n", j, rankedencoding, MyRankedEncName(rankedencoding), destatep->enc_prob[rankedencoding]); } } printf("End current ranked encoding list\n\n"); } // Map unencoded bytes down to five bits, largely preserving letters // This design struggles to put 33 values into 5 bits. #define XX 0 // Punctuation (00-7F range) #define HA 27 // High vowel a in Latin1/2/sometimes7 #define HE 28 // High vowel e #define HI 29 // High vowel i #define HO 30 // High vowel o #define HU 30 // High vowel u on top of HO #define Hc 31 // High consonant (80-FF range) static const char kMapToFiveBits[256] = { XX,XX,XX,XX,XX,XX,XX,XX, XX,XX,XX,XX,XX,XX,XX,XX, XX,XX,XX,XX,XX,XX,XX,XX, XX,XX,XX,XX,XX,XX,XX,XX, XX,XX,XX,XX,XX,XX,XX,XX, XX,XX,XX,XX,XX,XX,XX,XX, XX,XX,XX,XX,XX,XX,XX,XX, XX,XX,XX,XX,XX,XX,XX,XX, XX, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15, 16,17,18,19,20,21,22,23, 24,25,26,XX,XX,XX,XX,XX, XX, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15, 16,17,18,19,20,21,22,23, 24,25,26,XX,XX,XX,XX,XX, Hc,HA,Hc,Hc,Hc,Hc,Hc,Hc, HO,Hc,Hc,Hc,Hc,Hc,Hc,Hc, Hc,HA,Hc,Hc,Hc,Hc,Hc,Hc, HO,Hc,Hc,Hc,Hc,Hc,Hc,Hc, Hc,HA,Hc,Hc,Hc,Hc,Hc,Hc, HO,Hc,Hc,Hc,Hc,Hc,Hc,Hc, Hc,HA,Hc,Hc,Hc,Hc,Hc,Hc, HO,Hc,Hc,Hc,Hc,Hc,Hc,Hc, Hc,HA,HA,HA,HA,Hc,Hc,Hc, Hc,HE,HE,HE,HI,HI,HI,Hc, Hc,Hc,Hc,HO,HO,HO,HO,Hc, Hc,HU,HU,HU,HU,Hc,Hc,Hc, Hc,HA,HA,HA,HA,Hc,Hc,Hc, Hc,HE,HE,HE,HI,HI,HI,Hc, Hc,Hc,Hc,HO,HO,HO,HO,Hc, Hc,HU,HU,HU,HU,Hc,Hc,Hc, }; #undef XX #undef HA #undef HE #undef HI #undef HO #undef HU #undef Hc static const int kTriLatin1Likely = 1; static const int kTriLatin2Likely = 2; static const int kTriLatin7Likely = 3; // Each table entry has 32 times two bits, selected by byte[2] // Entry subscript is selected by byte[0] and byte[1] // Latin1/2/7 boost vector, generated 2007.09.26 by postproc-enc-detect-short.cc static const uint64 kLatin127Trigrams[1024] = { 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x304080c0402c3330ULL, 0x0008400004000000ULL, 0x082800000c200000ULL, 0x23a0000420800030ULL, 0x00000000000ccc00ULL, 0x0500100100100000ULL, 0x0388400000200010ULL, 0x0000000000000c00ULL, 0xd0f0300740f0cf00ULL, 0x2aa0a2a22882a2acULL, 0x081d800000000080ULL, 0x0c82000020000000ULL, 0x200a03c000a00000ULL, 0x0008400400290000ULL, 0x0400870000000000ULL, 0x00f040c00000c080ULL, 0x0008004000000410ULL, 0x0020300000000030ULL, 0x00a030002c300000ULL, 0x0c8030c020a00000ULL, 0x15410030f0f4c000ULL, 0x3000000300a00000ULL, 0xa2880980a0880a88ULL, 0x0900300000000000ULL, 0x0000040100300000ULL, 0x0888820020a00000ULL, 0xc044002242010000ULL, 0x000000121d300040ULL, 0x40100040440c0d54ULL, 0x00008423102f8144ULL, 0x0b40808400000280ULL, 0x0000000000000000ULL, 0x0680a000000c0000ULL, 0x0880008020aa0000ULL, 0x2aaa0141010a4940ULL, 0xcb80000000010000ULL, 0x2280000000000000ULL, 0x5248000001800000ULL, 0x8000401004040010ULL, 0x1540010201001010ULL, 0x0080080400000000ULL, 0x5a00044040000108ULL, 0x0288000282080008ULL, 0x4800008002200000ULL, 0x4a00000000010100ULL, 0x8a88040080000800ULL, 0x0140800000000400ULL, 0x40010050000c0000ULL, 0x0000008000000000ULL, 0x0028000020140040ULL, 0x8620401401005308ULL, 0xc082000000000400ULL, 0x05c0b004c0240600ULL, 0x0288000080000000ULL, 0x0000014000000000ULL, 0x00000000040000c0ULL, 0x8001861008004280ULL, 0x0200000000000300ULL, 0x0000240242288620ULL, 0x801000c05434c200ULL, 0x9020162040a2d2b4ULL, 0x0021840000240704ULL, 0x2a80280080084908ULL, 0x0000000000000000ULL, 0x0500004000000040ULL, 0x0080000000040000ULL, 0x0108058104440000ULL, 0x0900000000040000ULL, 0x00c0000000208008ULL, 0x2000005000000000ULL, 0x0080000000050000ULL, 0x0808000000001080ULL, 0x9880810100308000ULL, 0x2285480080081a08ULL, 0x8a80000080080000ULL, 0x1450000000600010ULL, 0x2210000100000000ULL, 0x8a88000100011000ULL, 0x1541804000000010ULL, 0xc084011140040100ULL, 0x0000000000000800ULL, 0x0400000000000030ULL, 0x2a800000a0890128ULL, 0x1140a00054000104ULL, 0x1440000101200404ULL, 0x028800400400d800ULL, 0x0000000000000000ULL, 0x0000000000002330ULL, 0x0020820228a02280ULL, 0xa2888a02aa8008a8ULL, 0xd0040a0044202500ULL, 0x8000044104a29424ULL, 0xc000100178b2c5b4ULL, 0x0000810100241504ULL, 0xd040030000380008ULL, 0x0000000000000000ULL, 0x26c08c0000200130ULL, 0x4a08000110080000ULL, 0x2aa0004001080800ULL, 0x0aac000000004000ULL, 0x2000000000200000ULL, 0x4240000100020000ULL, 0x4100000080000000ULL, 0x4900040000000000ULL, 0x0800000400300040ULL, 0x6a80000000040800ULL, 0x2a08182000588008ULL, 0x0a00000c81000008ULL, 0x0a000c0010000000ULL, 0x8a88001080280808ULL, 0x0020000200300600ULL, 0xaac00000900a0000ULL, 0x0000100004000000ULL, 0x0020081020000000ULL, 0x8220105010084110ULL, 0x4a80800000004000ULL, 0x050000c0c0200000ULL, 0x288c000084000000ULL, 0xa048082280000000ULL, 0x0000000000000000ULL, 0x8000900000032080ULL, 0xee889e81b8880820ULL, 0xc2200a8142800424ULL, 0xc020141543361010ULL, 0x10a000204a801634ULL, 0x3a808800802a00a0ULL, 0x28808b00803d0800ULL, 0x0000000000000000ULL, 0x0020000000000030ULL, 0x0808400121010040ULL, 0x0c28240100200040ULL, 0x2008200028800000ULL, 0xc10004c80f30c030ULL, 0x0400440114100000ULL, 0x2208200280a22220ULL, 0x0600000030c01000ULL, 0x1201001040c00000ULL, 0x0aa02ea22aa22aa0ULL, 0x30008000000200a0ULL, 0x20c8400400800000ULL, 0x08280b0420800000ULL, 0x0800100000210000ULL, 0x10000300c0100400ULL, 0xc8c0000420000000ULL, 0x1000000010000000ULL, 0x0420000400000000ULL, 0x0220000500204000ULL, 0x2200000420000000ULL, 0x0000540400000000ULL, 0x0000000020000000ULL, 0x00080c00a0810080ULL, 0x1540000000043000ULL, 0x0000000000100000ULL, 0x2e88a22220200a20ULL, 0xc06030e34ea503a0ULL, 0x0001100204048500ULL, 0x000000e0000c0d54ULL, 0x3000820310a31400ULL, 0x13088c0320e00280ULL, 0x0000000000000000ULL, 0x0480000000200000ULL, 0x4000200100000000ULL, 0x0000300040040000ULL, 0x4400000000000000ULL, 0x0401000002240000ULL, 0x0540000000040000ULL, 0x4004010000000000ULL, 0x4001111001100000ULL, 0x2880000000300040ULL, 0x4040004040002404ULL, 0x0200000000000000ULL, 0x0140040000100000ULL, 0x4040010040040080ULL, 0x0a00140000041004ULL, 0x0000a00400808000ULL, 0x1010200000430040ULL, 0x0010000000000000ULL, 0x0540000000104000ULL, 0x1400114005000000ULL, 0x0000204000440010ULL, 0x0500000000004400ULL, 0x4500000018000400ULL, 0x0000400000000000ULL, 0x000000300000cc00ULL, 0x0100001011300000ULL, 0x0040000000000000ULL, 0xc0e0000248a00444ULL, 0x0000040020340144ULL, 0x0000046445105454ULL, 0x32a0a80280880128ULL, 0x0880040000100100ULL, 0x0000000000000000ULL, 0x14003000030c0004ULL, 0x4a04001100000000ULL, 0x0a00108010000000ULL, 0x28a8004000200248ULL, 0x0100040000b00000ULL, 0x42000000000008c0ULL, 0x6008044010550010ULL, 0x0800401000010400ULL, 0x080080040cf80000ULL, 0x5080000001001010ULL, 0x2a80100000000000ULL, 0xcc8010010d401100ULL, 0x0200000001001000ULL, 0x0480001004001000ULL, 0x8d00800040b40210ULL, 0x6200800000300000ULL, 0x0000010000000000ULL, 0x0428004100010000ULL, 0x4320105141501100ULL, 0xe28c0000000c1000ULL, 0xd5c000c3c0e00300ULL, 0x0001000000100200ULL, 0x1004010202400008ULL, 0x0000000000003000ULL, 0x2aa038a0800aab08ULL, 0x2a88038000000000ULL, 0xc220040242f09720ULL, 0x8020200200ba0420ULL, 0x0020106105101004ULL, 0x0480800000220400ULL, 0x2280100080000008ULL, 0x0000000000000000ULL, 0x9000000000200000ULL, 0x0001000000100000ULL, 0x2aa40c0000080800ULL, 0x0040000040010000ULL, 0x0040000000c01000ULL, 0x4000000040000400ULL, 0x0000001000200000ULL, 0x0000010000000000ULL, 0x05808004000c0000ULL, 0x50400c0000000400ULL, 0x020040008f000040ULL, 0x0800000000100000ULL, 0x0000000000000000ULL, 0x0a08440000004000ULL, 0x0064000400008200ULL, 0x0010010010034170ULL, 0x0000000010000000ULL, 0x0100204021000000ULL, 0x022000d000010100ULL, 0x0840300000c00000ULL, 0x1400000040204400ULL, 0x09800c0040000000ULL, 0x0209708000000000ULL, 0x000000000000c040ULL, 0x90000c50204040a0ULL, 0x0000000000000000ULL, 0x00e1500040200004ULL, 0x8020260540204494ULL, 0x0020026150201054ULL, 0x0281800380105634ULL, 0x0884900481105000ULL, 0x0000000000000000ULL, 0x84203c00002c0200ULL, 0xc089040000000000ULL, 0xc2a8100040200004ULL, 0xe00c1c0000000000ULL, 0x0ce1330080200080ULL, 0x0000000000200000ULL, 0xc400110000404010ULL, 0x0088400000000000ULL, 0x00083cc00c00c00cULL, 0xcac01c00c000580cULL, 0xe300b0f000100000ULL, 0x0300000000000000ULL, 0xc0000f0000000000ULL, 0xc3c01c0400000000ULL, 0x81008004c0f40000ULL, 0xc3d8003000000440ULL, 0x0000000000000000ULL, 0xc430000000000000ULL, 0x0060000000001000ULL, 0x0800000000000000ULL, 0x00c03300f0fc0008ULL, 0x3000000400200010ULL, 0xa2a80892a0880a28ULL, 0x0500000040000004ULL, 0x0000000000000000ULL, 0xc80032070c200020ULL, 0x0220820060a296a0ULL, 0x802084021db486a0ULL, 0x00000d60080c0080ULL, 0xb281803313a32428ULL, 0x1808300320300000ULL, 0x0000000000000000ULL, 0x85208cc0ccac1f20ULL, 0x2081000186100808ULL, 0x22a80880000a0808ULL, 0xaaa8086880000000ULL, 0x802084800a2e9200ULL, 0xa280000000002008ULL, 0xa000000080080400ULL, 0x2080010000000008ULL, 0x802020c00c028c80ULL, 0x2080000000140810ULL, 0x2a80086080080008ULL, 0x2a800000a8000800ULL, 0xaa881800a2080800ULL, 0xaa98004080280808ULL, 0x004483d0c0300000ULL, 0xa280002080080000ULL, 0x0000000000300000ULL, 0x22a1030000000008ULL, 0xa8a0301088880880ULL, 0xaa80002080222808ULL, 0x85400c03fc030400ULL, 0x8a88000000000008ULL, 0xa008008010080008ULL, 0x0000000000010000ULL, 0x0040100000301040ULL, 0x28800000a0002008ULL, 0x122482306cbc0eacULL, 0x8020224222b8c6a0ULL, 0x802002004a82c284ULL, 0x0aa08fc440a41c80ULL, 0x888080d181385098ULL, 0x0000000000000000ULL, 0x00c0b000000c0080ULL, 0x2208001000000800ULL, 0x0a28000000200000ULL, 0x0000000300000000ULL, 0x00c1040000200000ULL, 0x0203020000000000ULL, 0x0248000000020000ULL, 0x0000840000100000ULL, 0x0a808c00c000008cULL, 0x5200040040000004ULL, 0x02000c00000080a0ULL, 0x0b0c000020000000ULL, 0x0b04000001000000ULL, 0x088c0010002000c0ULL, 0x80e08b00c0030c20ULL, 0x0280000200014040ULL, 0x0000000000000000ULL, 0x0e20a0a008000020ULL, 0x0e280fd03f00111cULL, 0x200080c020001000ULL, 0x8cc00c02c02f0400ULL, 0x480c0001000c404cULL, 0x0208014281080808ULL, 0x000000000000fcfcULL, 0x004403300cf00030ULL, 0x2200000000004400ULL, 0x02202000c08c0c20ULL, 0x02202022683a80a0ULL, 0x4020228028008c00ULL, 0x32208cc0002c0200ULL, 0x3ec00c0080304008ULL, 0x0000000000000000ULL, 0x34000c00002c0000ULL, 0x0b00000100100030ULL, 0x0823018000000000ULL, 0x0e8c001c01e00000ULL, 0x1200800600330000ULL, 0x4000110000000000ULL, 0x0080000300000000ULL, 0x0800000000000000ULL, 0x08c08c04000c0000ULL, 0x0080400000880000ULL, 0x0a08000080c00008ULL, 0x0800000304400000ULL, 0x0208000000c00000ULL, 0x2888300080400800ULL, 0x8dc0204400000000ULL, 0xc0000000c0800000ULL, 0x0000c10000000000ULL, 0x24000c4010c00000ULL, 0x272000541d811000ULL, 0x0200400000001000ULL, 0x0400000400001004ULL, 0xc08c007004001000ULL, 0x2048004000000000ULL, 0x000000000003fcfcULL, 0x2aa030000cf8c800ULL, 0xe280000000000000ULL, 0x0a21008142000340ULL, 0x0021002000b61040ULL, 0x800004064006d444ULL, 0x3aa0800300230008ULL, 0x0b00030000300000ULL, 0x0000000000000000ULL, 0x01c080000000040cULL, 0x0100000000004000ULL, 0x0aa8018010001000ULL, 0x0800000000100000ULL, 0x3000000000008c00ULL, 0x5400000013000000ULL, 0x02c0c00004004010ULL, 0x5241100010000c00ULL, 0x0e00080000000808ULL, 0x5281000000000800ULL, 