/* ** $Id: lpcode.c,v 1.23 2015/06/12 18:36:47 roberto Exp $ ** Copyright 2007, Lua.org & PUC-Rio (see 'lpeg.html' for license) */ #include #include "lua.h" #include "lauxlib.h" #include "lptypes.h" #include "lpcode.h" /* signals a "no-instruction */ #define NOINST -1 static const Charset fullset_ = {{0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}}; static const Charset *fullset = &fullset_; /* ** {====================================================== ** Analysis and some optimizations ** ======================================================= */ /* ** Check whether a charset is empty (returns IFail), singleton (IChar), ** full (IAny), or none of those (ISet). When singleton, '*c' returns ** which character it is. (When generic set, the set was the input, ** so there is no need to return it.) */ static Opcode charsettype (const byte *cs, int *c) { int count = 0; /* number of characters in the set */ int i; int candidate = -1; /* candidate position for the singleton char */ for (i = 0; i < CHARSETSIZE; i++) { /* for each byte */ int b = cs[i]; if (b == 0) { /* is byte empty? */ if (count > 1) /* was set neither empty nor singleton? */ return ISet; /* neither full nor empty nor singleton */ /* else set is still empty or singleton */ } else if (b == 0xFF) { /* is byte full? */ if (count < (i * BITSPERCHAR)) /* was set not full? */ return ISet; /* neither full nor empty nor singleton */ else count += BITSPERCHAR; /* set is still full */ } else if ((b & (b - 1)) == 0) { /* has byte only one bit? */ if (count > 0) /* was set not empty? */ return ISet; /* neither full nor empty nor singleton */ else { /* set has only one char till now; track it */ count++; candidate = i; } } else return ISet; /* byte is neither empty, full, nor singleton */ } switch (count) { case 0: return IFail; /* empty set */ case 1: { /* singleton; find character bit inside byte */ int b = cs[candidate]; *c = candidate * BITSPERCHAR; if ((b & 0xF0) != 0) { *c += 4; b >>= 4; } if ((b & 0x0C) != 0) { *c += 2; b >>= 2; } if ((b & 0x02) != 0) { *c += 1; } return IChar; } default: { assert(count == CHARSETSIZE * BITSPERCHAR); /* full set */ return IAny; } } } /* ** A few basic operations on Charsets */ static void cs_complement (Charset *cs) { loopset(i, cs->cs[i] = ~cs->cs[i]); } static int cs_equal (const byte *cs1, const byte *cs2) { loopset(i, if (cs1[i] != cs2[i]) return 0); return 1; } static int cs_disjoint (const Charset *cs1, const Charset *cs2) { loopset(i, if ((cs1->cs[i] & cs2->cs[i]) != 0) return 0;) return 1; } /* ** If 'tree' is a 'char' pattern (TSet, TChar, TAny), convert it into a ** charset and return 1; else return 0. */ int tocharset (TTree *tree, Charset *cs) { switch (tree->tag) { case TSet: { /* copy set */ loopset(i, cs->cs[i] = treebuffer(tree)[i]); return 1; } case TChar: { /* only one char */ assert(0 <= tree->u.n && tree->u.n <= UCHAR_MAX); loopset(i, cs->cs[i] = 0); /* erase all chars */ setchar(cs->cs, tree->u.n); /* add that one */ return 1; } case TAny: { loopset(i, cs->cs[i] = 0xFF); /* add all characters to the set */ return 1; } default: return 0; } } /* ** Check whether a pattern tree has captures */ int hascaptures (TTree *tree) { tailcall: switch (tree->tag) { case TCapture: case TRunTime: return 1; case TCall: tree = sib2(tree); goto tailcall; /* return hascaptures(sib2(tree)); */ case TOpenCall: assert(0); default: { switch (numsiblings[tree->tag]) { case 1: /* return hascaptures(sib1(tree)); */ tree = sib1(tree); goto tailcall; case 2: if (hascaptures(sib1(tree))) return 1; /* else return hascaptures(sib2(tree)); */ tree = sib2(tree); goto tailcall; default: assert(numsiblings[tree->tag] == 0); return 0; } } } } /* ** Checks how a pattern behaves regarding the empty string, ** in one of two different ways: ** A pattern is *nullable* if it can match without consuming any character; ** A pattern is *nofail* if it never fails for any string ** (including the empty string). ** The