#include "config.h" #include #include #include #include #include #include #include "kann.h" int kann_verbose = 3; /****************************************** *** @@BASIC: fundamental KANN routines *** ******************************************/ static void kad_ext_collate(int n, kad_node_t **a, float **_x, float **_g, float **_c) { int i, j, k, l, n_var; float *x, *g, *c; n_var = kad_size_var(n, a); x = *_x = (float*)realloc(*_x, n_var * sizeof(float)); g = *_g = (float*)realloc(*_g, n_var * sizeof(float)); c = *_c = (float*)realloc(*_c, kad_size_const(n, a) * sizeof(float)); memset(g, 0, n_var * sizeof(float)); for (i = j = k = 0; i < n; ++i) { kad_node_t *v = a[i]; if (kad_is_var(v)) { l = kad_len(v); memcpy(&x[j], v->x, l * sizeof(float)); free(v->x); v->x = &x[j]; v->g = &g[j]; j += l; } else if (kad_is_const(v)) { l = kad_len(v); memcpy(&c[k], v->x, l * sizeof(float)); free(v->x); v->x = &c[k]; k += l; } } } static void kad_ext_sync(int n, kad_node_t **a, float *x, float *g, float *c) { int i, j, k; for (i = j = k = 0; i < n; ++i) { kad_node_t *v = a[i]; if (kad_is_var(v)) { v->x = &x[j]; v->g = &g[j]; j += kad_len(v); } else if (kad_is_const(v)) { v->x = &c[k]; k += kad_len(v); } } } kann_t *kann_new(kad_node_t *cost, int n_rest, ...) { kann_t *a; int i, n_roots = 1 + n_rest, has_pivot = 0, has_recur = 0; kad_node_t **roots; va_list ap; if (cost->n_d != 0) return 0; va_start(ap, n_rest); roots = (kad_node_t**)malloc((n_roots + 1) * sizeof(kad_node_t*)); for (i = 0; i < n_rest; ++i) roots[i] = va_arg(ap, kad_node_t*); roots[i++] = cost; va_end(ap); cost->ext_flag |= KANN_F_COST; a = (kann_t*)calloc(1, sizeof(kann_t)); a->v = kad_compile_array(&a->n, n_roots, roots); for (i = 0; i < a->n; ++i) { if (a->v[i]->pre) has_recur = 1; if (kad_is_pivot(a->v[i])) has_pivot = 1; } if (has_recur && !has_pivot) { /* an RNN that doesn't have a pivot; then add a pivot on top of cost and recompile */ cost->ext_flag &= ~KANN_F_COST; roots[n_roots-1] = cost = kad_avg(1, &cost), cost->ext_flag |= KANN_F_COST; free(a->v); a->v = kad_compile_array(&a->n, n_roots, roots); } kad_ext_collate(a->n, a->v, &a->x, &a->g, &a->c); free(roots); return a; } kann_t *kann_clone(kann_t *a, int batch_size) { kann_t *b; b = (kann_t*)calloc(1, sizeof(kann_t)); b->n = a->n; b->v = kad_clone(a->n, a->v, batch_size); kad_ext_collate(b->n, b->v, &b->x, &b->g, &b->c); return b; } kann_t *kann_unroll_array(kann_t *a, int *len) { kann_t *b; b = (kann_t*)calloc(1, sizeof(kann_t)); b->x = a->x, b->g = a->g, b->c = a->c; /* these arrays are shared */ b->v = kad_unroll(a->n, a->v, &b->n, len); return b; } kann_t *kann_unroll(kann_t *a, ...) { kann_t *b; va_list ap; int i, n_pivots, *len; n_pivots = kad_n_pivots(a->n, a->v); len = (int*)calloc(n_pivots, sizeof(int)); va_start(ap, a); for (i = 0; i < n_pivots; ++i) len[i] = va_arg(ap, int); va_end(ap); b = kann_unroll_array(a, len); free(len); return b; } void kann_delete_unrolled(kann_t *a) { if (a && a->mt) kann_mt(a, 0, 0); if (a && a->v) kad_delete(a->n, a->v); free(a); } void kann_delete(kann_t *a) { if (a == 0) return; free(a->x); free(a->g); free(a->c); kann_delete_unrolled(a); } static void kann_switch_core(kann_t *a, int is_train) { int i; for (i = 0; i < a->n; ++i) if (a->v[i]->op == 12 && a->v[i]->n_child == 2) *(int32_t*)a->v[i]->ptr = !!is_train; } #define chk_flg(flag, mask) ((mask) == 0 || ((flag) & (mask))) #define chk_lbl(label, query) ((query) == 0 || (label) == (query)) int kann_find(const kann_t *a, uint32_t ext_flag, int32_t ext_label) { int i, k, r = -1; for (i = k = 0; i < a->n; ++i) if (chk_flg(a->v[i]->ext_flag, ext_flag) && chk_lbl(a->v[i]->ext_label, ext_label)) ++k, r = i; return k == 1? r : k == 0? -1 : -2; } int kann_feed_bind(kann_t *a, uint32_t ext_flag, int32_t ext_label, float **x) { int i, k; if (x == 0) return 0; for (i = k = 0; i < a->n; ++i) if (kad_is_feed(a->v[i]) && chk_flg(a->v[i]->ext_flag, ext_flag) && chk_lbl(a->v[i]->ext_label, ext_label)) a->v[i]->x = x[k++]; return k; } int kann_feed_dim(const kann_t *a, uint32_t ext_flag, int32_t ext_label) { int i, k, n = 0; for (i = k = 0; i < a->n; ++i) if (kad_is_feed(a->v[i]) && chk_flg(a->v[i]->ext_flag, ext_flag) && chk_lbl(a->v[i]->ext_label, ext_label)) ++k, n = a->v[i]->n_d > 1? kad_len(a->v[i]) / a->v[i]->d[0] : a->v[i]->n_d == 1? a->v[i]->d[0] : 1; return k == 1? n : k == 0? -1 : -2; } static float kann_cost_core(kann_t *a, int cost_label, int cal_grad) { int i_cost; float cost; i_cost = kann_find(a, KANN_F_COST, cost_label); assert(i_cost >= 0); cost = *kad_eval_at(a->n, a->v, i_cost); if (cal_grad) kad_grad(a->n, a->v, i_cost); return cost; } int kann_eval(kann_t *a, uint32_t ext_flag, int ext_label) { int i, k; for (i = k = 0; i < a->n; ++i) if (chk_flg(a->v[i]->ext_flag, ext_flag) && chk_lbl(a->v[i]->ext_label, ext_label)) ++k, a->v[i]->tmp = 1; kad_eval_marked(a->n, a->v); return k; } void kann_rnn_start(kann_t *a) { int i; kann_set_batch_size(a, 1); for (i = 0; i < a->n; ++i) { kad_node_t *p = a->v[i]; if (p->pre) { /* NB: BE CAREFUL of the interaction between kann_rnn_start() and kann_set_batch_size() */ kad_node_t *q = p->pre; if (q->x) memcpy(p->x, q->x, kad_len(p) * sizeof(float)); else memset(p->x, 0, kad_len(p) * sizeof(float)); if (q->n_child > 0) free(q->x); q->x = p->x; } } } void kann_rnn_end(kann_t *a) { int i; kad_ext_sync(a->n, a->v, a->x, a->g, a->c); for (i = 0; i < a->n; ++i) if (a->v[i]->pre && a->v[i]->pre->n_child > 0) a->v[i]->pre->x = (float*)calloc(kad_len(a->v[i]->pre), sizeof(float)); } static int kann_class_error_core(const kann_t *ann, int *base) { int i, j, k, m, n, off, n_err = 0; for (i = 0, *base = 0; i < ann->n; ++i) { kad_node_t *p = ann->v[i]; if (((p->op == 13 && (p->n_child == 2 || p->n_child == 3)) || (p->op == 22 && p->n_child == 2)) && p->n_d == 0) { /* ce_bin or ce_multi */ kad_node_t *x = p->child[0], *t = p->child[1]; n = t->d[t->n_d - 1], m = kad_len(t) / n; for (j = off = 0; j < m; ++j, off += n) { float t_sum = 0.0f, t_min = 1.0f, t_max = 0.0f, x_max = 0.0f, x_min = 1.0f; int x_max_k = -1, t_max_k = -1; for (k = 0; k < n; ++k) { float xk = x->x[off+k], tk = t->x[off+k]; t_sum += tk; t_min = t_min < tk? t_min : tk; x_min = x_min < xk? x_min : xk; if (t_max < tk) t_max = tk, t_max_k = k; if (x_max < xk) x_max = xk, x_max_k = k; } if (t_sum - 1.0f == 0 && t_min >= 0.0f && x_min >= 0.0f && x_max <= 1.0f) { ++(*base); n_err += (x_max_k != t_max_k); } } } } return n_err; } /************************* * @@MT: multi-threading * *************************/ #ifdef HAVE_PTHREAD #include struct mtaux_t; typedef struct { /* per-worker data */ kann_t *a; float cost; int action; pthread_t tid; struct mtaux_t *g; } mtaux1_t; typedef struct mtaux_t { /* cross-worker data */ int n_threads, max_batch_size; int cal_grad, cost_label, eval_out; volatile int n_idle; /* we will be busy waiting on this, so volatile necessary */ pthread_mutex_t mtx; pthread_cond_t cv; mtaux1_t *mt; } mtaux_t; static void *mt_worker(void *data) /* pthread worker */ { mtaux1_t *mt1 = (mtaux1_t*)data; mtaux_t *mt = mt1->g; for (;;) { int action; pthread_mutex_lock(&mt->mtx); mt1->action = 0; ++mt->n_idle; while (mt1->action == 0) pthread_cond_wait(&mt->cv, &mt->mtx); action = mt1->action; pthread_mutex_unlock(&mt->mtx); if (action == -1) break; if (mt->eval_out) kann_eval(mt1->a, KANN_F_OUT, 