0x0a08108020000800ULL, 0x0a80000000005210ULL, 0x0100000041000000ULL, 0x2a88000002080110ULL, 0x8520800000c00080ULL, 0x01000010108c0100ULL, 0x0000000000000000ULL, 0x42a0420080000000ULL, 0x0020001004010010ULL, 0xc4000000000c0000ULL, 0x01000c00c0200400ULL, 0x4600000100000000ULL, 0x0000000000000000ULL, 0x0010001000000010ULL, 0x910400900820d030ULL, 0x2280000000000000ULL, 0xc2212004400040e4ULL, 0x8001000000b61420ULL, 0xa00002a248e810b4ULL, 0x32008000002c0008ULL, 0x0c010034803c5010ULL, 0x0000000000000000ULL, 0x85008002002c0000ULL, 0x0204001000004010ULL, 0x0120008000200000ULL, 0x000010000c2000c0ULL, 0xccc0000000200000ULL, 0x0400000c00100040ULL, 0x0003300100004100ULL, 0x4000551040000004ULL, 0x0e0080000c820808ULL, 0xc000000000080800ULL, 0xc803000000000000ULL, 0x0a4000c000200000ULL, 0x0040000000c00000ULL, 0x0918145000405000ULL, 0x81400000c0300400ULL, 0x0050000000000000ULL, 0xd000045000000000ULL, 0x0400004000400000ULL, 0x0420104010000110ULL, 0x0700000000203000ULL, 0x34800300c0e00704ULL, 0x4440100044000400ULL, 0x0040000040000000ULL, 0x0030000044000000ULL, 0xeaaca0008808c880ULL, 0x0a01000000200000ULL, 0x1220a300403ccf20ULL, 0x002024c200b61044ULL, 0x802014346aa2d434ULL, 0x30008c00c0820c44ULL, 0x0a000000000c4800ULL, 0x0000000000000000ULL, 0x0000404000340c90ULL, 0x08a8a10820800280ULL, 0x8128009022201000ULL, 0x0020808228a000a0ULL, 0x0020400100410000ULL, 0x0400000110000000ULL, 0xa609000000200000ULL, 0x8008330000d00000ULL, 0x8060100040404010ULL, 0xeaa00ea0ea00808cULL, 0x200c8020a0000020ULL, 0x0408800020200000ULL, 0x0189001403200000ULL, 0xc00800000000c000ULL, 0x200430c00c300000ULL, 0x0100300100004000ULL, 0x0000040000000000ULL, 0x2420000400001000ULL, 0x89a1200400000000ULL, 0x20c8a000208c0000ULL, 0x8080000000000000ULL, 0x28a0108020210080ULL, 0xa2a84800a0880988ULL, 0x258008000400c000ULL, 0x0140000000100000ULL, 0xa028a222a0aa0228ULL, 0xc060012054044040ULL, 0x0010010400000000ULL, 0x00000050150c0114ULL, 0x0000008010c20010ULL, 0xaa088000a0200880ULL, 0x0000000000000000ULL, 0x0700b0c0000c0000ULL, 0x2200040000080030ULL, 0x2aa8808040240800ULL, 0x08b0500000000100ULL, 0x1000830400200000ULL, 0x4204000010000000ULL, 0x40c2200050040050ULL, 0x0104404001010000ULL, 0x1a808c8103c00030ULL, 0x30900010c0000b00ULL, 0x200812b283000008ULL, 0x000c000020e00000ULL, 0x2140000000400000ULL, 0x0288000080200000ULL, 0x8060a200c8a20280ULL, 0x0400114010215000ULL, 0x0000000000000000ULL, 0x082b200002000010ULL, 0x22a0030000031000ULL, 0x008100001000000cULL, 0x05400c00c0230400ULL, 0xca3000003c080100ULL, 0x0000000020000004ULL, 0x0000000100000000ULL, 0x8004320813f5c000ULL, 0xa280080200000800ULL, 0xc22000044e334c20ULL, 0x000004146e361024ULL, 0x800126806aa0d584ULL, 0xb000a0040023c41cULL, 0x0a083000803053d8ULL, 0x0000000000000000ULL, 0x0000100000020000ULL, 0x0000000010000010ULL, 0x0000000045040004ULL, 0x0000000000100000ULL, 0x0000020400000010ULL, 0x0003015000000000ULL, 0x0400000000000000ULL, 0x0000000400000000ULL, 0x0100000000000800ULL, 0x0000001000000000ULL, 0x0000000000000000ULL, 0x0000000040000000ULL, 0x0000000000000000ULL, 0x0004001000000000ULL, 0x0008001000000000ULL, 0x0010000000000004ULL, 0x0000010100001000ULL, 0x0004000000000004ULL, 0x0000014040050014ULL, 0x0014000000000040ULL, 0x5540000000041000ULL, 0x0000000000000000ULL, 0x0000040000000d00ULL, 0x0000000000000000ULL, 0x0000000000100000ULL, 0x0001000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x4500000000040400ULL, 0x0000800000000400ULL, 0x0000000000000000ULL, 0x13e080000020000cULL, 0xcf00001005100000ULL, 0x04a8008000200300ULL, 0x00280100100000c0ULL, 0x1c8c000040200000ULL, 0x0600005000100000ULL, 0x050800000c104000ULL, 0x4c10101000110000ULL, 0x0c00000000300000ULL, 0x22040c00100000c0ULL, 0x0800700010100000ULL, 0x0000000000001000ULL, 0x0a08000010000040ULL, 0x0800034004210010ULL, 0x04e0000400000000ULL, 0x0800030020000000ULL, 0x0000005000000000ULL, 0x0400110101304110ULL, 0x0428000010a01000ULL, 0x060b000000800010ULL, 0x35810c00c020c000ULL, 0x00800c4321800000ULL, 0x4208088020000080ULL, 0x040000111003ff00ULL, 0x0020900020202080ULL, 0x22888180a8000888ULL, 0x0225200542005420ULL, 0x2020040400340020ULL, 0x10300424500cc444ULL, 0x3081a00400e00200ULL, 0x33001300c0300000ULL, 0x0000000000000000ULL, 0x04003c0000000000ULL, 0x0a04001000100100ULL, 0x1408000001000000ULL, 0x1800000044100000ULL, 0x3400040400000300ULL, 0x5000040801000040ULL, 0x4088401040000040ULL, 0x1010110130100000ULL, 0xca800c3000300000ULL, 0x5a01000000080100ULL, 0x020280000cd01300ULL, 0x0302000410200010ULL, 0x0000102000300000ULL, 0x0b09000000000000ULL, 0x20008004c4800004ULL, 0x28c0410010000000ULL, 0x0004015041000050ULL, 0x0a01006000200200ULL, 0x0020d00000100040ULL, 0x0010a00100900000ULL, 0x3500bf00c0030300ULL, 0x080c010000200d00ULL, 0x2248000004020010ULL, 0x0000c00000000000ULL, 0x8044b00200e08000ULL, 0xaaa82aa2aa8a2aa8ULL, 0x0220002241c08604ULL, 0x4200260440328444ULL, 0x68001226103008b4ULL, 0x3a0080c0b0000400ULL, 0x2a804804803c4008ULL, 0x0000000000000000ULL, 0x04008c0300000400ULL, 0x008000c0000c0000ULL, 0x088001000000001cULL, 0x0840000001000010ULL, 0x0400000000200c00ULL, 0x4244000101040000ULL, 0x4238007011100000ULL, 0x1000d00100000010ULL, 0x1d00800400300000ULL, 0x4204080c00000000ULL, 0x2a88080080000008ULL, 0x08001c0200001000ULL, 0x0a00000400000000ULL, 0x8a88003080080000ULL, 0x0521800400300000ULL, 0x3200051000201000ULL, 0x0000000000000000ULL, 0x0020801404000000ULL, 0x322010401c0c101cULL, 0x0c01100013000000ULL, 0x04003000c0204000ULL, 0x088c0020a0cc0000ULL, 0x2200000080000018ULL, 0x0404000044000000ULL, 0x82a0b000008820b0ULL, 0x0000040020440000ULL, 0xc2650004403f1420ULL, 0x0021340241b64464ULL, 0x8020040242c2d474ULL, 0x32018c0480288000ULL, 0x00800b0080300000ULL, 0x0000000000000000ULL, 0x05008c0000040130ULL, 0xc0d8000000800000ULL, 0x0020000020200200ULL, 0x23a2000120204000ULL, 0x5052100550104150ULL, 0x1000101100040000ULL, 0xc40001c301000000ULL, 0x8288000000c00000ULL, 0x5150040144d01404ULL, 0xea8c0ea028ae088cULL, 0xc31010c000000c80ULL, 0x0002000060000000ULL, 0xc80800f030000000ULL, 0x0000000400300000ULL, 0xc00080c00ff0c344ULL, 0x00080001200c0000ULL, 0x0000050080000000ULL, 0x0328000300300000ULL, 0x082030000cc01040ULL, 0xeb08800100004000ULL, 0x8030003300c80f00ULL, 0xfb0d0000e4ac0000ULL, 0x0020006080000008ULL, 0x0500100100040000ULL, 0x1140000000000000ULL, 0xcb883330a0e00000ULL, 0xc000010050000080ULL, 0x0010104005b54150ULL, 0x40111d5155001554ULL, 0x80000070140f0004ULL, 0x0b0830c3a0003380ULL, 0x0000000000000000ULL, 0x04c13000000f830cULL, 0x2808000000000000ULL, 0x2810000000000800ULL, 0x08c0080004400000ULL, 0x04c0240300801c20ULL, 0x4040000080000004ULL, 0x0000400100100010ULL, 0x020001008000c0c0ULL, 0x1d008c000c3c0000ULL, 0x0080003000000800ULL, 0x2288080080000008ULL, 0x0a84004020220000ULL, 0x0800080000100000ULL, 0xaa80004080400008ULL, 0x8024000400c01660ULL, 0x80841c2001000104ULL, 0x0001000000000000ULL, 0x0020028020020280ULL, 0x0860404011900100ULL, 0xec80080200000000ULL, 0x010103c100200400ULL, 0x0200004000000000ULL, 0x0000000000400400ULL, 0x000010000003fcfcULL, 0x8040083238c20000ULL, 0x08800220a0920a00ULL, 0x08210004483c0c24ULL, 0xc020240740b0a200ULL, 0x802006014a201494ULL, 0x3201233070ac0e00ULL, 0x08002806033a48a0ULL, 0x0000000000000000ULL, 0x8020820028a00680ULL, 0x2000002000000104ULL, 0x22a80801100a0808ULL, 0xa2a8002080000000ULL, 0xa000800008a08000ULL, 0x0000100000400000ULL, 0x8000002100000000ULL, 0x0000010000004404ULL, 0xa2a0088080000888ULL, 0x0000000010400800ULL, 0xa280082080080008ULL, 0x2280000080010008ULL, 0x2000000000000000ULL, 0x228800008c080808ULL, 0x8021828002a98200ULL, 0xa200002000080000ULL, 0x0000040000000000ULL, 0x22a0000080000000ULL, 0x202882c200800080ULL, 0xa000000001004000ULL, 0x000000c808a00600ULL, 0x0000000010000000ULL, 0x000001000000040cULL, 0x0000000000000000ULL, 0x802002a2a8aa82a0ULL, 0x20000024a8088228ULL, 0x8020820001000000ULL, 0x8020000000808280ULL, 0x8000000000000000ULL, 0x0020800000200280ULL, 0x2080082280a00888ULL, 0x0000000000000000ULL, 0x0000015000000040ULL, 0x0000040000040000ULL, 0x0100010010001000ULL, 0x0000003210008000ULL, 0x0000000404000000ULL, 0x0000000000000400ULL, 0x0200000000000000ULL, 0x0000000000000100ULL, 0x5180014400004050ULL, 0x1000000014000000ULL, 0x4200000000000000ULL, 0x0040200000000000ULL, 0x0201004000000000ULL, 0x0a00000000000010ULL, 0x0040200000800000ULL, 0x0040051000000500ULL, 0x0000000100800400ULL, 0x6000000000000000ULL, 0x0000000000000000ULL, 0x280000c1400040ccULL, 0x4180001000000000ULL, 0x00000000c1000104ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x0080000000c00000ULL, 0x0004006066004000ULL, 0x0000005000040440ULL, 0x0000106005804044ULL, 0x0000a10511004440ULL, 0x0000000000000110ULL, 0x0000000000000000ULL, 0x0000000000080000ULL, 0xeb0808a020800080ULL, 0x29a80081002a1800ULL, 0x0b2c000202100100ULL, 0x0001000000888000ULL, 0x2280102010000000ULL, 0x020000602a004110ULL, 0x8a800160a6108100ULL, 0x0280000000000020ULL, 0x8a8000a0a8808208ULL, 0x0280882080500308ULL, 0x0b18010020804100ULL, 0xeb080000c0080080ULL, 0x2b08000000810130ULL, 0x0000000008040020ULL, 0xaa0a08e082894140ULL, 0x0000000000000000ULL, 0x202081409010001cULL, 0x8aa8805082806000ULL, 0xeb082900289c0000ULL, 0x0000000000008000ULL, 0xf80c2e20002e0000ULL, 0xa288080420880888ULL, 0x0000010000000000ULL, 0x0000000000102000ULL, 0x22880000a8a80808ULL, 0x022022a22aa880a0ULL, 0x0000222222aa0620ULL, 0x0000022002800000ULL, 0x208080004028a000ULL, 0x2b888800801c0828ULL, 0x0000000000000000ULL, 0x22e0828280a08028ULL, 0xaa88002082080308ULL, 0x0ea80080410a0040ULL, 0x2a28222000a00000ULL, 0x8aa2808028a0a2a0ULL, 0x0200001000000000ULL, 0x82080000a0000000ULL, 0x8800000082000808ULL, 0x2a008a0000300888ULL, 0x0a80080080080808ULL, 0xaa882800840b0808ULL, 0x0a80000080000040ULL, 0xea080820a0000000ULL, 0xaa88080080080808ULL, 0x8040a2800a8024a0ULL, 0xaa800020a0080808ULL, 0x0000040000000000ULL, 0x2a280a0080080880ULL, 0x2a20081080008a00ULL, 0x2a88882088aa0008ULL, 0x81800202c0a01480ULL, 0xea88082082200000ULL, 0xaa88002080080008ULL, 0x0000100000000000ULL, 0x802082a22aa0a2a0ULL, 0x2e80000000000000ULL, 0x0220a2a26aa0a2a8ULL, 0x800022a2228a22a0ULL, 0x880002212e82c0b0ULL, 0x02a0aa0002a82228ULL, 0x2d808b0080380008ULL, 0x0000000000000000ULL, 0x000407551c154244ULL, 0x2a00208088a02228ULL, 0x12a82182a2402a88ULL, 0xe32821e020826d00ULL, 0x801130100ccc1330ULL, 0x028010c000841008ULL, 0x88a08002a0a664a0ULL, 0x0048270080000100ULL, 0x00001f010cd10f30ULL, 0xe2242ce22aaea2a0ULL, 0xc2c00cc20ae22460ULL, 0xe208003128021c10ULL, 0x2a2021c010821080ULL, 0x2a88202082202020ULL, 0x4010111104941410ULL, 0xc80c02c182b00080ULL, 0x0000040000000000ULL, 0xe28030068002c300ULL, 0x2aa02024a2a22228ULL, 0xe20889328aa22080ULL, 0x0000000000210100ULL, 0xaa0028e0a9b221a0ULL, 0x2000008080400000ULL, 0x0000010041150404ULL, 0x0000105114410100ULL, 0xeaa82aa6aaaaaaa8ULL, 0x000000f44300c434ULL, 0x0000222222b00020ULL, 0x0000002000000000ULL, 0x0000004014000000ULL, 0x0039b3f73fbcd3fcULL, 0x0000000000000000ULL, 0x0000104015045040ULL, 0x20a80490a08800a0ULL, 0x40a8258410a909a0ULL, 0xe0a8a2022aa2e2a0ULL, 0xc111010014000500ULL, 0x2080044041840004ULL, 0x28a8200220a2aba0ULL, 0x008400a0a2840800ULL, 