difference is only for predicates and run-time captures; ** for other patterns, the two properties are equivalent. ** (With predicates, &'a' is nullable but not nofail. Of course, ** nofail => nullable.) ** These functions are all convervative in the following way: ** p is nullable => nullable(p) ** nofail(p) => p cannot fail ** The function assumes that TOpenCall is not nullable; ** this will be checked again when the grammar is fixed. ** Run-time captures can do whatever they want, so the result ** is conservative. */ int checkaux (TTree *tree, int pred) { tailcall: switch (tree->tag) { case TChar: case TSet: case TAny: case TFalse: case TOpenCall: return 0; /* not nullable */ case TRep: case TTrue: return 1; /* no fail */ case TNot: case TBehind: /* can match empty, but can fail */ if (pred == PEnofail) return 0; else return 1; /* PEnullable */ case TAnd: /* can match empty; fail iff body does */ if (pred == PEnullable) return 1; /* else return checkaux(sib1(tree), pred); */ tree = sib1(tree); goto tailcall; case TRunTime: /* can fail; match empty iff body does */ if (pred == PEnofail) return 0; /* else return checkaux(sib1(tree), pred); */ tree = sib1(tree); goto tailcall; case TSeq: if (!checkaux(sib1(tree), pred)) return 0; /* else return checkaux(sib2(tree), pred); */ tree = sib2(tree); goto tailcall; case TChoice: if (checkaux(sib2(tree), pred)) return 1; /* else return checkaux(sib1(tree), pred); */ tree = sib1(tree); goto tailcall; case TCapture: case TGrammar: case TRule: /* return checkaux(sib1(tree), pred); */ tree = sib1(tree); goto tailcall; case TCall: /* return checkaux(sib2(tree), pred); */ tree = sib2(tree); goto tailcall; default: assert(0); return 0; } } /* ** number of characters to match a pattern (or -1 if variable) ** ('count' avoids infinite loops for grammars) */ int fixedlenx (TTree *tree, int count, int len) { tailcall: switch (tree->tag) { case TChar: case TSet: case TAny: return len + 1; case TFalse: case TTrue: case TNot: case TAnd: case TBehind: return len; case TRep: case TRunTime: case TOpenCall: return -1; case TCapture: case TRule: case TGrammar: /* return fixedlenx(sib1(tree), count); */ tree = sib1(tree); goto tailcall; case TCall: if (count++ >= MAXRULES) return -1; /* may be a loop */ /* else return fixedlenx(sib2(tree), count); */ tree = sib2(tree); goto tailcall; case TSeq: { len = fixedlenx(sib1(tree), count, len); if (len < 0) return -1; /* else return fixedlenx(sib2(tree), count, len); */ tree = sib2(tree); goto tailcall; } case TChoice: { int n1, n2; n1 = fixedlenx(sib1(tree), count, len); if (n1 < 0) return -1; n2 = fixedlenx(sib2(tree), count, len); if (n1 == n2) return n1; else return -1; } default: assert(0); return 0; }; } /* ** Computes the 'first set' of a pattern. ** The result is a conservative aproximation: ** match p ax -> x (for some x) ==> a belongs to first(p) ** or ** a not in first(p) ==> match p ax -> fail (for all x) ** ** The set 'follow' is the first set of what follows the ** pattern (full set if nothing follows it). ** ** The function returns 0 when this resulting set can be used for ** test instructions that avoid the pattern altogether. ** A non-zero return can happen for two reasons: ** 1) match p '' -> '' ==> return has bit 1 set ** (tests cannot be used because they would always fail for an empty input); ** 2) there is a match-time capture ==> return has bit 2 set ** (optimizations should not bypass match-time captures). */ static int getfirst (TTree *tree, const Charset *follow, Charset *firstset) { tailcall: switch (tree->tag) { case TChar: case TSet: case TAny: { tocharset(tree, firstset); return 0; } case TTrue: { loopset(i, firstset->cs[i] = follow->cs[i]); return 1; /* accepts the empty string */ } case TFalse: { loopset(i, firstset->cs[i] = 0); return 0; } case TChoice: { Charset csaux; int e1 = getfirst(sib1(tree), follow, firstset); int e2 = getfirst(sib2(tree), follow, &csaux); loopset(i, firstset->cs[i] |= csaux.cs[i]); return