0); else mt1->cost = kann_cost_core(mt1->a, mt->cost_label, mt->cal_grad); } pthread_exit(0); } static void mt_destroy(mtaux_t *mt) /* de-allocate an entire mtaux_t struct */ { int i; pthread_mutex_lock(&mt->mtx); mt->n_idle = 0; for (i = 1; i < mt->n_threads; ++i) mt->mt[i].action = -1; pthread_cond_broadcast(&mt->cv); pthread_mutex_unlock(&mt->mtx); for (i = 1; i < mt->n_threads; ++i) pthread_join(mt->mt[i].tid, 0); for (i = 0; i < mt->n_threads; ++i) kann_delete(mt->mt[i].a); free(mt->mt); pthread_cond_destroy(&mt->cv); pthread_mutex_destroy(&mt->mtx); free(mt); } void kann_mt(kann_t *ann, int n_threads, int max_batch_size) { mtaux_t *mt; int i, k; if (n_threads <= 1) { if (ann->mt) mt_destroy((mtaux_t*)ann->mt); ann->mt = 0; return; } if (n_threads > max_batch_size) n_threads = max_batch_size; if (n_threads <= 1) return; mt = (mtaux_t*)calloc(1, sizeof(mtaux_t)); mt->n_threads = n_threads, mt->max_batch_size = max_batch_size; pthread_mutex_init(&mt->mtx, 0); pthread_cond_init(&mt->cv, 0); mt->mt = (mtaux1_t*)calloc(n_threads, sizeof(mtaux1_t)); for (i = k = 0; i < n_threads; ++i) { int size = (max_batch_size - k) / (n_threads - i); mt->mt[i].a = kann_clone(ann, size); mt->mt[i].g = mt; k += size; } for (i = 1; i < n_threads; ++i) pthread_create(&mt->mt[i].tid, 0, mt_worker, &mt->mt[i]); while (mt->n_idle < n_threads - 1); /* busy waiting until all threads in sync */ ann->mt = mt; } static void mt_kickoff(kann_t *a, int cost_label, int cal_grad, int eval_out) { mtaux_t *mt = (mtaux_t*)a->mt; int i, j, k, B, n_var; B = kad_sync_dim(a->n, a->v, -1); /* get the current batch size */ assert(B <= mt->max_batch_size); /* TODO: can be relaxed */ n_var = kann_size_var(a); pthread_mutex_lock(&mt->mtx); mt->cost_label = cost_label, mt->cal_grad = cal_grad, mt->eval_out = eval_out; for (i = k = 0; i < mt->n_threads; ++i) { int size = (B - k) / (mt->n_threads - i); for (j = 0; j < a->n; ++j) if (kad_is_feed(a->v[j])) mt->mt[i].a->v[j]->x = &a->v[j]->x[k * kad_len(a->v[j]) / a->v[j]->d[0]]; kad_sync_dim(mt->mt[i].a->n, mt->mt[i].a->v, size); /* TODO: we can point ->x to internal nodes, too */ k += size; memcpy(mt->mt[i].a->x, a->x, n_var * sizeof(float)); mt->mt[i].action = 1; } mt->n_idle = 0; pthread_cond_broadcast(&mt->cv); pthread_mutex_unlock(&mt->mtx); } float kann_cost(kann_t *a, int cost_label, int cal_grad) { mtaux_t *mt = (mtaux_t*)a->mt; int i, j, B, k, n_var; float cost; if (mt == 0) return kann_cost_core(a, cost_label, cal_grad); B = kad_sync_dim(a->n, a->v, -1); /* get the current batch size */ n_var = kann_size_var(a); mt_kickoff(a, cost_label, cal_grad, 0); mt->mt[0].cost = kann_cost_core(mt->mt[0].a, cost_label, cal_grad); while (mt->n_idle < mt->n_threads - 1); /* busy waiting until all threads in sync */ memset(a->g, 0, n_var * sizeof(float)); /* TODO: check if this is necessary when cal_grad is false */ for (i = k = 0, cost = 0.0f; i < mt->n_threads; ++i) { int size = (B - k) / (mt->n_threads - i); cost += mt->mt[i].cost * size / B; kad_saxpy(n_var, (float)size / B, mt->mt[i].a->g, a->g); k += size; } for (j = 0; j < a->n; ++j) { /* copy values back at recurrent nodes (needed by textgen; TODO: temporary solution) */ kad_node_t *p = a->v[j]; if (p->pre && p->n_d >= 2 && p->d[0] == B) { for (i = k = 0; i < mt->n_threads; ++i) { kad_node_t *q = mt->mt[i].a->v[j]; memcpy(&p->x[k], q->x, kad_len(q) * sizeof(float)); k += kad_len(q); } } } return cost; } int kann_eval_out(kann_t *a) { mtaux_t *mt = (mtaux_t*)a->mt; int j, B, n_eval; if (mt == 0) return kann_eval(a, KANN_F_OUT, 0); B = kad_sync_dim(a->n, a->v, -1); /* get the current batch size */ mt_kickoff(a, 0, 0, 