0x0101015451009464ULL, 0x20000ea0e02c2c2cULL, 0xe2a828a2aca2aaa8ULL, 0x682020a228a222a0ULL, 0xe8882ae22aa2a2a0ULL, 0xe9a80e6022a24140ULL, 0x0011055005001040ULL, 0x2aa8208229a0aaa4ULL, 0x0000040000000000ULL, 0x28a0228026a62260ULL, 0xe2a020a422a2a020ULL, 0xe808a0022aa1a220ULL, 0x0000010014000100ULL, 0x28ac22802aa2a020ULL, 0x0020000000000000ULL, 0x0100010100040000ULL, 0x0000000000000000ULL, 0x22a822a22a8aaaa0ULL, 0x0000000000000000ULL, 0x0000102410800100ULL, 0x0000000000000000ULL, 0x0000000002000000ULL, 0x00000fb2a08c0aa8ULL, 0x0000000000000000ULL, 0x4010005015440140ULL, 0x18c81c00b180001cULL, 0x2800048021820800ULL, 0x8ab820c06a802580ULL, 0x00100170f4040000ULL, 0x4000144041041404ULL, 0x0ac800d0002e440cULL, 0x20880820a2000808ULL, 0x400000f03f300c00ULL, 0xaa000ea22aa22aa0ULL, 0xa2880ac0a8942a20ULL, 0xaa880a81a1804188ULL, 0xeea022a0aaa02080ULL, 0xaaa820a2aaa66120ULL, 0x0000005115800150ULL, 0x2a880920a0840040ULL, 0x0000040000000000ULL, 0xaea82222aaa22a28ULL, 0x8a28041260055150ULL, 0xa28824008aa28880ULL, 0x0000025014019000ULL, 0xea882ae02aa200a0ULL, 0x0000000000000000ULL, 0x0000000040000400ULL, 0x0000000000000000ULL, 0xaaa82aa22aaaaaa0ULL, 0x0000000000000000ULL, 0x0000000000000000ULL, 0x002003003c80c000ULL, 0x0000020014000000ULL, 0x00200010a0980a20ULL, 0x0000000000000000ULL, 0x0020001200801240ULL, 0x0a88000089800020ULL, 0xcaa00080a1000000ULL, 0x0a200c0020a04080ULL, 0x4002034003840880ULL, 0x4690500190000050ULL, 0x2228004000601000ULL, 0x0a803f00803f400cULL, 0x400033e24dd0cf34ULL, 0xaa80a2a229a220a0ULL, 0x0a224000002c0000ULL, 0x028000202000008cULL, 0x0a08000070000030ULL, 0x00800c040020000cULL, 0x0000000002850000ULL, 0x02881cc310200000ULL, 0x0000040004000000ULL, 0xcba8000400000080ULL, 0xcaa02c0680000000ULL, 0xcc880002008c4080ULL, 0x300000f007f0cf0cULL, 0x0a80001080a00000ULL, 0x820880802a880a80ULL, 0x0000050001040004ULL, 0x0000011000000000ULL, 0x0a8020a2a0202000ULL, 0x0000022202008000ULL, 0x0000222212808000ULL, 0x0020226010000000ULL, 0x000033f33ff3c33cULL, 0x00288002a08c02a8ULL, 0x0000000000000000ULL, 0x04408e0000008200ULL, 0x0808004000900000ULL, 0x0aa8200010ca00c0ULL, 0x0ba80101005d4010ULL, 0x00018604802c8288ULL, 0x00049400101c0000ULL, 0x000c101110505010ULL, 0x0000000000100000ULL, 0x30000c00c022000cULL, 0xd0c00dd0d51d431cULL, 0x0008000010100000ULL, 0x000c1001a0280000ULL, 0x0bc80000c0000000ULL, 0x0a00000080280000ULL, 0x8000a00220308420ULL, 0x0808000010301000ULL, 0x0000040000000000ULL, 0x0d00031480100000ULL, 0x07200000108c0300ULL, 0x0bc0a0c000004000ULL, 0x8000b002c0208480ULL, 0x340c0100118c111cULL, 0x8008008020890000ULL, 0x0000000000040010ULL, 0x0020b00320c1d0b0ULL, 0x00002000000c0000ULL, 0x0020be226e2008a0ULL, 0x002010c03fb0a6a0ULL, 0x00202e222aaec284ULL, 0x00008f0000208400ULL, 0x0000000000300000ULL, }; // Latin1 6%, Latin2 11%, Latin7 3% // Just for debugging. not thread-safe static char tri_string[4]; char* Latin127Str(int trisub) { tri_string[0] = "_abcdefghijklmnopqrstuvwxyzAEIOC"[(trisub >> 10) & 0x1f]; tri_string[1] = "_abcdefghijklmnopqrstuvwxyzAEIOC"[(trisub >> 5) & 0x1f]; tri_string[2] = "_abcdefghijklmnopqrstuvwxyzAEIOC"[(trisub >> 0) & 0x1f]; tri_string[3] = '\0'; return tri_string; } // Returns two bits per three-byte trigram, indicating // dont-care, Latin1 likely, Latin2 likely, and Latin7 (ISO-8859-13) likely int TrigramValue(const uint8* trisrc) { int byte0_p = kMapToFiveBits[trisrc[0]]; int byte1_p = kMapToFiveBits[trisrc[1]]; int byte2_p = kMapToFiveBits[trisrc[2]]; int subscr = ((byte0_p) << 5) | byte1_p; int temp = static_cast((kLatin127Trigrams[subscr] >> (byte2_p * 2))); //printf("%s=%d ", Latin127Str((subscr << 5) | byte2_p), temp & 3); return temp & 3; } // Put out trigrams for surrounding 32 bytes for Latin encodings // Return true if more Latin2 & 7 than Latin1 bool BoostLatin127Trigrams(int tri_block_offset, DetectEncodingState* destatep) { //printf("BoostLatin127Trigrams[%06x]\n", tri_block_offset); int excess_latin27 = 0; int srclen = destatep->limit_src - destatep->initial_src; int hi_limit = minint(tri_block_offset + 32, srclen - 2); const uint8* trisrc = &destatep->initial_src[tri_block_offset]; const uint8* trisrclimit = &destatep->initial_src[hi_limit]; while (trisrc < trisrclimit) { // Selectively boost Latin1, Latin2, or Latin7 and friends int trigram_val = TrigramValue(trisrc); if (trigram_val != 0) { if (FLAGS_enc_detect_source) { PsHighlight(trisrc, destatep->initial_src, trigram_val, 1); } if (trigram_val == kTriLatin1Likely) { Boost(destatep, F_Latin1, kTrigramBoost); Boost(destatep, F_CP1252, kTrigramBoost); // We don't want to upset the relative rank of a declared 8859-15 Boost(destatep, F_ISO_8859_15, kTrigramBoost); --excess_latin27; } else if (trigram_val == kTriLatin2Likely) { Boost(destatep, F_Latin2, kTrigramBoost); Boost(destatep, F_CP1250, kTrigramBoost); ++excess_latin27; } else if (trigram_val == kTriLatin7Likely) { Boost(destatep, F_ISO_8859_13, kTrigramBoost); Boost(destatep, F_CP1257, kTrigramBoost); // We don't want to upset the relative rank of a declared 8859-4 or -6 // for Estonian Boost(destatep, F_Latin4, kTrigramBoost); Boost(destatep, F_Latin6, kTrigramBoost); ++excess_latin27; } } ++trisrc; } //printf("\n"); return (0 < excess_latin27); } // Boost any encodings that need extra detection help, then prune // src is first unscanned byte // slowend means extra pruning when dropping out of initial slow scan // final means last call -- no bigram at src void BoostPrune(const uint8* src, DetectEncodingState* destatep, int prunereason) { int delta_asciipairs = destatep->next_interesting_pair[AsciiPair] - destatep->prior_interesting_pair[AsciiPair]; int delta_otherpairs = destatep->next_interesting_pair[OtherPair] - destatep->prior_interesting_pair[OtherPair]; if (prunereason == PRUNE_FINAL) { // We are about done // If we get here with very little accumulated data, the initial hints // were too strong, so we derate them to n+1 / 12 for n bigrams if (!destatep->hints_derated && (destatep->next_interesting_pair[OtherPair] < kDerateHintsBelow)) { int n = destatep->next_interesting_pair[OtherPair]; // Map N pairs to (N+1)/12 portions of the initial hints, etc. // Floor of 3/12 -- 1/12 and 2/12 are too easy to overcome int m = maxint(3, (n + 1)); for (int i = 0; i < NUM_RANKEDENCODING; ++i) { int original_delta = destatep->hint_prob[i]; int scaled_delta = (original_delta * m) / kDerateHintsBelow; destatep->enc_prob[i] -= original_delta; destatep->enc_prob[i] += scaled_delta; } destatep->hints_derated = true; if (destatep->debug_data != NULL) { // Show derated-hint result char buff[32]; snprintf(buff, sizeof(buff), "Hints %d/%d", m, kDerateHintsBelow); SetDetailsEncLabel(destatep, buff); } } } ++destatep->prune_count; if (prunereason != PRUNE_FINAL) { // Early outs if (destatep->rankedencoding_list_len <= 1) { // nothing to prune destatep->done = true; return; } if ((destatep->prune_count > 0) && (delta_asciipairs + delta_otherpairs) == 0) { // Nothing to do; must have just been called earlier return; } } // INCREMENT // ==================== // Accumulate OtherPair probibilities over all active families // AsciiPair probibilities are all done in ActiveSpecialBoostWhack uint8 prior_bad_byte1 = ' '; // won't match first bad pair uint8 prior_bad_byte2 = ' '; // won't match first bad pair uint8 or_byte1 = 0; // Track if any current pair has a high bit int counted_otherpairs = 0; uint8 prior_byte1x2x = 0; for (int i = 0; i < delta_otherpairs; ++i) { int watch1_incr = 0; int watch2_incr = 0; int next_pair = destatep->prior_interesting_pair[OtherPair] + i; uint8 byte1 = destatep->interesting_pairs[OtherPair][next_pair * 2 + 0]; uint8 byte2 = destatep->interesting_pairs[OtherPair][next_pair * 2 + 1]; uint8 byte1x2x = (byte1 & 0xf0) | ((byte2 >> 4) & 0x0f); int weightshift = destatep->interesting_weightshift[OtherPair][next_pair]; int offset_byte12 = destatep->interesting_offsets[OtherPair][next_pair]; // To help distinguish some Cyrillic, Arabic, Greek, Hebrew, Thai // Remember if this is a CDEF pair immediately following the previous pair // 8xxx CxCx or CxCx 8xxx bool next_pair_consec_hi = false; if (ConsecutivePair(destatep, next_pair)) { if ((byte1x2x & 0xcc) == 0xcc) { // 8xxx CxCx next_pair_consec_hi = true; } else if ((prior_byte1x2x & 0xcc) == 0xcc) { // CxCx 8xxx next_pair_consec_hi = true; } } //printf("prior/cur/consec %02x %02x %d\n", // prior_byte1x2x, byte1x2x, next_pair_consec_hi); prior_byte1x2x = byte1x2x; or_byte1 |= byte1; uint8 byte1f = byte1; // Flip top bit of subscript to better separate quadrant 4 (esp. for Hebrew) byte1f ^= (byte2 & 0x80); // If the same bigram occurred recently, don't increment again bool pair_used = false; if (!RepeatedBigram(destatep, byte1, byte2)) { ++counted_otherpairs; pair_used = true; // Boost both charset= declared encodings, so // Nearly-same probability nearby encoding doesn't drift to the top if (!FLAGS_demo_nodefault) { destatep->enc_prob[destatep->declared_enc_1] += kDeclaredEncBoost >> weightshift; destatep->enc_prob[destatep->declared_enc_2] += kDeclaredEncBoost >> weightshift; } bool was_bad_pair = false; for (int j = 0; j < destatep->rankedencoding_list_len; j++) { int incr_shift = 0; int rankedencoding = destatep->rankedencoding_list[j]; Encoding enc = kMapToEncoding[rankedencoding]; // For binary, Skip over repeated marker bytes, such as 02, FF, etc. if ((rankedencoding == F_BINARY) && RepeatedBinary(destatep, byte1, byte2)) { incr_shift = 2; // count 1/4 as much if repeated } // If byte 1x2x for this encoding is exactly zero, illegal byte pair // Don't increment, but instead penalize const UnigramEntry* ue = &unigram_table[rankedencoding]; if (ue->b12[byte1x2x] == 0) { // Don't whack consecutive duplicate bad pairs -- overkill if ((byte1 != prior_bad_byte1) || (byte2 != prior_bad_byte2)) { // Extra whack for illegal pair in this encoding Whack(destatep, rankedencoding, kBadPairWhack >> weightshift); was_bad_pair = true; } } else { // OK to do the real increment int incr = ue->b1[byte1f] + ue->b2[byte2] + ue->b12[byte1x2x]; if ((ue->b12[byte1x2x] & 0x01) != 0) { // Use a more-precise table int byte32x32 = ((byte1 & 0x1f) << 5) | (byte2 & 0x1f); int hiressub = (byte2 & 0x60) >> 5; // select w/bits 5&6 of byte 2 DCHECK(ue->hires[hiressub] != NULL); incr += ue->hires[hiressub][byte32x32]; } else { // Default final offset incr += ue->so; } incr >>= incr_shift; incr >>= weightshift; destatep->enc_prob[rankedencoding] += incr; // The actual increment if (FLAGS_enc_detect_detail2) { if (watch1_rankedenc == rankedencoding) {watch1_incr = incr;} if (watch2_rankedenc == rankedencoding) {watch2_incr = incr;} } } // If consecutive pair of high bytes, give slight boost to one-byte // encodings that have a full alphabet in the high bytes if (next_pair_consec_hi && HighAlphaEncoding(enc)) { Boost(destatep, rankedencoding, kDeclaredEncBoost >> weightshift); } } // End for j < rankedencoding_list_len if (was_bad_pair) { prior_bad_byte1 = byte1; prior_bad_byte2 = byte2; } // Fold