e1 | e2; } case TSeq: { if (!nullable(sib1(tree))) { /* when p1 is not nullable, p2 has nothing to contribute; return getfirst(sib1(tree), fullset, firstset); */ tree = sib1(tree); follow = fullset; goto tailcall; } else { /* FIRST(p1 p2, fl) = FIRST(p1, FIRST(p2, fl)) */ Charset csaux; int e2 = getfirst(sib2(tree), follow, &csaux); int e1 = getfirst(sib1(tree), &csaux, firstset); if (e1 == 0) return 0; /* 'e1' ensures that first can be used */ else if ((e1 | e2) & 2) /* one of the children has a matchtime? */ return 2; /* pattern has a matchtime capture */ else return e2; /* else depends on 'e2' */ } } case TRep: { getfirst(sib1(tree), follow, firstset); loopset(i, firstset->cs[i] |= follow->cs[i]); return 1; /* accept the empty string */ } case TCapture: case TGrammar: case TRule: { /* return getfirst(sib1(tree), follow, firstset); */ tree = sib1(tree); goto tailcall; } case TRunTime: { /* function invalidates any follow info. */ int e = getfirst(sib1(tree), fullset, firstset); if (e) return 2; /* function is not "protected"? */ else return 0; /* pattern inside capture ensures first can be used */ } case TCall: { /* return getfirst(sib2(tree), follow, firstset); */ tree = sib2(tree); goto tailcall; } case TAnd: { int e = getfirst(sib1(tree), follow, firstset); loopset(i, firstset->cs[i] &= follow->cs[i]); return e; } case TNot: { if (tocharset(sib1(tree), firstset)) { cs_complement(firstset); return 1; } /* else go through */ } case TBehind: { /* instruction gives no new information */ /* call 'getfirst' only to check for math-time captures */ int e = getfirst(sib1(tree), follow, firstset); loopset(i, firstset->cs[i] = follow->cs[i]); /* uses follow */ return e | 1; /* always can accept the empty string */ } default: assert(0); return 0; } } /* ** If 'headfail(tree)' true, then 'tree' can fail only depending on the ** next character of the subject. */ static int headfail (TTree *tree) { tailcall: switch (tree->tag) { case TChar: case TSet: case TAny: case TFalse: return 1; case TTrue: case TRep: case TRunTime: case TNot: case TBehind: return 0; case TCapture: case TGrammar: case TRule: case TAnd: tree = sib1(tree); goto tailcall; /* return headfail(sib1(tree)); */ case TCall: tree = sib2(tree); goto tailcall; /* return headfail(sib2(tree)); */ case TSeq: if (!nofail(sib2(tree))) return 0; /* else return headfail(sib1(tree)); */ tree = sib1(tree); goto tailcall; case TChoice: if (!headfail(sib1(tree))) return 0; /* else return headfail(sib2(tree)); */ tree = sib2(tree); goto tailcall; default: assert(0); return 0; } } /* ** Check whether the code generation for the given tree can benefit ** from a follow set (to avoid computing the follow set when it is ** not needed) */ static int needfollow (TTree *tree) { tailcall: switch (tree->tag) { case TChar: case TSet: case TAny: case TFalse: case TTrue: case TAnd: case TNot: case TRunTime: case TGrammar: case TCall: case TBehind: return 0; case TChoice: case TRep: return 1; case TCapture: tree = sib1(tree); goto tailcall; case TSeq: tree = sib2(tree); goto tailcall; default: assert(0); return 0; } } /* }====================================================== */ /* ** {====================================================== ** Code generation ** ======================================================= */ /* ** size of an instruction */ int sizei (const Instruction *i) { switch((Opcode)i->i.code) { case ISet: case ISpan: return CHARSETINSTSIZE; case ITestSet: return CHARSETINSTSIZE + 1; case ITestChar: case ITestAny: case IChoice: case IJmp: case ICall: case IOpenCall: case ICommit: case IPartialCommit: case IBackCommit: return 2; default: return 1; } } /* ** state for the compiler */ typedef struct CompileState { Pattern *p; /* pattern being compiled */ int ncode; /* next position in p->code to be filled */ lua_State *L; } CompileState; /* ** code generation is recursive; 'opt' indicates that the code is being ** generated as the last thing inside an optional pattern (so, if that ** code is optional too, it can reuse the 'IChoice' already in place for ** the outer pattern). 