1); n_eval = kann_eval(mt->mt[0].a, KANN_F_OUT, 0); while (mt->n_idle < mt->n_threads - 1); /* busy waiting until all threads in sync */ for (j = 0; j < a->n; ++j) { /* copy output values back */ kad_node_t *p = a->v[j]; if (p->ext_flag & KANN_F_OUT) { int i, t, k, d0 = p->d[0] / B, d1 = 1; /* for RNN, p->d[0] may equal unroll_len * batch_size */ assert(p->d[0] % B == 0); for (i = 1; i < p->n_d; ++i) d1 *= p->d[i]; for (i = 0; i < d0; ++i) { for (t = k = 0; t < mt->n_threads; ++t) { /* similar to the forward pass of kad_op_concat() */ kad_node_t *q = mt->mt[t].a->v[j]; int size = q->d[0] / d0; memcpy(&p->x[(i * B + k) * d1], &q->x[i * size * d1], size * d1 * sizeof(float)); k += size; } } } } return n_eval; } int kann_class_error(const kann_t *ann, int *base) { mtaux_t *mt = (mtaux_t*)ann->mt; int i, n_err = 0, b = 0; if (mt == 0) return kann_class_error_core(ann, base); for (i = 0; i < mt->n_threads; ++i) { n_err += kann_class_error_core(mt->mt[i].a, &b); *base += b; } return n_err; } void kann_switch(kann_t *ann, int is_train) { mtaux_t *mt = (mtaux_t*)ann->mt; int i; if (mt == 0) { kann_switch_core(ann, is_train); return; } for (i = 0; i < mt->n_threads; ++i) kann_switch_core(mt->mt[i].a, is_train); } #else void kann_mt(kann_t *ann, int n_threads, int max_batch_size) {} float kann_cost(kann_t *a, int cost_label, int cal_grad) { return kann_cost_core(a, cost_label, cal_grad); } int kann_eval_out(kann_t *a) { return kann_eval(a, KANN_F_OUT, 0); } int kann_class_error(const kann_t *a, int *base) { return kann_class_error_core(a, base); } void kann_switch(kann_t *ann, int is_train) { return kann_switch_core(ann, is_train); } #endif /*********************** *** @@IO: model I/O *** ***********************/ #define KANN_MAGIC "KAN\1" void kann_save_fp(FILE *fp, kann_t *ann) { kann_set_batch_size(ann, 1); fwrite(KANN_MAGIC, 1, 4, fp); kad_save(fp, ann->n, ann->v); fwrite(ann->x, sizeof(float), kann_size_var(ann), fp); fwrite(ann->c, sizeof(float), kann_size_const(ann), fp); } void kann_save(const char *fn, kann_t *ann) { FILE *fp; fp = fn && strcmp(fn, "-")? fopen(fn, "wb") : stdout; kann_save_fp(fp, ann); fclose(fp); } kann_t *kann_load_fp(FILE *fp) { char magic[4]; kann_t *ann; int n_var, n_const; (void) !fread(magic, 1, 4, fp); if (strncmp(magic, KANN_MAGIC, 4) != 0) { fclose(fp); return 0; } ann = (kann_t*)calloc(1, sizeof(kann_t)); ann->v = kad_load(fp, &ann->n); n_var = kad_size_var(ann->n, ann->v); n_const = kad_size_const(ann->n, ann->v); ann->x = (float*)malloc(n_var * sizeof(float)); ann->g = (float*)calloc(n_var, sizeof(float)); ann->c = (float*)malloc(n_const * sizeof(float)); (void) !fread(ann->x, sizeof(float), n_var, fp); (void) !fread(ann->c, sizeof(float), n_const, fp); kad_ext_sync(ann->n, ann->v, ann->x, ann->g, ann->c); return ann; } kann_t *kann_load(const char *fn) { FILE *fp; kann_t *ann; fp = fn && strcmp(fn, "-")? fopen(fn, "rb") : stdin; ann = kann_load_fp(fp); fclose(fp); return ann; } /********************************************** *** @@LAYER: layers and model generation *** **********************************************/ /********** General but more complex APIs **********/ kad_node_t *kann_new_leaf_array(int *offset, kad_node_p *par, uint8_t flag, float x0_01, int n_d, int32_t d[KAD_MAX_DIM]) { int i, len, off = offset && par? *offset : -1; kad_node_t *p; if (off >= 0 && par[off]) return par[(*offset)++]; p = (kad_node_t*)calloc(1, sizeof(kad_node_t)); p->n_d = n_d, p->flag = flag; memcpy(p->d, d, n_d * sizeof(int32_t)); len = kad_len(p); p->x = (float*)calloc(len, sizeof(float)); if (p->n_d <= 1) { for (i = 0; i < len; ++i) p->x[i] = x0_01; } else { double sdev_inv; sdev_inv = 1.0 / sqrt((double)len / p->d[0]); for (i = 0; i < len; ++i) p->x[i] = (float)(kad_drand_normal(0) * sdev_inv); } if (off >= 0) par[off] = p, ++(*offset); return p; } kad_node_t *kann_new_leaf2(int *offset, kad_node_p *par, uint8_t flag, float x0_01, int n_d, ...) { int32_t i, d[KAD_MAX_DIM]; va_list ap; va_start(ap, n_d); for (i = 0; i < n_d; ++i) d[i] = va_arg(ap, int); va_end(ap); return kann_new_leaf_array(offset, par, flag, x0_01, n_d, d); } kad_node_t *kann_layer_dense2(int *offset, kad_node_p *par, kad_node_t *in, int n1) { int n0; kad_node_t *w, *b; n0 = in->n_d >= 2? kad_len(in) / in->d[0] : kad_len(in); w = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n0); b = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 1, n1); return kad_add(kad_cmul(in, w), b); } kad_node_t *kann_layer_dropout2(int *offset, kad_node_p *par, kad_node_t *t, float r) { kad_node_t *x[2], *cr; cr = kann_new_leaf2(offset, par, KAD_CONST, r, 0); x[0] = t, x[1] = kad_dropout(t, cr); return kad_switch(2, x); } kad_node_t *kann_layer_layernorm2(int *offset, kad_node_t **par, kad_node_t *in) { int n0; kad_node_t *alpha, *beta; n0 = in->n_d >= 2? kad_len(in) / in->d[0] : kad_len(in); alpha = kann_new_leaf2(offset, par, KAD_VAR, 1.0f, 1, n0); beta = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 1, n0); return kad_add(kad_mul(kad_stdnorm(in), alpha), beta); } static inline kad_node_t *cmul_norm2(int *offset, kad_node_t **par, kad_node_t *x, kad_node_t *w, int use_norm) { return use_norm? kann_layer_layernorm2(offset, par, kad_cmul(x, w)) : kad_cmul(x, w); } kad_node_t *kann_layer_rnn2(int *offset, kad_node_t **par, kad_node_t *in, kad_node_t *h0, int rnn_flag) { int n0, n1 = h0->d[h0->n_d-1], use_norm = !!(rnn_flag & KANN_RNN_NORM); kad_node_t *t, *w, *u, *b, *out; u = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n1); b = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 1, n1); t = cmul_norm2(offset, par, h0, u, use_norm); if (in) { n0 = in->n_d >= 2? kad_len(in) / in->d[0] : kad_len(in); w = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n0); t = kad_add(cmul_norm2(offset, par, in, w, use_norm), t); } out = kad_tanh(kad_add(t, b)); out->pre = h0; return out; } kad_node_t *kann_layer_gru2(int *offset, kad_node_t **par, kad_node_t *in, kad_node_t *h0, int rnn_flag) { int n0 = 0, n1 = h0->d[h0->n_d-1], use_norm = !!(rnn_flag & KANN_RNN_NORM); kad_node_t *t, *r, *z, *w, *u, *b, *s, *out; if (in) n0 = in->n_d >= 2? kad_len(in) / in->d[0] : kad_len(in); /* z = sigm(x_t * W_z + h_{t-1} * U_z + b_z) */ u = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n1); b = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 1, n1); t = cmul_norm2(offset, par, h0, u, use_norm); if (in) { w = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n0); t = kad_add(cmul_norm2(offset, par, in, w, use_norm), t); } z = kad_sigm(kad_add(t, b)); /* r = sigm(x_t * W_r + h_{t-1} * U_r + b_r) */ u = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n1); b = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 1, n1); t = cmul_norm2(offset, par, h0, u, use_norm); if (in) { w = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n0); t = kad_add(cmul_norm2(offset, par, in, w, use_norm), t); } r = kad_sigm(kad_add(t, b)); /* s = tanh(x_t * W_s + (h_{t-1} # r) * U_s + b_s) */ u = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n1); b = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 1, n1); t = cmul_norm2(offset, par, kad_mul(r, h0), u, use_norm); if (in) { w = kann_new_leaf2(offset, par, KAD_VAR, 0.0f, 2, n1, n0); t = kad_add(cmul_norm2(offset, par, in, w, use_norm), t); } s = kad_tanh(kad_add(t, b)); /* h_t = z # h_{t-1} + (1 - z) # s */ out = kad_add(kad_mul(kad_1minus(z), s), kad_mul(z, h0)); out->pre = h0; return out; } /********** APIs without offset & par **********/ kad_node_t *kann_new_leaf(uint8_t flag, float x0_01, int n_d, ...) { int32_t i, d[KAD_MAX_DIM]; va_list ap; va_start(ap, n_d); for (i = 0; i < n_d; ++i) d[i] = va_arg(ap, int); va_end(ap); return kann_new_leaf_array(0, 0, flag, x0_01, n_d, d); } kad_node_t *kann_new_scalar(uint8_t flag, float x) { return kann_new_leaf(flag, x, 0); } kad_node_t *kann_new_weight(int n_row, int n_col) { return kann_new_leaf(KAD_VAR, 0.0f, 2, n_row, n_col); } kad_node_t *kann_new_vec(int n, float x) { return kann_new_leaf(KAD_VAR, x, 1, n); } kad_node_t *kann_new_bias(int n) { return kann_new_vec(n, 0.0f); } kad_node_t *kann_new_weight_conv2d(int n_out, int n_in, int k_row, int k_col) { return kann_new_leaf(KAD_VAR, 0.0f, 4, n_out, n_in, k_row, k_col); } kad_node_t *kann_new_weight_conv1d(int n_out, int n_in, int kernel_len) { return kann_new_leaf(KAD_VAR, 0.0f, 3, n_out, n_in, kernel_len); } kad_node_t *kann_layer_input(int n1) { kad_node_t *t; t = kad_feed(2, 1, n1); t->ext_flag |= KANN_F_IN; return t; } kad_node_t *kann_layer_dense(kad_node_t *in, int n1) { return kann_layer_dense2(0, 0, in, n1); } kad_node_t *kann_layer_dropout(kad_node_t *t, float r) { return kann_layer_dropout2(0, 0, t, r); } kad_node_t *kann_layer_layernorm(kad_node_t *in) { return kann_layer_layernorm2(0, 0, in); } kad_node_t *kann_layer_rnn(kad_node_t *in, int n1, int rnn_flag) { kad_node_t *h0; h0 = (rnn_flag & KANN_RNN_VAR_H0)? kad_var(0, 0, 2, 1, n1) : kad_const(0, 2, 1, n1); h0->x = (float*)calloc(n1, sizeof(float)); return kann_layer_rnn2(0, 0, in, h0, rnn_flag); } kad_node_t *kann_layer_gru(kad_node_t *in, int n1, int rnn_flag) { kad_node_t *h0; h0 = (rnn_flag & KANN_RNN_VAR_H0)? kad_var(0, 0, 2, 1, n1) : kad_const(0, 2, 1, n1); h0->x = (float*)calloc(n1, sizeof(float)); return kann_layer_gru2(0, 0, in, h0, rnn_flag); } static kad_node_t *kann_cmul_norm(kad_node_t *x, kad_node_t *w) { return kann_layer_layernorm(kad_cmul(x, w)); } kad_node_t *kann_layer_lstm(kad_node_t *in, int n1, int rnn_flag) { int n0; kad_node_t *i, *f, *o, *g, *w, *u, *b, *h0, *c0, *c, *out; kad_node_t *(*cmul)(kad_node_t*, kad_node_t*) = (rnn_flag & KANN_RNN_NORM)? kann_cmul_norm : kad_cmul; n0 = in->n_d >= 2? kad_len(in) / in->d[0] : kad_len(in); h0 = (rnn_flag & KANN_RNN_VAR_H0)? kad_var(0, 0, 2, 1, n1) : kad_const(0, 2, 1, n1); h0->x = (float*)calloc(n1, sizeof(float)); c0 = (rnn_flag & KANN_RNN_VAR_H0)? kad_var(0, 0, 2, 1, n1) : kad_const(0, 2, 1, n1); c0->x = (float*)calloc(n1, sizeof(float)); /* i = sigm(x_t * W_i + h_{t-1} * U_i + b_i) */ w = kann_new_weight(n1, n0); u = kann_new_weight(n1, n1); b = kann_new_bias(n1); i = kad_sigm(kad_add(kad_add(cmul(in, w), cmul(h0, u)), b)); /* f = sigm(x_t * W_f + h_{t-1} * U_f + b_f) */ w = kann_new_weight(n1, n0); u = kann_new_weight(n1, n1); b = kann_new_vec(n1, 1.0f); /* see Jozefowicz et al on using a large bias */ f = kad_sigm(kad_add(kad_add(cmul(in, w), cmul(h0, u)), b)); /* o = sigm(x_t * W_o + h_{t-1} * U_o + b_o) */ w = kann_new_weight(n1, n0); u = kann_new_weight(n1, n1); b = kann_new_bias(n1); o = kad_sigm(kad_add(kad_add(cmul(in, w), cmul(h0, u)), b)); /* g = tanh(x_t * W_g + h_{t-1} * U_g + b_g) */ w = kann_new_weight(n1, n0); u = kann_new_weight(n1, n1); b = kann_new_bias(n1); g = kad_tanh(kad_add(kad_add(cmul(in, w), cmul(h0, u)), b)); /* c_t = c_{t-1} # f + g # i */ c = kad_add(kad_mul(f, c0), kad_mul(g, i)); /* can't be kad_mul(c0, f)!!! */ c->pre = c0; /* h_t = tanh(c_t) # o */ if (rnn_flag & KANN_RNN_NORM) c = kann_layer_layernorm(c); /* see Ba et al (2016) about how to apply layer normalization to LSTM */ out = kad_mul(kad_tanh(c), o); out->pre = h0; return out; } kad_node_t *kann_layer_conv2d(kad_node_t *in, int n_flt, int k_rows, int k_cols, int stride_r, int stride_c, int pad_r, int pad_c) { kad_node_t *w; w = kann_new_weight_conv2d(n_flt, in->d[1], k_rows, k_cols); return kad_conv2d(in, w, stride_r, stride_c, pad_r, pad_c); } kad_node_t *kann_layer_conv1d(kad_node_t *in, int n_flt, int k_size, int stride, int pad) { kad_node_t *w; w = kann_new_weight_conv1d(n_flt, in->d[1], k_size); return kad_conv1d(in, w, stride, pad); } kad_node_t *kann_layer_cost(kad_node_t *t, int n_out, int cost_type) { kad_node_t *cost = 0, *truth = 0; assert(cost_type == KANN_C_CEB || cost_type == KANN_C_CEM || cost_type == KANN_C_CEB_NEG || cost_type == KANN_C_MSE); t = kann_layer_dense(t, n_out); truth = kad_feed(2, 1, n_out), truth->ext_flag |= KANN_F_TRUTH; if (cost_type == KANN_C_MSE) { cost = kad_mse(t, truth); } else if (cost_type == KANN_C_CEB) { t = kad_sigm(t); cost = kad_ce_bin(t, truth); } else if (cost_type == KANN_C_CEB_NEG) { t = kad_tanh(t); cost = kad_ce_bin_neg(t, truth); } else if (cost_type == KANN_C_CEM) { t = kad_softmax(t); cost = kad_ce_multi(t, truth); } else { assert (0); } t->ext_flag |= KANN_F_OUT; cost->ext_flag |= KANN_F_COST; return cost; } void kann_shuffle(int n, int *s) { int i, j, t; for (i = 0; i < n; ++i) s[i] = i; for (i = n; i > 0; --i) { j = (int)(i * kad_drand(0)); t = s[j], s[j] = s[i-1], s[i-1] = t; } } /*************************** *** @@MIN: minimization *** ***************************/ #ifdef __SSE__ #include void kann_RMSprop(int n, float h0, const float *h, float decay, const float *g, float *t, float *r) { int i, n4 = n>>2<<2; __m128 vh, vg, vr, vt, vd, vd1, tmp, vtiny; vh = _mm_set1_ps(h0); vd = _mm_set1_ps(decay); vd1 = _mm_set1_ps(1.0f - decay); vtiny = _mm_set1_ps(1e-6f); for (i = 0; i < n4; i += 4) { vt = _mm_loadu_ps(&t[i]); vr = _mm_loadu_ps(&r[i]); vg = _mm_loadu_ps(&g[i]); if (h) vh = _mm_loadu_ps(&h[i]); vr = _mm_add_ps(_mm_mul_ps(vd1, _mm_mul_ps(vg, vg)), _mm_mul_ps(vd, vr)); _mm_storeu_ps(&r[i], vr); tmp = _mm_sub_ps(vt, _mm_mul_ps(_mm_mul_ps(vh, _mm_rsqrt_ps(_mm_add_ps(vtiny, vr))), vg)); _mm_storeu_ps(&t[i], tmp); } for (; i < n; ++i) { r[i] = (1. - decay) * g[i] * g[i] + decay * r[i]; t[i] -= (h? h[i] : h0) / sqrtf(1e-6f + r[i]) * g[i]; } } #else void kann_RMSprop(int n, float h0, const float *h, float decay, const float *g, float *t, float *r) { int i; for (i = 0; i < n; ++i) { float lr = h? h[i] : h0; r[i] = (1.0f - decay) * g[i] * g[i] + decay * r[i]; t[i] -= lr / sqrtf(1e-6f + r[i]) * g[i]; } } #endif float kann_grad_clip(float thres, int n, float *g) { int i; double s2 = 0.0; for (i = 0; i < n; ++i) s2 += g[i] * g[i]; s2 = sqrt(s2); if (s2 > thres) for (i = 0, s2 = 1.0 / s2; i < n; ++i) g[i] *= (float)s2; return (float)s2 / thres; } /**************************************************************** *** @@XY: simpler API for network with a single input/output *** ****************************************************************/ int kann_train_fnn1(kann_t *ann, float lr, int mini_size, int max_epoch, int max_drop_streak, float frac_val, int n, float **_x, float **_y, kann_train_cb cb, void *ud) { int i, j, *shuf, n_train, n_val, n_in, n_out, n_var, n_const, drop_streak = 0, min_set = 0; float **x, **y, *x1, *y1, *r, min_val_cost = FLT_MAX, *min_x, *min_c; n_in = kann_dim_in(ann); n_out = kann_dim_out(ann); if (n_in < 0 || n_out < 0) return -1; n_var = kann_size_var(ann); n_const = kann_size_const(ann); r = (float*)calloc(n_var, sizeof(float)); shuf = (int*)malloc(n * sizeof(int)); x = (float**)malloc(n * sizeof(float*)); y = (float**)malloc(n * sizeof(float*)); kann_shuffle(n, shuf); for (j = 0; j < n; ++j) x[j] = _x[shuf[j]], y[j] = _y[shuf[j]]; n_val = (int)(n * frac_val); n_train = n - n_val; min_x = (float*)malloc(n_var * sizeof(float)); min_c = (float*)malloc(n_const * sizeof(float)); x1 = (float*)malloc(n_in * mini_size * sizeof(float)); y1 = (float*)malloc(n_out * mini_size * sizeof(float)); kann_feed_bind(ann, KANN_F_IN, 0, &x1); kann_feed_bind(ann, KANN_F_TRUTH, 0, &y1); for (i = 0; i < max_epoch; ++i) { int n_proc = 0, n_train_err = 0, n_val_err = 0, n_train_base = 0, n_val_base = 0; double train_cost = 0.0, val_cost = 0.0; kann_shuffle(n_train, shuf); kann_switch(ann, 1); while (n_proc < n_train) { int b, c, ms = n_train - n_proc < mini_size? n_train - n_proc : mini_size; for (b = 0; b < ms; ++b) { memcpy(&x1[b*n_in], x[shuf[n_proc+b]], n_in * sizeof(float)); memcpy(&y1[b*n_out], y[shuf[n_proc+b]], n_out * sizeof(float)); } kann_set_batch_size(ann, ms); train_cost += kann_cost(ann, 0, 1) * ms; c = kann_class_error(ann, &b); n_train_err += c, n_train_base += b; kann_RMSprop(n_var, lr, 0, 0.9f, ann->g, ann->x, r); n_proc += ms; } train_cost /= n_train; kann_switch(ann, 0); n_proc = 0; while (n_proc < n_val) { int b, c, ms = n_val - n_proc < mini_size? n_val - n_proc : mini_size; for (b = 0; b < ms; ++b) { memcpy(&x1[b*n_in], x[n_train+n_proc+b], n_in * sizeof(float)); memcpy(&y1[b*n_out], y[n_train+n_proc+b], n_out * sizeof(float)); } kann_set_batch_size(ann, ms); val_cost += kann_cost(ann, 0, 0) * ms; c = kann_class_error(ann, &b); n_val_err += c, n_val_base += b; n_proc += ms; } if (n_val > 0) val_cost /= n_val; if (cb) { cb(i + 1, train_cost, val_cost, ud); #if 0 fprintf(stderr, "epoch: %d; training cost: %g", i+1, train_cost); if (n_train_base) fprintf(stderr, " (class error: %.2f%%)", 100.0f * n_train_err / n_train); if (n_val > 0) { fprintf(stderr, "; validation cost: %g", val_cost); if (n_val_base) fprintf(stderr, " (class error: %.2f%%)", 100.0f * n_val_err / n_val); } fputc('\n', stderr); #endif } if (i >= max_drop_streak && n_val > 0) { if (val_cost < min_val_cost) { min_set = 1; memcpy(min_x, ann->x, n_var * sizeof(float)); memcpy(min_c, ann->c, n_const * sizeof(float)); drop_streak = 0; min_val_cost = (float)val_cost; } else if (++drop_streak >= max_drop_streak) break; } } if (min_set) { memcpy(ann->x, min_x, n_var * sizeof(float)); memcpy(ann->c, min_c, n_const * sizeof(float)); } free(min_c); free(min_x); free(y1); free(x1); free(y); free(x); free(shuf); free(r); return i; } float kann_cost_fnn1(kann_t *ann, int n, float **x, float **y) { int n_in, n_out, n_proc = 0, mini_size = 64 < n? 64 : n; float *x1, *y1; double cost = 0.0; n_in = kann_dim_in(ann); n_out = kann_dim_out(ann); if (n <= 0 || n_in < 0 || n_out < 0) return 0.0; x1 = (float*)malloc(n_in * mini_size * sizeof(float)); y1 = (float*)malloc(n_out * mini_size * sizeof(float)); kann_feed_bind(ann, KANN_F_IN, 0, &x1); kann_feed_bind(ann, KANN_F_TRUTH, 0, &y1); kann_switch(ann, 0); while (n_proc < n) { int b, ms = n - n_proc < mini_size? n - n_proc : mini_size; for (b = 0; b < ms; ++b) { memcpy(&x1[b*n_in], x[n_proc+b], n_in * sizeof(float)); memcpy(&y1[b*n_out], y[n_proc+b], n_out * sizeof(float)); } kann_set_batch_size(ann, ms); cost += kann_cost(ann, 0, 0) * ms; n_proc += ms; } free(y1); free(x1); return (float)(cost / n); } const float *kann_apply1(kann_t *a, float *x) { int i_out; i_out = kann_find(a, KANN_F_OUT, 0); if (i_out < 0) return 0; kann_set_batch_size(a, 1); kann_feed_bind(a, KANN_F_IN, 0, &x); kad_eval_at(a->n, a->v, i_out); return a->v[i_out]->x; }