in per-bigram most likely encoding for first N bigrams if (next_pair < kBestPairsCount) { int best_enc = kMostLikelyEncoding[(byte1 << 8) + byte2]; Boost(destatep, best_enc, kBestEncBoost >> weightshift); } // Possibly score 32 trigrams around a bigram to better separate // Latin1 from Latin2 and Latin7. Especially helpful for detecting // mis-labelled Hungarian latin2. // If looking and at bigram 0,8,16,... do full scoring, else just 1 tri if (destatep->do_latin_trigrams || destatep->looking_for_latin_trigrams) { // If just looking, do full scan every 8 times // Just look up one trigram the other 7 and do full scan if Latin2,7 bool scan32 = false; const uint8* trisrc = &destatep->initial_src[offset_byte12 - 1]; if (!destatep->do_latin_trigrams) { if ((i & 7) == 0 || trisrc + 3 > destatep->limit_src) { scan32 = true; } else { scan32 = (kTriLatin1Likely < TrigramValue(trisrc)); } } if (destatep->do_latin_trigrams || scan32) { // Just score each block of 32 bytes once int tri_block_offset = offset_byte12 & ~0x1f; if (destatep->trigram_highwater_mark <= tri_block_offset) { bool turnon = BoostLatin127Trigrams(tri_block_offset, destatep); if (FLAGS_counts && !destatep->do_latin_trigrams && turnon) { ++doing_used; // First time } if (FLAGS_enc_detect_source) { if (!destatep->do_latin_trigrams && turnon) { // First time PsHighlight(trisrc, destatep->initial_src, 0, 2); } } destatep->do_latin_trigrams |= turnon; destatep->trigram_highwater_mark = tri_block_offset + 32; } } } } // end if RepeatedBigram() // Keep track of initial byte high 3 bits ++destatep->byte32_count[byte1 >> 5]; // TODO: boost subset/superset also // Boost(destatep, kRelatedEncoding[best_enc], kBestEncBoost); if (destatep->debug_data != NULL) { // Show detail entry for this bigram char buff[16]; snprintf(buff, sizeof(buff), "%c%02x%02x%c%c", pair_used ? ' ' : '[', byte1, byte2, pair_used ? ' ' : ']', (weightshift == 0) ? ' ' : '-'); SetDetailsEncProb(destatep, destatep->interesting_offsets[OtherPair][next_pair], kMostLikelyEncoding[(byte1 << 8) + byte2], buff); } if (FLAGS_enc_detect_detail2) { if ((watch1_incr != 0) || (watch2_incr != 0)) { // Show increment detail for this encoding char buff[32]; snprintf(buff, sizeof(buff), "%c%d %c%d", (watch1_incr < 0) ? '-' : '+', watch1_incr, (watch2_incr < 0) ? '-' : '+', watch2_incr); SetDetailsEncLabel(destatep, buff); } } } // End for i // If no high bit on, demote all the two-byte codes // WAS BUG. This was inside the loop above and should be outside if ((counted_otherpairs > 0) && ((or_byte1 & 0x80) == 0)) { // No high bit in this group (just 02xx, etc.). Whack 2-byte codes // This keeps SJS from creeping past Latin1 on illegal C0 bytes for (int j = 0; j < destatep->rankedencoding_list_len; j++) { int rankedencoding = destatep->rankedencoding_list[j]; Encoding enc = kMapToEncoding[rankedencoding]; if (TwoByteEncoding(enc)) { Whack(destatep, rankedencoding, kGentlePairWhack * counted_otherpairs); } } } // BOOST // ==================== if (AnyActive(destatep)) { ActiveSpecialBoostWhack(src, destatep); } // Update for next time destatep->prior_src = src; destatep->prior_interesting_pair[AsciiPair] = destatep->next_interesting_pair[AsciiPair]; destatep->prior_interesting_pair[OtherPair] = destatep->next_interesting_pair[OtherPair]; // Do any pre-prune final adjustments // ==================== if (prunereason == PRUNE_FINAL) { // If UTF8 not in base state, whack if (destatep->next_utf8_ministate != 0) { Whack(destatep, F_UTF8, kGentlePairWhack * 2 * 1); } // If UTF8UTF8 not in base state, whack if (destatep->next_utf8utf8_ministate != 0) { Whack(destatep, F_UTF8UTF8, kGentlePairWhack * 2 * 1); } // If no valid UTF-8 char ever seen, whack if (destatep->utf8_minicount[5] == 0) { Whack(destatep, F_UTF8, kBadPairWhack * 8); // No sequence Whack(destatep, F_UTF8UTF8, kBadPairWhack * 8); // No sequence } // If no valid UTF8UTF8 char ever seen, whack if (destatep->utf8utf8_minicount[5] == 0) { Whack(destatep, F_UTF8UTF8, kBadPairWhack * 8); // No sequence } // If not all four binary quadrants, whack BINARY; // worth 2 pair if 3 quads, 4 pair if 1 or 2 quads if (destatep->binary_quadrants_count < 4) { if (destatep->binary_quadrants_count == 3) { Whack(destatep, F_BINARY, kBadPairWhack * 2); } else { Whack(destatep, F_BINARY, kBadPairWhack * 4); } } // If 1st pair is 1b24, choose between ISO-2022-xx // $ ) C ISO-2022-KR [1b 24 29 43] // $ ) A ISO-2022-CN [1b 24 29 41] // $ ) G ISO-2022-CN [1b 24 29 47] // $ * H ISO-2022-CN [1b 24 2a 48] // ( B ISO-2022-JP [1b 28 42] to ASCII // ( J ISO-2022-JP [1b 28 4a] to X0201 // $ @ ISO-2022-JP [1b 24 40] to X0208-78 twobyte // $ B ISO-2022-JP [1b 24 42] to X0208-83 twobyte if ((destatep->next_interesting_pair[OtherPair] >= 1) && Iso2022Active(destatep)) { if ((destatep->interesting_pairs[OtherPair][0] == 0x1b) && (destatep->interesting_pairs[OtherPair][1] == 0x24)) { int offset = destatep->interesting_offsets[OtherPair][0]; const uint8* esc_src = destatep->initial_src + offset; if ((destatep->initial_src + offset) < (destatep->limit_src - 3)) { if ((esc_src[2] == ')') && (esc_src[3] == 'C')) { Boost(destatep, F_ISO_2022_KR, kBoostOnePair); Whack(destatep, F_ISO_2022_CN, kBadPairWhack); Whack(destatep, F_JIS, kBadPairWhack); } else if ((esc_src[2] == ')') && ((esc_src[3] == 'A') || (esc_src[3] == 'G'))) { Boost(destatep, F_ISO_2022_CN, kBoostOnePair); Whack(destatep, F_ISO_2022_KR, kBadPairWhack); Whack(destatep, F_JIS, kBadPairWhack); } else if ((esc_src[2] == '@') || (esc_src[2] == 'B')) { Boost(destatep, F_JIS, kBoostOnePair); Whack(destatep, F_ISO_2022_CN, kBadPairWhack); Whack(destatep, F_ISO_2022_KR, kBadPairWhack); } } else { // Incomplete escape sequence. Whack them all Whack(destatep, F_JIS, kBadPairWhack); Whack(destatep, F_ISO_2022_CN, kBadPairWhack); Whack(destatep, F_ISO_2022_KR, kBadPairWhack); } } } if (destatep->debug_data != NULL) { SetDetailsEncLabel(destatep, "pre-final"); } } // PRUNE // ==================== // Find current top two rankedencoding probabilities ReRank(destatep); if (prunereason == PRUNE_SLOWEND) { if (destatep->debug_data != NULL) { SetDetailsEncLabel(destatep, "slow-end"); } } // Keep every rankedencoding with probablity >= top_prob - prune_difference int prune_diff = destatep->prune_difference; // If the top encoding is BINARY, it might be overstated, and we might // therefore prune away the real encoding. Make the pruning delta // twice as big. if (destatep->top_rankedencoding == F_BINARY) { prune_diff *= 2; } int keep_prob = destatep->top_prob - prune_diff; // Tighten pruning difference (we start wide) for next time if (destatep->prune_difference > kFinalPruneDifference) { int decrement = kPruneDiffDecrement; // If only ASCII pairs, small tighten; if some non-ASCII, full tighten if (counted_otherpairs == 0) { decrement >>= 1; } destatep->prune_difference -= decrement; } // Prune the list of active encoding families destatep->active_special = 0; int k = 0; for (int j = 0; j < destatep->rankedencoding_list_len; j++) { bool keep = true; int rankedencoding = destatep->rankedencoding_list[j]; // If count is too low, ditch it if (destatep->enc_prob[rankedencoding] < keep_prob) { keep = false; } // If at end of slow section, ditch any 7-bit with zero evidence so far if ((prunereason == PRUNE_SLOWEND) && SevenBitEncoding(kMapToEncoding[rankedencoding]) && (destatep->enc_prob[rankedencoding] <= 0) && (rankedencoding != destatep->top_rankedencoding)) { keep = false; } // Keep it. This will always keep at least top_prob rankedencoding if (keep) { destatep->active_special |= kSpecialMask[kMapToEncoding[rankedencoding]]; destatep->rankedencoding_list[k++] = rankedencoding; } } if (destatep->debug_data != NULL) { char buff[32]; snprintf(buff, sizeof(buff), "%d prune", prune_diff / XLOG2); SetDetailsEncLabel(destatep, buff); } destatep->rankedencoding_list_len = k; // Force final result in some cases // Do any post-prune final adjustments if (prunereason == PRUNE_FINAL) { // If no high-byte pairs, result is ASCII7, BINARY, UTF7, 2022, or HZ if (destatep->next_interesting_pair[OtherPair] == 0) { if ((destatep->top_rankedencoding != F_BINARY) && (destatep->top_rankedencoding != F_UTF7) && (destatep->top_rankedencoding != F_ISO_2022_CN) && (destatep->top_rankedencoding != F_ISO_2022_KR) && (destatep->top_rankedencoding != F_JIS) && (destatep->top_rankedencoding != F_HZ_GB_2312)) { destatep->top_rankedencoding = F_ASCII_7_bit; Boost(destatep, F_ASCII_7_bit, kBoostOnePair * 2); } } // If some 89 pairs, not ISO_8859_x and vice versa if (destatep->byte32_count[4] > 0) { switch (destatep->top_rankedencoding) { case F_ASCII: // ISO-8859-1 destatep->top_rankedencoding = F_CP1252; // Better: destatep->enc_prob[F_ASCII] <==> destatep->enc_prob[F_CP1252] Boost(destatep, F_CP1252, kBoostOnePair * 2); break; case F_Latin2: // ISO-8859-2 // Don't swap back; not superset //destatep->top_rankedencoding = F_CP1250; //Boost(destatep, F_CP1250, kBoostOnePair * 2); break; case F_Arabic: // ISO-8859-6 destatep->top_rankedencoding = F_CP1256; Boost(destatep, F_CP1256, kBoostOnePair * 2); break; case F_Greek: // ISO-8859-7 // Don't swap -- not proper superset // Capital Alpha tonos at 0xB6 in ISO-8859-7, 0xA2 in CP1253 //destatep->top_rankedencoding = F_CP1253; //Boost(destatep, F_CP1253, kBoostOnePair * 2); break; case F_Hebrew: // ISO-8859-8 // Don't swap -- visual vs. logical //destatep->top_rankedencoding = F_CP1255; //Boost(destatep, F_CP1255, kBoostOnePair * 2); break; case F_Latin5: // ISO-8859-9 destatep->top_rankedencoding = F_CP1254; Boost(destatep, F_CP1254, kBoostOnePair * 2); break; case F_ISO_8859_11: // ISO-8859-11 destatep->top_rankedencoding = F_CP874; Boost(destatep, F_CP874, kBoostOnePair * 2); break; } } else { switch (destatep->top_rankedencoding) { case F_CP1252: // ISO-8859-1 destatep->top_rankedencoding = F_ASCII; Boost(destatep, F_ASCII, kBoostOnePair * 2); break; case F_CP1250: // ISO-8859-2 // Don't swap back; not superset //destatep->top_rankedencoding = F_Latin2; //Boost(destatep, F_Latin2, kBoostOnePair * 2); break; case F_CP1256: // ISO-8859-6 // Don't swap back -- not proper superset //destatep->top_rankedencoding = F_Arabic; //Boost(destatep, F_Arabic, kBoostOnePair * 2); break; case F_CP1253: // ISO-8859-7 // Don't swap back -- not proper superset //destatep->top_rankedencoding = F_Greek; //Boost(destatep, F_Greek, kBoostOnePair * 2); break; case F_CP1255: // ISO-8859-8 // Don't swap back -- not proper superset //destatep->top_rankedencoding = F_Hebrew; //Boost(destatep, F_Hebrew, kBoostOnePair * 2); break; case F_CP1254: // ISO-8859-9 destatep->top_rankedencoding = F_Latin5; Boost(destatep, F_Latin5, kBoostOnePair * 2); break; case F_CP874: // ISO-8859-11 destatep->top_rankedencoding = F_ISO_8859_11; Boost(destatep, F_ISO_8859_11, kBoostOnePair * 2); break; } } if (destatep->debug_data != NULL) { char buff[32]; snprintf(buff, sizeof(buff), "final %d", static_cast(src - destatep->initial_src)); SetDetailsEncLabel(destatep, buff); // Show winning encoding and its delta log base2 from 2nd-best // Divide delta by XLOG2 to get log base 2 int delta = destatep->top_prob - destatep->second_top_prob; if (delta < (2 * XLOG2)) { delta /= XDECILOG2; snprintf(buff, sizeof(buff), "+%d.