'tt' points to a previous test protecting this ** code (or NOINST). 'fl' is the follow set of the pattern. */ static void codegen (CompileState *compst, TTree *tree, int opt, int tt, const Charset *fl); void realloccode (lua_State *L, Pattern *p, int nsize) { void *ud; lua_Alloc f = lua_getallocf(L, &ud); void *newblock = f(ud, p->code, p->codesize * sizeof(Instruction), nsize * sizeof(Instruction)); if (newblock == NULL && nsize > 0) luaL_error(L, "not enough memory"); p->code = (Instruction *)newblock; p->codesize = nsize; } static int nextinstruction (CompileState *compst) { int size = compst->p->codesize; if (compst->ncode >= size) realloccode(compst->L, compst->p, size * 2); return compst->ncode++; } #define getinstr(cs,i) ((cs)->p->code[i]) static int addinstruction (CompileState *compst, Opcode op, int aux) { int i = nextinstruction(compst); getinstr(compst, i).i.code = op; getinstr(compst, i).i.aux = aux; return i; } /* ** Add an instruction followed by space for an offset (to be set later) */ static int addoffsetinst (CompileState *compst, Opcode op) { int i = addinstruction(compst, op, 0); /* instruction */ addinstruction(compst, (Opcode)0, 0); /* open space for offset */ assert(op == ITestSet || sizei(&getinstr(compst, i)) == 2); return i; } /* ** Set the offset of an instruction */ static void setoffset (CompileState *compst, int instruction, int offset) { getinstr(compst, instruction + 1).offset = offset; } /* ** Add a capture instruction: ** 'op' is the capture instruction; 'cap' the capture kind; ** 'key' the key into ktable; 'aux' is the optional capture offset ** */ static int addinstcap (CompileState *compst, Opcode op, int cap, int key, int aux) { int i = addinstruction(compst, op, joinkindoff(cap, aux)); getinstr(compst, i).i.key = key; return i; } #define gethere(compst) ((compst)->ncode) #define target(code,i) ((i) + code[i + 1].offset) /* ** Patch 'instruction' to jump to 'target' */ static void jumptothere (CompileState *compst, int instruction, int target) { if (instruction >= 0) setoffset(compst, instruction, target - instruction); } /* ** Patch 'instruction' to jump to current position */ static void jumptohere (CompileState *compst, int instruction) { jumptothere(compst, instruction, gethere(compst)); } /* ** Code an IChar instruction, or IAny if there is an equivalent ** test dominating it */ static void codechar (CompileState *compst, int c, int tt) { if (tt >= 0 && getinstr(compst, tt).i.code == ITestChar && getinstr(compst, tt).i.aux == c) addinstruction(compst, IAny, 0); else addinstruction(compst, IChar, c); } /* ** Add a charset posfix to an instruction */ static void addcharset (CompileState *compst, const byte *cs) { int p = gethere(compst); int i; for (i = 0; i < (int)CHARSETINSTSIZE - 1; i++) nextinstruction(compst); /* space for buffer */ /* fill buffer with charset */ loopset(j, getinstr(compst, p).buff[j] = cs[j]); } /* ** code a char set, optimizing unit sets for IChar, "complete" ** sets for IAny, and empty sets for IFail; also use an IAny ** when instruction is dominated by an equivalent test. */ static void codecharset (CompileState *compst, const byte *cs, int tt) { int c = 0; /* (=) to avoid warnings */ Opcode op = charsettype(cs, &c); switch (op) { case IChar: codechar(compst, c, tt); break; case ISet: { /* non-trivial set? */ if (tt >= 0 && getinstr(compst, tt).i.code == ITestSet && cs_equal(cs, getinstr(compst, tt + 2).buff)) addinstruction(compst, IAny, 0); else { addinstruction(compst, ISet, 0); addcharset(compst, cs); } break; } default: addinstruction(compst, op, c); break; } } /* ** code a test set, optimizing unit sets for ITestChar, "complete" ** sets for ITestAny, and empty sets for IJmp (always fails). ** 'e' is true iff test should accept the empty string. (Test ** instructions in the current VM