%d %s ", delta / 10, delta % 10, MyEncodingName(kMapToEncoding[destatep->top_rankedencoding])); } else if (delta < (50 * XLOG2)) { delta /= XLOG2; snprintf(buff, sizeof(buff), "+%d %s", delta, MyEncodingName(kMapToEncoding[destatep->top_rankedencoding])); } else { snprintf(buff, sizeof(buff), "%s", MyEncodingName(kMapToEncoding[destatep->top_rankedencoding])); } SetDetailsEncProbCopyOffset(destatep, destatep->top_rankedencoding, buff); } } // FINISH // ==================== // Eventual encoding result is reliable if big difference in top two, or if // only Ascii7 ever encountered // Also reliable if exactly one OtherPair and it's best encoding matches top destatep->reliable = false; if (destatep->next_interesting_pair[OtherPair] == 0) { // Only 7-bit ASCII destatep->reliable = true; } if ((destatep->top_prob - destatep->second_top_prob) >= FLAGS_ced_reliable_difference) { destatep->reliable = true; } if (destatep->next_interesting_pair[OtherPair] == 1) { uint8 byte1 = destatep->interesting_pairs[OtherPair][0]; uint8 byte2 = destatep->interesting_pairs[OtherPair][1]; int best_enc = kMostLikelyEncoding[(byte1 << 8) + byte2]; if (best_enc == destatep->top_rankedencoding) { destatep->reliable = true; } } // If we pruned to one encoding, we are done if (destatep->rankedencoding_list_len == 1) { destatep->reliable = true; destatep->done = true; } // If we pruned to two or three encodings in the same *superset/subset // rankedencoding* and enough pairs, we are done. Else keep going if (destatep->rankedencoding_list_len == 2) { Encoding enc0 = kMapToEncoding[destatep->rankedencoding_list[0]]; Encoding enc1 = kMapToEncoding[destatep->rankedencoding_list[1]]; if (kMapEncToBaseEncoding[enc0] == kMapEncToBaseEncoding[enc1]) { if (destatep->prune_count >= 3) { destatep->reliable = true; destatep->done = true; } } } else if (destatep->rankedencoding_list_len == 3) { Encoding enc0 = kMapToEncoding[destatep->rankedencoding_list[0]]; Encoding enc1 = kMapToEncoding[destatep->rankedencoding_list[1]]; Encoding enc2 = kMapToEncoding[destatep->rankedencoding_list[2]]; Encoding base0 = kMapEncToBaseEncoding[enc0]; Encoding base1 = kMapEncToBaseEncoding[enc1]; Encoding base2 = kMapEncToBaseEncoding[enc2]; if ((base0 == base1) && (base0 == base2)) { if (destatep->prune_count >= 3) { destatep->reliable = true; destatep->done = true; } } } } // Accumulate aligned byte-pair at src // Occasionally, calc boost for some encodings and then prune the active list // weightshift is used to give low weight some text, such as inside tags // Returns true if pruning occurred bool IncrementAndBoostPrune(const uint8* src, int remaining_length, DetectEncodingState* destatep, int weightshift, int exit_reason) { destatep->last_pair = src; // Pick up byte pair, or very last byte plus 0x20 uint8 byte1 = src[0]; uint8 byte2 = 0x20; if (1 < remaining_length) {byte2 = src[1];} // whatset=0 for Ascii + ~, 1 for all others; see kTestPrintableAsciiTildePlus int whatset = exit_reason - 1; int next_pair = destatep->next_interesting_pair[whatset]; if (next_pair > 16) { // If not clear by 16 bigrams, stop accumulating + ~ 00 if (byte1 == '+') {return false;} if (byte1 == '~') {return false;} if (byte1 == 0x00) {return false;} } // Remember pair in appropriate list if (next_pair >= kMaxPairs) { // We have filled up our alloted space for interesting pairs with no // decision. If ASCII pairs full, just skip until end of slow loop; if // non-Ascii pairs full, force done if (whatset == OtherPair) { destatep->done = true; } } else { int offset = static_cast(src - destatep->initial_src); destatep->interesting_pairs[whatset][next_pair * 2 + 0] = byte1; destatep->interesting_pairs[whatset][next_pair * 2 + 1] = byte2; destatep->interesting_offsets[whatset][next_pair] = offset; destatep->interesting_weightshift[whatset][next_pair] = weightshift; ++destatep->next_interesting_pair[whatset]; ++next_pair; } // Prune now and then , but always if forced to be done if (destatep->done || ((next_pair & kPruneMask) == 0)) { // Prune every M BoostPrune(src + 2, destatep, PRUNE_NORMAL); // src+2 first unscanned byte // may be off end of input return true; } return false; } void DumpSummary(DetectEncodingState* destatep, int whatset, int n) { printf(" %sSummary[%2d]: ", kWhatSetName[whatset], destatep->next_interesting_pair[whatset]); int limit = minint(n, destatep->next_interesting_pair[whatset]); for (int i = 0; i < limit; ++i) { printf("%02x%02x ", destatep->interesting_pairs[whatset][i * 2 + 0], destatep->interesting_pairs[whatset][i * 2 + 1]); if ((i & 7) == 7) {printf(" ");} } printf("\n"); } void BeginDetail(DetectEncodingState* destatep) { fprintf(stderr, "%d [", NUM_RANKEDENCODING); for (int e = 0; e < NUM_RANKEDENCODING; ++e) { fprintf(stderr, "(%s)", MyRankedEncName(e)); if ((e % 10) == 9) {fprintf(stderr, "\n ");} } fprintf(stderr, "] size-detail\n"); destatep->next_detail_entry = 0; } // Single character to represent (printable ASCII) gap between bigrams char DetailOffsetChar(int delta) { if (delta == 0) {return ' ';} if (delta <= 2) {return '=';} if (delta <= 15) {return '_';} if (delta <= 31) {return '+';} {return ' ';} } void DumpDetail(DetectEncodingState* destatep) { // Turn all counts into delta from previous entry fprintf(stderr, "%d count-detail\n", destatep->next_detail_entry); // Rewrite, recording deltas for (int z = destatep->next_detail_entry - 1; z > 0; --z) { destatep->debug_data[z].offset -= destatep->debug_data[z - 1].offset; for (int e = 0; e < NUM_RANKEDENCODING; ++e) { destatep->debug_data[z].detail_enc_prob[e] -= destatep->debug_data[z - 1].detail_enc_prob[e]; } } // Now print for (int z = 0; z < destatep->next_detail_entry; ++z) { // Highlight some entries ending in '!' with light red underbar int len = destatep->debug_data[z].label.size(); if (destatep->debug_data[z].label[len - 1] == '!') { fprintf(stderr, "1 0.9 0.9 do-flag\n"); } fprintf(stderr, "(%c%s) %d [", DetailOffsetChar(destatep->debug_data[z].offset), destatep->debug_data[z].label.c_str(), destatep->debug_data[z].best_enc); for (int e = 0; e < NUM_RANKEDENCODING; ++e) { fprintf(stderr, "%d ", destatep->debug_data[z].detail_enc_prob[e]); if ((e % 10) == 9) {fprintf(stderr, " ");} } fprintf(stderr, "] do-detail-e\n"); } // Get ready for next time,if any destatep->next_detail_entry = 0; } void PsRecurse(const char* buff) { fprintf(stderr, "() end-detail (%s) start-detail\n\n", buff); } void DumpReliable(DetectEncodingState* destatep) { printf("Not reliable: "); // Find center of gravity of OtherPair list int x_sum = 0; int y_sum = 0; int count = destatep->next_interesting_pair[OtherPair]; for (int i = 0; i < count; ++i) { uint8 byte1 = destatep->interesting_pairs[OtherPair][i * 2 + 0]; uint8 byte2 = destatep->interesting_pairs[OtherPair][i * 2 + 1]; x_sum += byte2; y_sum += byte1; } if (count == 0) {count = 1;} // adoid zdiv int x_bar = x_sum / count; int y_bar = y_sum / count; printf("center %02X,%02X\n", x_bar, y_bar); double closest_dist = 999.0; int closest = 0; for (int j = 0; j < destatep->rankedencoding_list_len; j++) { int rankedencoding = destatep->rankedencoding_list[j]; const UnigramEntry* ue = &unigram_table[rankedencoding]; printf(" %8s = %4d at %02x,%02x +/- %02X,%02X ", MyEncodingName(kMapToEncoding[rankedencoding]), destatep->enc_prob[rankedencoding], ue->x_bar, ue->y_bar, ue->x_stddev, ue->y_stddev); double x_diff = x_bar - ue->x_bar; double y_diff = y_bar - ue->y_bar; double dist = sqrt((x_diff * x_diff) + (y_diff * y_diff)); printf("(%3.1f)\n", dist); if (closest_dist > dist) { closest_dist = dist; closest = rankedencoding; } } printf("Closest=%s (%3.1f)\n", MyEncodingName(kMapToEncoding[closest]), closest_dist); for (int i = 0; i < 8; ++i) { // Demote by distance to CG and see if that helps, or just quit } } // Scan short single lines quickly for all printable ASCII // Return true if all bytes are in [20..7F], false otherwise bool QuickPrintableAsciiScan(const char* text, int text_length) { const uint8* src = reinterpret_cast(text); const uint8* srclimit = src + text_length; const uint8* srclimit8 = srclimit - 7; while (src < srclimit8) { // Exits on any byte outside [0x20..0x7E] range (HT LF CR exit) uint8 mask = 0; for (int i = 0; i < 8; ++i) mask |= (src[i]-0x20)|(src[i]+0x01); if ((mask & 0x80) != 0) break; src += 8; } while (src < srclimit) { uint8 uc = *src++; if (kIsPrintableAscii[uc] == 0) {return false;} } return true; } static const int kMaxScanBack = 192; // Return true if text is inside a tag or JS comment bool TextInsideTag(const uint8* isrc, const uint8* src, const uint8* srclimit) { const uint8* srcbacklimit = src - kMaxScanBack; if (srcbacklimit < isrc) { srcbacklimit = isrc; } const uint8* ss = src - 1; while (srcbacklimit <= ss) { uint8 c = *ss--; if ((c & ~0x02) == '<') { // We found preceding < 3C or > 3E nearby // Even cheaper: if inside a tag, we don't care what tag; return true if (c == '<') { return true; } // See if we are just after ... if ((c == '>') && (isrc <= (ss - 5)) && (ss[-5] == '<') && ((ss[-4] | 0x20) == 't') && ((ss[-3] | 0x20) == 'i') && ((ss[-2] | 0x20) == 't') && ((ss[-1] | 0x20) == 'l') && ((ss[-0] | 0x20) == 'e')) { return true; } // See if we are just after <SCRIPT language=javascript>... if ((c == '>') && (isrc <= (ss - 5)) && (ss[-5] == 's') && ((ss[-4] | 0x20) == 'c') && ((ss[-3] | 0x20) == 'r') && ((ss[-2] | 0x20) == 'i') && ((ss[-1] | 0x20) == 'p') && ((ss[-0] | 0x20) == 't')) { return true; } // Not in a tag return false; // See if we are just after JavaScript comment /* ... } else if (c == '/') { if (((ss + 2) < srclimit) && (ss[2] == '*')) { // We backscanned to /* return true; } } } return false; } const uint8* SkipToTagEnd(const uint8* src, const uint8* srclimit) { const uint8* ss = src + 1; while (ss <= srclimit) { uint8 c = *ss++; if ((c == '<') || (c == '>')) { return ss; } } return src + 2; // Always make progress, Otherwise we get an infinite loop } // Take a watch string and map to a ranked encoding. If no match, return -1 int LookupWatchEnc(const string& watch_str) { int watchval = -1; // Mixed encoding maps to enc=UTF8UTF8 if (watch_str == "UTF8UTF8") { watchval = F_UTF8UTF8; } else { Encoding enc; if (EncodingFromName(watch_str.c_str(), &enc)) { watchval = CompactEncDet::BackmapEncodingToRankedEncoding(enc); } } return watchval; } // Return true if enc and enc2 are equal or one is a subset of the other // or either is UNKNOWN // also UTF8UTF8 is compatible with both Latin1 and UTF8 bool CompatibleEnc(Encoding enc, Encoding enc2) { if (enc < 0) {return false;} if (NUM_ENCODINGS <= enc) {return false;} if (enc2 < 0) {return false;} if (NUM_ENCODINGS <= enc2) {return false;} if (enc == enc2) {return true;} if (kMapEncToBaseEncoding[enc] == kMapEncToBaseEncoding[enc2]) {return true;} if (enc == ASCII_7BIT) {return true;} if (enc2 == ASCII_7BIT) {return true;} if (enc == UNKNOWN_ENCODING) {return true;} if (enc2 == UNKNOWN_ENCODING) {return true;} if (enc == UTF8UTF8) { if (enc2 == UTF8) {return true;} if (kMapEncToBaseEncoding[enc2] == ISO_8859_1) {return true;} } if (enc2 == UTF8UTF8) { if (enc == UTF8) {return true;} if (kMapEncToBaseEncoding[enc] == ISO_8859_1) {return true;} } return false; } // Return superset of enc and enc2, which must be compatible Encoding SupersetEnc(Encoding enc, Encoding enc2) { //printf(" SupersetEnc (%s, ", MyEncodingName(enc)); // TEMP //printf("%s) ", MyEncodingName(enc2)); //printf("= %s\n", // MyEncodingName(kMapEncToSuperLevel[enc] >= kMapEncToSuperLevel[enc2] ? // enc :enc2)); if (kMapEncToSuperLevel[enc] >= kMapEncToSuperLevel[enc2]) { return enc; } return enc2; } // If unreliable, try rescoring to separate some encodings Encoding Rescore(Encoding enc, const uint8* isrc, const uint8* srctextlimit, DetectEncodingState* destatep) { if (FLAGS_counts) {++rescore_used;} Encoding new_enc = enc; bool rescore_change = false; int count = destatep->next_interesting_pair[OtherPair]; int text_length = srctextlimit - isrc; for (int i = 0; i < count; ++i) { int bigram_offset = destatep->interesting_offsets[OtherPair][i]; uint8 byte0 = (0 < bigram_offset) ? isrc[bigram_offset - 1] : 0x20; uint8 byte1 = isrc[bigram_offset + 0]; // Known to have high bit on uint8 byte2 = ((bigram_offset + 1) < text_length) ? isrc[bigram_offset + 1] : 0x20; uint8 byte3 = ((bigram_offset + 2) < text_length) ? isrc[bigram_offset + 2] : 0x20; int high_hash = ((byte0 & 0xc0) >> 0) | ((byte1 & 0xc0) >> 1) | ((byte2 & 0xc0) >> 4) | ((byte3 & 0xc0) >> 6); // 00112233 // Boost HighAccent encodings for Ascii bit patterns // 0x1x 0x0x // 1010 1010 // 0010 0000 // if ((high_hash & 0xaa) == 0x20) { for (int j = 0; j < destatep->rankedencoding_list_len; j++) { int rankedencoding = destatep->rankedencoding_list[j]; if (HighAccentEncoding(kMapToEncoding[rankedencoding])) { // TODO: also want to boost Shift-JIS here if byte1 is Ax..Dx // TEMP //printf(" Rescore[%02x] %s +%d\n", // high_hash, MyRankedEncName(rankedencoding), kGentlePairBoost); Boost(destatep, rankedencoding, kGentlePairBoost); rescore_change = true; } } } // Whack HighAccent encodings for high bit patterns // 1x1x 1x1x // 1010 1010 // 1010 1010 // if ((high_hash & 0xaa) == 0xaa) { for (int j = 0; j < destatep->rankedencoding_list_len; j++) { int rankedencoding = destatep->rankedencoding_list[j]; if (HighAccentEncoding(kMapToEncoding[rankedencoding])) { // TEMP //printf(" Rescore[%02x] %s -%d\n", // high_hash, MyRankedEncName(rankedencoding), kGentlePairBoost); Whack(destatep, rankedencoding, kGentlePairBoost); rescore_change = true; } } } } if (rescore_change) { ReRank(destatep); new_enc = kMapToEncoding[destatep->top_rankedencoding]; if (destatep->debug_data != NULL) { char buff[32]; snprintf(buff, sizeof(buff), "=Rescore %s", MyEncodingName(new_enc)); SetDetailsEncProb(destatep, 0, CompactEncDet::BackmapEncodingToRankedEncoding(new_enc), buff); //// DumpDetail(destatep); } SimplePrune(destatep, kFinalPruneDifference); CalcReliable(destatep); } //if (new_enc != enc) { // // TEMP // printf(" Rescore new top encoding = %s\n", // MyRankedEncName(destatep->top_rankedencoding)); //} return new_enc; } // Given an encoding, add its corresponding ranked encoding to the set void AddToSet(Encoding enc, int* list_len, int* list) { // TEMP print int item = CompactEncDet::BackmapEncodingToRankedEncoding(enc); for (int i = 0; i < *list_len; ++i) { if (list[i] == item) { return; // Already in the set; don't add again } } list[(*list_len)++] = item; } static const int kMinRobustBigramCount = 1000; static const int kMinKBToRobustScan = 64; static const int kMaxKBToRobustScan = 256; // Scan the first 64K or so, just doing raw bigram increments on given // probability list. // No fancy duplicate filtering or anything else here. // Returns number of bigrams counted int RobustScan(const char* text, int text_length, int robust_renc_list_len, int* robust_renc_list, int* robust_renc_probs) { if (FLAGS_counts) {++robust_used;} // Zero all the result probabilities for (int i = 0; i < robust_renc_list_len; ++i) { robust_renc_probs[i] = 0; } int max_fast_len = minint(text_length, (kMaxKBToRobustScan << 10)); const uint8* isrc = reinterpret_cast<const uint8*>(text); const uint8* src = isrc; const uint8* srclimitfast2 = isrc + max_fast_len - 1; const uint8* srclimitfast4 = isrc + max_fast_len - 3; int min_fast_len = minint(text_length, (kMinKBToRobustScan << 10)); const uint8* srclimitmin = isrc + min_fast_len - 1; int bigram_count = 0; if (FLAGS_enc_detect_source) { PsSourceInit(kPsSourceWidth); fprintf(stderr, "(RobustScan) do-src\n"); } // Sum over a big chunk of the input // Faster loop, no 7-bit-encodings possible, approx 3000 GB/sec //==================================== while (src < srclimitfast2) { // Skip to next interesting bigram while (src < srclimitfast4) { if (((src[0] | src[1] | src[2] | src[3]) & 0x80) != 0) break; src += 4; } while (src < srclimitfast2) { if ((src[0] & 0x80) != 0) break; src++; } if (src < srclimitfast2) { // We found a bigram with high bit on // Next 5 lines commented out so we don't show all the source. //const uint8* srctextlimit = isrc + text_length; //if (FLAGS_enc_detect_source) { // PsSource(src, isrc, srctextlimit); // PsMark(src, 2, isrc, 0); //} uint8 byte1 = src[0]; uint8 byte2 = src[1]; uint8 byte1x2x = (byte1 & 0xf0) | ((byte2 >> 4) & 0x0f); uint8 byte1f = byte1; // Flip top bit of subscript to better separate quadrant 4 (esp. for Hebrew) byte1f ^= (byte2 & 0x80); // The real increments for (int j = 0; j < robust_renc_list_len; ++j) { int rankedencoding = robust_renc_list[j]; const UnigramEntry* ue = &unigram_table[rankedencoding]; int incr = ue->b1[byte1f] + ue->b2[byte2] + ue->b12[byte1x2x]; if ((ue->b12[byte1x2x] & 0x01) != 0) { // Use a more-precise table int byte32x32 = ((byte1 & 0x1f) << 5) | (byte2 & 0x1f); int hiressub = (byte2 & 0x60) >> 5; // select w/bits 5&6 of byte 2 DCHECK(ue->hires[hiressub] != NULL); incr += ue->hires[hiressub][byte32x32]; } else { // Default final offset incr += ue->so; } robust_renc_probs[j] += incr; } src += 2; // Continue after this bigram ++bigram_count; // Stop after 1000 bigrams reached, if at least 64KB scanned if ((bigram_count > kMinRobustBigramCount) && (src > srclimitmin)) { break; } } } if (FLAGS_enc_detect_source) { fprintf(stderr, "( bigram_count = %d) do-src\n", bigram_count); if (bigram_count == 0) {bigram_count = 1;} // zdiv for (int i = 0; i < robust_renc_list_len; ++i) { fprintf(stderr, "( enc[%-12.12s] = %7d (avg %d)) do-src\n", MyRankedEncName(robust_renc_list[i]), robust_renc_probs[i], robust_renc_probs[i] / bigram_count); } PsSourceFinish(); } return bigram_count; } // If unreliable, rescan middle of document to see if we can get a better // answer. Rescan is only worthwhile if there are ~200 bytes or more left, // since the detector takes as much as 96 bytes of bigrams to decide. Encoding Rescan(Encoding enc, const uint8* isrc, const uint8* src, const uint8* srctextlimit, const char* url_hint, const char* http_charset_hint, const char* meta_charset_hint, const int encoding_hint, const Language language_hint, const CompactEncDet::TextCorpusType corpus_type, bool ignore_7bit_mail_encodings, DetectEncodingState* destatep) { bool enc_is_reliable = destatep->reliable; Encoding new_enc = enc; Encoding second_best_enc = kMapToEncoding[destatep->second_top_rankedencoding]; if (FLAGS_counts) {++rescan_used;} int scanned_bytes = src - isrc; int unscanned_bytes = srctextlimit - src; int text_length = srctextlimit - isrc; bool empty_rescan = true; // See if enough bytes left to bother doing rescan if (kMinRescanLength < unscanned_bytes) { const char* text = reinterpret_cast<const char*>(isrc); Encoding one_hint = destatep->http_hint; if ((one_hint == UNKNOWN_ENCODING) && (destatep->meta_hint != UNKNOWN_ENCODING)) { one_hint = destatep->meta_hint; } if ((one_hint == UNKNOWN_ENCODING) && (destatep->bom_hint != UNKNOWN_ENCODING)) { one_hint = destatep->bom_hint; } // Go to an even offset to keep UTF-16 in synch int middle_offset = (scanned_bytes + (unscanned_bytes / 2)) & ~1; CHECK(middle_offset <= text_length); // Look back a bit for a low byte to synchronize, else hope for the best. const uint8* srcbacklimit = isrc + middle_offset - kMaxScanBack; if (srcbacklimit < src) { srcbacklimit = src; } const uint8* ss = isrc + middle_offset - 1; while (srcbacklimit <= ss) { if ((*ss & 0x80) == 0) {break;} --ss; } // Leave middle offset unchanged unless we found a low byte if (srcbacklimit <= ss) { // Align to low byte or high byte just after it, whichever is even middle_offset = (ss - isrc + 1) & ~1; // Even to keep UTF-16 in sync } CHECK(middle_offset <= text_length); if (destatep->debug_data != NULL) { SetDetailsEncLabel(destatep, ">> Rescan"); // Print the current chart before recursive call DumpDetail(destatep); char buff[32]; snprintf(buff, sizeof(buff), ">> Rescan[%d..%d]", middle_offset, text_length); PsRecurse(buff); } int mid_bytes_consumed; bool mid_is_reliable; Encoding mid_second_best_enc; CEDInternalFlags newflags = static_cast<CEDInternalFlags>( kCEDRescanning + kCEDForceTags); // Recursive call for rescan of half of remaining Encoding mid_enc = InternalDetectEncoding( newflags, text + middle_offset, text_length - middle_offset, url_hint, http_charset_hint, meta_charset_hint, encoding_hint, language_hint, // User interface lang corpus_type, ignore_7bit_mail_encodings, &mid_bytes_consumed, &mid_is_reliable, &mid_second_best_enc); destatep->reliable = mid_is_reliable; empty_rescan = (mid_enc == ASCII_7BIT); // Not the right decision if, e.g. enc=Greek, mid=ASCII7, one=KSC // hence the !empty_rescan term if (!empty_rescan && CompatibleEnc(one_hint, mid_enc)) { // Encoding we just found is compatible with the // single hint (if any); return superset new_enc = SupersetEnc(one_hint, mid_enc); } // If original and mid are compatible, and both reliable, // return new_enc = SupersetEnc(enc, mid_enc) // // This avoids too much weight on a bogus hint causing a RobustScan // that gets the wrong answer if (!empty_rescan && mid_is_reliable && enc_is_reliable && CompatibleEnc(enc, mid_enc)) { new_enc = SupersetEnc(enc, mid_enc); return new_enc; } // if mid unreliable, robustscan // if mid empty, robustscan // if original and mid not compatible, robustscan // if mid and one_hint not compatible, robustscan // If we found conflicting data, drop back and do a robust scan of a big // chunk of the input over a set of candidate encodings // if (!mid_is_reliable || empty_rescan || !CompatibleEnc(enc, mid_enc) || !CompatibleEnc(one_hint, mid_enc)) { int robust_renc_list_len; // Number of active encodings int robust_renc_list[NUM_RANKEDENCODING]; // List of ranked encodings int robust_renc_probs[NUM_RANKEDENCODING]; // List of matching probs robust_renc_list_len = 0; AddToSet(enc, &robust_renc_list_len, robust_renc_list); AddToSet(second_best_enc, &robust_renc_list_len, robust_renc_list); AddToSet(mid_enc, &robust_renc_list_len, robust_renc_list); AddToSet(mid_second_best_enc, &robust_renc_list_len, robust_renc_list); if (destatep->http_hint != UNKNOWN_ENCODING) { AddToSet(destatep->http_hint, &robust_renc_list_len, robust_renc_list); } if (destatep->meta_hint != UNKNOWN_ENCODING) { AddToSet(destatep->meta_hint, &robust_renc_list_len, robust_renc_list); } if (destatep->bom_hint != UNKNOWN_ENCODING) { AddToSet(destatep->bom_hint, &robust_renc_list_len, robust_renc_list); } if (destatep->tld_hint != UNKNOWN_ENCODING) { AddToSet(destatep->tld_hint, &robust_renc_list_len, robust_renc_list); } // Separate simple scan // ===================== if (destatep->debug_data != NULL) { SetDetailsEncLabel(destatep, ">> RobustScan"); // Print the current chart before recursive call DumpDetail(destatep); char buff[32]; snprintf(buff, sizeof(buff), ">> RobustScan[0..