never accept the empty string.) */ static int codetestset (CompileState *compst, Charset *cs, int e) { if (e) return NOINST; /* no test */ else { int c = 0; Opcode op = charsettype(cs->cs, &c); switch (op) { case IFail: return addoffsetinst(compst, IJmp); /* always jump */ case IAny: return addoffsetinst(compst, ITestAny); case IChar: { int i = addoffsetinst(compst, ITestChar); getinstr(compst, i).i.aux = c; return i; } case ISet: { int i = addoffsetinst(compst, ITestSet); addcharset(compst, cs->cs); return i; } default: assert(0); return 0; } } } /* ** Find the final destination of a sequence of jumps */ static int finaltarget (Instruction *code, int i) { while (code[i].i.code == IJmp) i = target(code, i); return i; } /* ** final label (after traversing any jumps) */ static int finallabel (Instruction *code, int i) { return finaltarget(code, target(code, i)); } /* ** == behind n;

(where n = fixedlen(p)) */ static void codebehind (CompileState *compst, TTree *tree) { if (tree->u.n > 0) addinstruction(compst, IBehind, tree->u.n); codegen(compst, sib1(tree), 0, NOINST, fullset); } /* ** Choice; optimizations: ** - when p1 is headfail or ** when first(p1) and first(p2) are disjoint, than ** a character not in first(p1) cannot go to p1, and a character ** in first(p1) cannot go to p2 (at it is not in first(p2)). ** (The optimization is not valid if p1 accepts the empty string, ** as then there is no character at all...) ** - when p2 is empty and opt is true; a IPartialCommit can reuse ** the Choice already active in the stack. */ static void codechoice (CompileState *compst, TTree *p1, TTree *p2, int opt, const Charset *fl) { int emptyp2 = (p2->tag == TTrue); Charset cs1, cs2; int e1 = getfirst(p1, fullset, &cs1); if (headfail(p1) || (!e1 && (getfirst(p2, fl, &cs2), cs_disjoint(&cs1, &cs2)))) { /* == test (fail(p1)) -> L1 ; p1 ; jmp L2; L1: p2; L2: */ int test = codetestset(compst, &cs1, 0); int jmp = NOINST; codegen(compst, p1, 0, test, fl); if (!emptyp2) jmp = addoffsetinst(compst, IJmp); jumptohere(compst, test); codegen(compst, p2, opt, NOINST, fl); jumptohere(compst, jmp); } else if (opt && emptyp2) { /* p1? == IPartialCommit; p1 */ jumptohere(compst, addoffsetinst(compst, IPartialCommit)); codegen(compst, p1, 1, NOINST, fullset); } else { /* == test(first(p1)) -> L1; choice L1; ; commit L2; L1: ; L2: */ int pcommit; int test = codetestset(compst, &cs1, e1); int pchoice = addoffsetinst(compst, IChoice); codegen(compst, p1, emptyp2, test, fullset); pcommit = addoffsetinst(compst, ICommit); jumptohere(compst, pchoice); jumptohere(compst, test); codegen(compst, p2, opt, NOINST, fl); jumptohere(compst, pcommit); } } /* ** And predicate ** optimization: fixedlen(p) = n ==> <&p> ==

; behind n ** (valid only when 'p' has no captures) */ static void codeand (CompileState *compst, TTree *tree, int tt) { int n = fixedlen(tree); if (n >= 0 && n <= MAXBEHIND && !hascaptures(tree)) { codegen(compst, tree, 0, tt, fullset); if (n > 0) addinstruction(compst, IBehind, n); } else { /* default: Choice L1; p1; BackCommit L2; L1: Fail; L2: */ int pcommit; int pchoice = addoffsetinst(compst, IChoice); codegen(compst, tree, 0, tt, fullset); pcommit = addoffsetinst(compst, IBackCommit); jumptohere(compst, pchoice); addinstruction(compst, IFail, 0); jumptohere(compst, pcommit); } } /* ** Captures: if pattern has fixed (and not too big) length, use ** a single IFullCapture instruction after the match; otherwise, ** enclose the pattern with OpenCapture - CloseCapture. */ static void codecapture (CompileState *compst, TTree *tree, int tt, const Charset *fl) { int len = fixedlen(sib1(tree)); if (len >= 0 && len <= MAXOFF && !hascaptures(sib1(tree))) { codegen(compst, sib1(tree), 0, tt, fl); addinstcap(compst, IFullCapture, tree->cap, tree->key, len); } else { addinstcap(compst, IOpenCapture, tree->cap, tree->key, 0); codegen(compst, sib1(tree), 0, tt, fl); addinstcap(compst, ICloseCapture, Cclose, 0, 0); } } static void