%d]", text_length); PsRecurse(buff); } int bigram_count = RobustScan(text, text_length, robust_renc_list_len, robust_renc_list, robust_renc_probs); // Default to new_enc and update if something better was found int best_prob = -1; // TEMP print for (int i = 0; i < robust_renc_list_len; ++i) { if (best_prob < robust_renc_probs[i]) { best_prob = robust_renc_probs[i]; new_enc = kMapToEncoding[robust_renc_list[i]]; } } if (destatep->debug_data != NULL) { char buff[32]; snprintf(buff, sizeof(buff), "=Robust[%d] %s", bigram_count, MyEncodingName(new_enc)); SetDetailsEncProb(destatep, 0, CompactEncDet::BackmapEncodingToRankedEncoding(new_enc), buff); } } } // End if enough bytes return new_enc; } // With no hints at all, and perhaps on rescan, we relax our pickiness // and go ahead and accept the top multibyte encodings, even though // strictly their web pages should have declared an explicit encoding to // avoid the HTML standard's default ISO-8859-1. bool NoHintsCloseEnoughCompatible(Encoding top_enc) { // First test accepts degenerate cases plus UTF8 and UTF8UTF8 if (CompatibleEnc(UTF8, top_enc)) {return true;} // The rest look for exact match of base encoding Encoding base_enc = kMapEncToBaseEncoding[top_enc]; if (base_enc == JAPANESE_EUC_JP) {return true;} if (base_enc == JAPANESE_SHIFT_JIS) {return true;} if (base_enc == CHINESE_BIG5) {return true;} if (base_enc == CHINESE_GB) {return true;} if (base_enc == KOREAN_EUC_KR) {return true;} return false; } // Scan raw bytes and detect most likely encoding // Design goals: // Skip over big initial stretches of seven-bit ASCII bytes very quickly // Thread safe // Works equally well on // 50-byte queries, // 5000-byte email and // 50000-byte web pages // Length 0 input returns ISO_8859_1 (ASCII) encoding // Setting ignore_7bit_mail_encodings effectively turns off detection of // UTF-7, HZ, and ISO-2022-xx Encoding InternalDetectEncoding( CEDInternalFlags flags, const char* text, int text_length, const char* url_hint, const char* http_charset_hint, const char* meta_charset_hint, const int encoding_hint, const Language language_hint, // User interface lang const CompactEncDet::TextCorpusType corpus_type, bool ignore_7bit_mail_encodings, int* bytes_consumed, bool* is_reliable, Encoding* second_best_enc) { *bytes_consumed = 0; *is_reliable = false; *second_best_enc = ASCII_7BIT; if (text_length == 0) { // Follow the spec. Text might be NULL. *is_reliable = true; return ISO_8859_1; } // For very short (20-50 byte) input strings that are highly likely to be // all printable ASCII, our startup overhead might dominate. We have to do the // full detection if the ISO-2022-xx, HZ, or UTF-7 encodings are possible. // Otherwise, we can do a quick scan for printable ASCII. if ((text_length <= 500) && ignore_7bit_mail_encodings && QuickPrintableAsciiScan(text, text_length)) { *is_reliable = true; return ASCII_7BIT; } // Go for the full boat detection DetectEncodingState destate; InitDetectEncodingState(&destate); std::unique_ptr<DetailEntry[]> scoped_debug_data; if (FLAGS_enc_detect_detail) { // Allocate max 10 details per bigram scoped_debug_data.reset(new DetailEntry[kMaxPairs * 10]); destate.debug_data = scoped_debug_data.get(); // NOTE: destate and scoped_debug_data have exactly the same scope // All other FLAGS_enc_detect_detail tests use destate.debug_data != NULL } // Get text length limits // Typically, we scan the first 16KB looking for all encodings, then // scan the rest (up to 256KB) a bit faster by no longer looking for // interesting bytes below 0x80. This allows us to skip over runs of // 7-bit-ASCII much more quickly. int slow_len = minint(text_length, (FLAGS_enc_detect_slow_max_kb << 10)); int fast_len = minint(text_length, (FLAGS_enc_detect_fast_max_kb << 10)); // Initialize pointers. // In general, we do not look at last 3 bytes of input in the fast scan // We do, however want to look at the last byte or so in the slow scan, // especilly in the case of a very short text whose only interesting // information is a 3-byte UTF-8 character in the last three bytes. // If necessary, we fake a last bigram with 0x20 space as a pad byte. const uint8* isrc = reinterpret_cast<const uint8*>(text); const uint8* src = isrc; const uint8* srctextlimit = isrc + text_length; const uint8* srclimitslow2 = isrc + slow_len - 1; const uint8* srclimitfast2 = isrc + fast_len - 1; const uint8* srclimitfast4 = isrc + fast_len - 3; if (srclimitslow2 > srclimitfast2) { srclimitslow2 = srclimitfast2; } destate.initial_src = isrc; destate.limit_src = srclimitfast2 + 1; // May include last byte destate.prior_src = isrc; destate.last_pair = isrc - 2; const char* scan_table = kTestPrintableAsciiTildePlus; if (ignore_7bit_mail_encodings) { // Caller wants to ignore UTF-7, HZ, ISO-2022-xx // Don't stop on + (for UTF-7), nor on ~ (for HZ) scan_table = kTestPrintableAscii; } int exit_reason = 0; if (destate.debug_data != NULL) { BeginDetail(&destate); // Take any incoming watch encoding name and backmap to the corresponding // ranked enum value watch1_rankedenc = LookupWatchEnc(FLAGS_enc_detect_watch1); if (watch1_rankedenc >= 0) { fprintf(stderr, "/track-me %d def\n", watch1_rankedenc); } watch2_rankedenc = LookupWatchEnc(FLAGS_enc_detect_watch2); if (watch2_rankedenc >= 0) { fprintf(stderr, "/track-me2 %d def\n", watch2_rankedenc); } fprintf(stderr, "%% kDerateHintsBelow = %d\n", kDerateHintsBelow); } if (FLAGS_enc_detect_source) { PsSourceInit(kPsSourceWidth); PsSource(src, isrc, srctextlimit); PsMark(src, 4, isrc, 0); } // Apply hints, if any, to probabilities // NOTE: Encoding probabilites are all zero at this point ApplyHints(url_hint, http_charset_hint, meta_charset_hint, encoding_hint, language_hint, corpus_type, &destate); // NOTE: probabilities up to this point are subject to derating for // small numbers of bigrams. // Probability changes after this point are not derated. // Do first 4 bytes to pick off strong markers InitialBytesBoost(isrc, text_length, &destate); bool ignored_some_tag_text = false; int tag_text_bigram_count = 0; // Slower loop, approx 500 MB/sec (2.8 GHz P4) // ASSERT(srclimitslow2 <= srclimitfast2); //==================================== DoMoreSlowLoop: while (src < srclimitslow2) { // Skip to next interesting byte (this is the slower part) while (src < srclimitslow2) { uint8 uc = *src++; if (scan_table[uc] != 0) {exit_reason = scan_table[uc]; src--; break;} } if (src < srclimitslow2) { if (FLAGS_enc_detect_source) { PsSource(src, isrc, srctextlimit); // don't mark yet } int weightshift = 0; // In the first 16KB, derate new text run inside <title>... and // inside if (////((destate.last_pair + 6) <= src) && // if beyond last one ////(tag_text_bigram_count < kMaxBigramsTagTitleText) && (corpus_type == CompactEncDet::WEB_CORPUS) && // and web page !CEDFlagForceTags(flags)) { // and OK to skip ////if (TextInsideTag(destate.last_pair + 2, src, srclimitslow2)) { if (TextInsideTag(isrc, src, srclimitslow2)) { if (tag_text_bigram_count >= kMaxBigramsTagTitleText) { ignored_some_tag_text = true; src = SkipToTagEnd(src, srclimitslow2); continue; } else { weightshift = kWeightshiftForTagTitleText; ++tag_text_bigram_count; } } } if (FLAGS_enc_detect_source) { PsMark(src, 2, isrc, weightshift); } // Saves byte pair and offset bool pruned = IncrementAndBoostPrune(src, srctextlimit - src, &destate, weightshift, exit_reason); // Advance; if inside tag, advance to end of tag if (weightshift == 0) { src += exit_reason; // 1 Ascii, 2 other } else { src += exit_reason; // 1 Ascii, 2 other //// src = SkipToTagEnd(src, srclimitslow2); } if (pruned) { // Scoring and active encodings have been updated if (destate.done) {break;} // Check if all the reasons for the slow loop have been pruned // If so, go to fast loop if (!SevenBitActive(&destate)) {break;} } } } //==================================== // We reached the end of a slow scan, possibly because no more SevenBitActive, // or possibly are at end of source. // If we are exactly at the end of the source, make sure we look at the very // last byte. bool very_last_byte_incremented = false; if (src == (srctextlimit - 1)) { exit_reason = scan_table[*src]; if (exit_reason != 0) { // The very last byte is an interesting byte // Saves byte pair and offset //printf("Interesting very last slow byte = 0x%02x\n", *src); IncrementAndBoostPrune(src, srctextlimit - src, &destate, 0, exit_reason); very_last_byte_incremented = true; } } if (FLAGS_enc_detect_source) { PsSource(src, isrc, srctextlimit); PsMark(src, 2, isrc, 0); } // Force a pruning based on whatever we have // Delete the seven-bit encodings if there is no evidence of them so far BoostPrune(src, &destate, PRUNE_SLOWEND); if (!destate.done) { // If not clear yet on 7-bit-encodings and more bytes, do more slow if (SevenBitActive(&destate) && (src < srclimitfast2)) { // Increment limit by another xxxK slow_len += (FLAGS_enc_detect_slow_max_kb << 10); srclimitslow2 = isrc + slow_len - 1; if (srclimitslow2 > srclimitfast2) { srclimitslow2 = srclimitfast2; } if (!UTF7OrHzActive(&destate)) { // We can switch to table that does not stop on + ~ scan_table = kTestPrintableAscii; } goto DoMoreSlowLoop; } exit_reason = 2; // Faster loop, no 7-bit-encodings possible, approx 3000 GB/sec //==================================== while (src < srclimitfast2) { // Skip to next interesting byte (this is the faster part) while (src < srclimitfast4) { if (((src[0] | src[1] | src[2] | src[3]) & 0x80) != 0) break; src += 4; } while (src < srclimitfast2) { if ((src[0] & 0x80) != 0) break; src++; } if (src < srclimitfast2) { if (FLAGS_enc_detect_source) { PsSource(src, isrc, srctextlimit); PsMark(src, 2, isrc, 0); } // saves byte pair and offset bool pruned = IncrementAndBoostPrune(src, srctextlimit - src, &destate, 0, exit_reason); src += exit_reason; // 1 Ascii, 2 other if (pruned) { // Scoring and active encodings have been updated if (destate.done) {break;} } } } //==================================== // We reached the end of fast scan // If we are exactly at the end of the source, make sure we look at the very // last byte. if (src == (srctextlimit - 1) && !very_last_byte_incremented) { exit_reason = scan_table[*src]; if (exit_reason != 0) { // The very last byte is an interesting byte // Saves byte pair and offset //printf("Interesting very last fast byte = 0x%02x\n", *src); IncrementAndBoostPrune(src, srctextlimit - src, &destate, 0, exit_reason); very_last_byte_incremented = true; } } } // End if !done if (FLAGS_enc_detect_source) { PsSource(src, isrc, srctextlimit); PsMark(src, 2, isrc, 0); } // Force a pruning based on whatever we have BoostPrune(src, &destate, PRUNE_FINAL); if (FLAGS_enc_detect_summary) { DumpSummary(&destate, AsciiPair, 32); DumpSummary(&destate, OtherPair, 32); } if (FLAGS_enc_detect_source) { PsSourceFinish(); } if (destate.debug_data != NULL) { //// DumpDetail(&destate); } if (ignored_some_tag_text && (kMapToEncoding[destate.top_rankedencoding] == ASCII_7BIT)) { // There were some interesting bytes, but only in tag text. // Recursive call to reprocess looking at the tags this time. if (destate.debug_data != NULL) { SetDetailsEncLabel(&destate, ">> Recurse/tags"); // Print the current chart before recursive call DumpDetail(&destate); char buff[32]; snprintf(buff, sizeof(buff), ">> Recurse for tags"); PsRecurse(buff); } // Recursive call for high bytes in tags [no longer used, 1/16 tag score] Encoding enc2 = InternalDetectEncoding( kCEDForceTags, // force text, text_length, url_hint, http_charset_hint, meta_charset_hint, encoding_hint, language_hint, corpus_type, ignore_7bit_mail_encodings, bytes_consumed, is_reliable, second_best_enc); if (destate.debug_data != NULL) { // Show winning encoding and dump PostScript char buff[32]; snprintf(buff, sizeof(buff), "=2 %s", MyEncodingName(enc2)); SetDetailsEncProb(&destate, 0, CompactEncDet::BackmapEncodingToRankedEncoding(enc2), buff); DumpDetail(&destate); } return enc2; } // If the detected encoding does not match default/hints, or if the hints // conflict with each other, mark as unreliable. This can be used to trigger // further scoring. // Three buckets of input documents; // ~19% of the web no hints, and top == 7bit, Latin1, or CP1252 // ~79% of the web one or more hints, all same encoding X and top == X // ~ 2% of the web one or more hints that are inconsistent Encoding top_enc = kMapToEncoding[destate.top_rankedencoding]; Encoding one_hint = destate.http_hint; if ((one_hint == UNKNOWN_ENCODING) && (destate.meta_hint != UNKNOWN_ENCODING)) { one_hint = destate.meta_hint; } if ((one_hint == UNKNOWN_ENCODING) && (destate.bom_hint != UNKNOWN_ENCODING)) { one_hint = destate.bom_hint; } bool found_compatible_encoding = true; if (one_hint == UNKNOWN_ENCODING) { // [~14% of the web] No hints, and top == 7bit, Latin1, or CP1252 if (!CompatibleEnc(ISO_8859_1, top_enc)) { found_compatible_encoding = false; // If there is nothing but a TLD hint and its top encoding matches, OK if ((destate.tld_hint != UNKNOWN_ENCODING) && CompatibleEnc(destate.tld_hint, top_enc)) { found_compatible_encoding = true; } } } else if (CompatibleEnc(one_hint, destate.http_hint) && CompatibleEnc(one_hint, destate.meta_hint) && CompatibleEnc(one_hint, destate.bom_hint)) { // [~83% of the web] One or more hints, all same encoding X and top == X if (!CompatibleEnc(one_hint, top_enc)) { // [~ 2% of the web] Oops, not the declared encoding found_compatible_encoding = false; } } else { // [~ 3% of the web] Two or more hints that are inconsistent one_hint = UNKNOWN_ENCODING; found_compatible_encoding = false; } // If we turned Latin1 into Latin2 or 7 via trigrams, don't fail it here if (destate.do_latin_trigrams) { if (CompatibleEnc(kMapToEncoding[F_Latin1], top_enc) || CompatibleEnc(kMapToEncoding[F_Latin2], top_enc) || CompatibleEnc(kMapToEncoding[F_CP1250], top_enc) || CompatibleEnc(kMapToEncoding[F_ISO_8859_13], top_enc)) { found_compatible_encoding = true; destate.reliable = true; } } // If top encoding is not compatible with the hints, but it is reliably // UTF-8, accept it anyway. // This will perform badly with mixed UTF-8 prefix plus another encoding in // the body if done too early, so we want to be rescanning. if (!found_compatible_encoding && destate.reliable && NoHintsCloseEnoughCompatible(top_enc) && (destate.next_interesting_pair[OtherPair] >= kStrongPairs) && CEDFlagRescanning(flags)) { found_compatible_encoding = true; } // Hold off on this so Rescan() can see if the original encoding was reliable //if (!found_compatible_encoding) { // destate.reliable = false; //} // If unreliable, try rescoring to separate some encodings if (!destate.reliable || !found_compatible_encoding) { top_enc = Rescore(top_enc, isrc, srctextlimit, &destate); } *second_best_enc = kMapToEncoding[destate.second_top_rankedencoding]; // If unreliable, and not already rescanning, // rescan middle of document to see if we can get a better // answer. Rescan is only worthwhile if there are ~200 bytes or more left, // since the detector takes as much as 96 bytes of bigrams to decide. // // CANNOT retry ISO-2022-xx HZ etc. because no declaration escape at the front // or we may land in the middle of some partial state. Skip them all. // if ((!destate.reliable || !found_compatible_encoding) && !CEDFlagRescanning(flags) && !SevenBitEncoding(top_enc)) { top_enc = Rescan(top_enc, isrc, src, srctextlimit, url_hint, http_charset_hint, meta_charset_hint, encoding_hint, language_hint, corpus_type, ignore_7bit_mail_encodings, &destate); } else { if (!found_compatible_encoding) { destate.reliable = false; } } if (destate.debug_data != NULL) { // Dump PostScript DumpDetail(&destate); } *bytes_consumed = src - isrc + 1; // We looked 1 byte beyond src *is_reliable = destate.reliable; return top_enc; } Encoding CompactEncDet::DetectEncoding( const char* text, int text_length, const char* url_hint, const char* http_charset_hint, const char* meta_charset_hint, const int encoding_hint, const Language language_hint, // User interface lang const TextCorpusType corpus_type, bool ignore_7bit_mail_encodings, int* bytes_consumed, bool* is_reliable) { if (FLAGS_ced_echo_input) { string temp(text, text_length); fprintf(stderr, "CompactEncDet::DetectEncoding()\n%s\n\n", temp.c_str()); } if (FLAGS_counts) { encdet_used = 0; rescore_used = 0; rescan_used = 0; robust_used = 0; looking_used = 0; doing_used = 0; ++encdet_used; } if (FLAGS_dirtsimple) { // Just count first 64KB bigram encoding probabilities for each encoding int robust_renc_list_len; // Number of active encodings int robust_renc_list[NUM_RANKEDENCODING]; // List of ranked encodings int robust_renc_probs[NUM_RANKEDENCODING]; // List of matching probs for (int i = 0; i < NUM_RANKEDENCODING; ++i) { robust_renc_list[i] = i; } robust_renc_list_len = NUM_RANKEDENCODING; RobustScan(text, text_length, robust_renc_list_len, robust_renc_list, robust_renc_probs); // Pick off best encoding int best_prob = -1; Encoding enc = UNKNOWN_ENCODING; for (int i = 0; i < robust_renc_list_len; ++i) { if (best_prob < robust_renc_probs[i]) { best_prob = robust_renc_probs[i]; enc = kMapToEncoding[robust_renc_list[i]]; } } *bytes_consumed = minint(text_length, (kMaxKBToRobustScan << 10)); *is_reliable = true; if (FLAGS_counts) { printf("CEDcounts "); while (encdet_used--) {printf("encdet ");} while (rescore_used--) {printf("rescore ");} while (rescan_used--) {printf("rescan ");} while (robust_used--) {printf("robust ");} while (looking_used--) {printf("looking ");} while (doing_used--) {printf("doing ");} printf("\n"); } return enc; } Encoding second_best_enc; Encoding enc = InternalDetectEncoding(kCEDNone, text, text_length, url_hint, http_charset_hint, meta_charset_hint, encoding_hint, language_hint, // User interface lang corpus_type, ignore_7bit_mail_encodings, bytes_consumed, is_reliable, &second_best_enc); if (FLAGS_counts) { printf("CEDcounts "); while (encdet_used--) {printf("encdet ");} while (rescore_used--) {printf("rescore ");} while (rescan_used--) {printf("rescan ");} while (robust_used--) {printf("robust ");} while (looking_used--) {printf("looking ");} while (doing_used--) {printf("doing ");} printf("\n"); } #if defined(HTML5_MODE) // Map all the Shift-JIS variants to Shift-JIS when used in Japanese locale. if (language_hint == JAPANESE && IsShiftJisOrVariant(enc)) { enc = JAPANESE_SHIFT_JIS; } // 7-bit encodings (except ISO-2022-JP), and some obscure encodings not // supported in WHATWG encoding standard are marked as ASCII to keep the raw // bytes intact. switch (enc) { case ISO_2022_KR: case ISO_2022_CN: case HZ_GB_2312: case UTF7: case UTF16LE: case UTF16BE: case CHINESE_EUC_DEC: case CHINESE_CNS: case CHINESE_BIG5_CP950: case JAPANESE_CP932: case MSFT_CP874: case TSCII: case TAMIL_MONO: case TAMIL_BI: case JAGRAN: case BHASKAR: case HTCHANAKYA: case BINARYENC: case UTF8UTF8: case TAM_ELANGO: case TAM_LTTMBARANI: case TAM_SHREE: case TAM_TBOOMIS: case TAM_TMNEWS: case TAM_WEBTAMIL: case KDDI_SHIFT_JIS: case DOCOMO_SHIFT_JIS: case SOFTBANK_SHIFT_JIS: case KDDI_ISO_2022_JP: case SOFTBANK_ISO_2022_JP: enc = ASCII_7BIT; break; default: break; } #endif return enc; } // Return top encoding hint for given string Encoding CompactEncDet::TopEncodingOfLangHint(const char* name) { string normalized_lang = MakeChar8(string(name)); int n = HintBinaryLookup8(kLangHintProbs, kLangHintProbsSize, normalized_lang.c_str()); if (n < 0) {return UNKNOWN_ENCODING;} // Charset is eight bytes, probability table is eight bytes int toprankenc = TopCompressedProb((const char *)&kLangHintProbs[n].key_prob[kMaxLangKey], kMaxLangVector); return kMapToEncoding[toprankenc]; } // Return top encoding hint for given string Encoding CompactEncDet::TopEncodingOfTLDHint(const char* name) { string normalized_tld = MakeChar4(string(name)); int n = HintBinaryLookup4(kTLDHintProbs, kTLDHintProbsSize, normalized_tld.c_str()); if (n < 0) {return UNKNOWN_ENCODING;} // TLD is four bytes, probability table is 12 bytes int toprankenc = TopCompressedProb((const char *)&kTLDHintProbs[n].key_prob[kMaxTldKey], kMaxTldVector); return kMapToEncoding[toprankenc]; } // Return top encoding hint for given string Encoding CompactEncDet::TopEncodingOfCharsetHint(const char* name) { string normalized_charset = MakeChar44(string(name)); int n = HintBinaryLookup8(kCharsetHintProbs, kCharsetHintProbsSize, normalized_charset.c_str()); if (n < 0) {return UNKNOWN_ENCODING;} // Charset is eight bytes, probability table is eight bytes int toprankenc = TopCompressedProb((const char *)&kCharsetHintProbs[n].key_prob[kMaxCharsetKey], kMaxCharsetVector); return kMapToEncoding[toprankenc]; } const char* CompactEncDet::Version(void) { return kVersion; }