coderuntime (CompileState *compst, TTree *tree, int tt) { addinstcap(compst, IOpenCapture, Cgroup, tree->key, 0); codegen(compst, sib1(tree), 0, tt, fullset); addinstcap(compst, ICloseRunTime, Cclose, 0, 0); } /* ** Repetion; optimizations: ** When pattern is a charset, can use special instruction ISpan. ** When pattern is head fail, or if it starts with characters that ** are disjoint from what follows the repetions, a simple test ** is enough (a fail inside the repetition would backtrack to fail ** again in the following pattern, so there is no need for a choice). ** When 'opt' is true, the repetion can reuse the Choice already ** active in the stack. */ static void coderep (CompileState *compst, TTree *tree, int opt, const Charset *fl) { Charset st; if (tocharset(tree, &st)) { addinstruction(compst, ISpan, 0); addcharset(compst, st.cs); } else { int e1 = getfirst(tree, fullset, &st); if (headfail(tree) || (!e1 && cs_disjoint(&st, fl))) { /* L1: test (fail(p1)) -> L2;

; jmp L1; L2: */ int jmp; int test = codetestset(compst, &st, 0); codegen(compst, tree, 0, test, fullset); jmp = addoffsetinst(compst, IJmp); jumptohere(compst, test); jumptothere(compst, jmp, test); } else { /* test(fail(p1)) -> L2; choice L2; L1:

; partialcommit L1; L2: */ /* or (if 'opt'): partialcommit L1; L1:

; partialcommit L1; */ int commit, l2; int test = codetestset(compst, &st, e1); int pchoice = NOINST; if (opt) jumptohere(compst, addoffsetinst(compst, IPartialCommit)); else pchoice = addoffsetinst(compst, IChoice); l2 = gethere(compst); codegen(compst, tree, 0, NOINST, fullset); commit = addoffsetinst(compst, IPartialCommit); jumptothere(compst, commit, l2); jumptohere(compst, pchoice); jumptohere(compst, test); } } } /* ** Not predicate; optimizations: ** In any case, if first test fails, 'not' succeeds, so it can jump to ** the end. If pattern is headfail, that is all (it cannot fail ** in other parts); this case includes 'not' of simple sets. Otherwise, ** use the default code (a choice plus a failtwice). */ static void codenot (CompileState *compst, TTree *tree) { Charset st; int e = getfirst(tree, fullset, &st); int test = codetestset(compst, &st, e); if (headfail(tree)) /* test (fail(p1)) -> L1; fail; L1: */ addinstruction(compst, IFail, 0); else { /* test(fail(p))-> L1; choice L1;

; failtwice; L1: */ int pchoice = addoffsetinst(compst, IChoice); codegen(compst, tree, 0, NOINST, fullset); addinstruction(compst, IFailTwice, 0); jumptohere(compst, pchoice); } jumptohere(compst, test); } /* ** change open calls to calls, using list 'positions' to find ** correct offsets; also optimize tail calls */ static void correctcalls (CompileState *compst, int *positions, int from, int to) { int i; Instruction *code = compst->p->code; for (i = from; i < to; i += sizei(&code[i])) { if (code[i].i.code == IOpenCall) { int n = code[i].i.key; /* rule number */ int rule = positions[n]; /* rule position */ assert(rule == from || code[rule - 1].i.code == IRet); if (code[finaltarget(code, i + 2)].i.code == IRet) /* call; ret ? */ code[i].i.code = IJmp; /* tail call */ else code[i].i.code = ICall; jumptothere(compst, i, rule); /* call jumps to respective rule */ } } assert(i == to); } /* ** Code for a grammar: ** call L1; jmp L2; L1: rule 1; ret; rule 2; ret; ...; L2: */ static void codegrammar (CompileState *compst, TTree *grammar) { int positions[MAXRULES]; int rulenumber = 0; TTree *rule; int firstcall = addoffsetinst(compst, ICall); /* call initial rule */ int jumptoend = addoffsetinst(compst, IJmp); /* jump to the end */ int start = gethere(compst); /* here starts the initial rule */ jumptohere(compst, firstcall); for (rule = sib1(grammar); rule->tag == TRule; rule = sib2(rule)) { positions[rulenumber++] = gethere(compst); /* save rule position */ codegen(compst, sib1(rule), 0, NOINST, fullset); /* code rule */ addinstruction(compst, IRet, 0); } assert(rule->tag == TTrue); jumptohere(compst, jumptoend); correctcalls(compst, positions, start, gethere(compst)); } static void codecall (CompileState *compst, TTree *call) { int c = addoffsetinst(compst, IOpenCall); /* to be corrected later */ getinstr(compst, c).i.key = sib2(call)->cap; /* rule number */ assert(sib2(call)->tag == TRule); } /* ** Code first child of a sequence ** (second child is called in-place to allow tail call) ** Return 'tt' for second child */ static int codeseq1 (CompileState *compst, TTree *p1, TTree *p2, int tt, const Charset *fl) { if (needfollow(p1)) { Charset fl1; getfirst(p2, fl, &fl1); /* p1 follow is p2 first */ codegen(compst, p1, 0, tt, &fl1); } else /* use 'fullset' as follow */ codegen(compst, p1, 0, tt, fullset); if (fixedlen(p1) != 0) /* can 'p1' consume anything? */ return NOINST; /* invalidate test */ else return tt; /* else 'tt' still protects sib2 */ } /* ** Main code-generation function: dispatch to auxiliar functions ** according to kind of tree. ('needfollow' should return true ** only for consructions that use 'fl'.) */ static void codegen (CompileState *compst, TTree *tree, int opt, int tt, const Charset *fl) { tailcall: switch (tree->tag) { case TChar: codechar(compst, tree->u.n, tt); break; case TAny: addinstruction(compst, IAny, 0); break; case TSet: codecharset(compst, treebuffer(tree), tt); break; case TTrue: break; case TFalse: addinstruction(compst, IFail, 0); break; case TChoice: codechoice(compst, sib1(tree), sib2(tree), opt, fl); break; case TRep: coderep(compst, sib1(tree), opt, fl); break; case TBehind: codebehind(compst, tree); break; case TNot: codenot(compst, sib1(tree)); break; case TAnd: codeand(compst, sib1(tree), tt); break; case TCapture: codecapture(compst, tree, tt, fl); break; case TRunTime: coderuntime(compst, tree, tt); break; case TGrammar: codegrammar(compst, tree); break; case TCall: codecall(compst, tree); break; case TSeq: { tt = codeseq1(compst, sib1(tree), sib2(tree), tt, fl); /* code 'p1' */ /* codegen(compst, p2, opt, tt, fl); */ tree = sib2(tree); goto tailcall; } default: assert(0); } } /* ** Optimize jumps and other jump-like instructions. ** * Update labels of instructions with labels to their final ** destinations (e.g., choice L1; ... L1: jmp L2: becomes ** choice L2) ** * Jumps to other instructions that do jumps become those ** instructions (e.g., jump to return becomes a return; jump ** to commit becomes a commit) */ static void peephole (CompileState *compst) { Instruction *code = compst->p->code; int i; for (i = 0; i < compst->ncode; i += sizei(&code[i])) { redo: switch (code[i].i.code) { case IChoice: case ICall: case ICommit: case IPartialCommit: case IBackCommit: case ITestChar: case ITestSet: case ITestAny: { /* instructions with labels */ jumptothere(compst, i, finallabel(code, i)); /* optimize label */ break; } case IJmp: { int ft = finaltarget(code, i); switch (code[ft].i.code) { /* jumping to what? */ case IRet: case IFail: case IFailTwice: case IEnd: { /* instructions with unconditional implicit jumps */ code[i] = code[ft]; /* jump becomes that instruction */ code[i + 1].i.code = IAny; /* 'no-op' for target position */ break; } case ICommit: case IPartialCommit: case IBackCommit: { /* inst. with unconditional explicit jumps */ int fft = finallabel(code, ft); code[i] = code[ft]; /* jump becomes that instruction... */ jumptothere(compst, i, fft); /* but must correct its offset */ goto redo; /* reoptimize its label */ } default: { jumptothere(compst, i, ft); /* optimize label */ break; } } break; } default: break; } } assert(code[i - 1].i.code == IEnd); } /* ** Compile a pattern */ Instruction *compile (lua_State *L, Pattern *p) { CompileState compst; compst.p = p; compst.ncode = 0; compst.L = L; realloccode(L, p, 2); /* minimum initial size */ codegen(&compst, p->tree, 0, NOINST, fullset); addinstruction(&compst, IEnd, 0); realloccode(L, p, compst.ncode); /* set final size */ peephole(&compst); return p->code; } /* }====================================================== */