local PixelShuffle, parent = torch.class("nn.PixelShuffle", "nn.Module") -- Shuffles pixels after upscaling with a ESPCNN model -- Converts a [batch x channel*r^2 x m x p] tensor to [batch x channel x r*m x r*p] -- tensor, where r is the upscaling factor. -- @param upscaleFactor - the upscaling factor to use function PixelShuffle:__init(upscaleFactor) parent.__init(self) self.upscaleFactor = upscaleFactor self.upscaleFactorSquared = self.upscaleFactor * self.upscaleFactor end -- Computes the forward pass of the layer i.e. Converts a -- [batch x channel*r^2 x m x p] tensor to [batch x channel x r*m x r*p] tensor. -- @param input - the input tensor to be shuffled of size [b x c*r^2 x m x p] -- @return output - the shuffled tensor of size [b x c x r*m x r*p] function PixelShuffle:updateOutput(input) self._intermediateShape = self._intermediateShape or torch.LongStorage(6) self._outShape = self.outShape or torch.LongStorage() self._shuffleOut = self._shuffleOut or input.new() local batched = false local batchSize = 1 local inputStartIdx = 1 local outShapeIdx = 1 if input:nDimension() == 4 then batched = true batchSize = input:size(1) inputStartIdx = 2 outShapeIdx = 2 self._outShape:resize(4) self._outShape[1] = batchSize else self._outShape:resize(3) end --input is of size h/r w/r, rc output should be h, r, c local channels = input:size(inputStartIdx) / self.upscaleFactorSquared local inHeight = input:size(inputStartIdx + 1) local inWidth = input:size(inputStartIdx + 2) self._intermediateShape[1] = batchSize self._intermediateShape[2] = channels self._intermediateShape[3] = self.upscaleFactor self._intermediateShape[4] = self.upscaleFactor self._intermediateShape[5] = inHeight self._intermediateShape[6] = inWidth self._outShape[outShapeIdx] = channels self._outShape[outShapeIdx + 1] = inHeight * self.upscaleFactor self._outShape[outShapeIdx + 2] = inWidth * self.upscaleFactor local inputView = torch.view(input, self._intermediateShape) self._shuffleOut:resize(inputView:size(1), inputView:size(2), inputView:size(5), inputView:size(3), inputView:size(6), inputView:size(4)) self._shuffleOut:copy(inputView:permute(1, 2, 5, 3, 6, 4)) self.output = torch.view(self._shuffleOut, self._outShape) return self.output end -- Computes the backward pass of the layer, given the gradient w.r.t. the output -- this function computes the gradient w.r.t. the input. -- @param input - the input tensor of shape [b x c*r^2 x m x p] -- @param gradOutput - the tensor with the gradients w.r.t. output of shape [b x c x r*m x r*p] -- @return gradInput - a tensor of the same shape as input, representing the gradient w.r.t. input. function PixelShuffle:updateGradInput(input, gradOutput) self._intermediateShape = self._intermediateShape or torch.LongStorage(6) self._shuffleIn = self._shuffleIn or input.new() local batchSize = 1 local inputStartIdx = 1 if input:nDimension() == 4 then batchSize = input:size(1) inputStartIdx = 2 end local channels = input:size(inputStartIdx) / self.upscaleFactorSquared local height = input:size(inputStartIdx + 1) local width = input:size(inputStartIdx + 2) self._intermediateShape[1] = batchSize self._intermediateShape[2] = channels self._intermediateShape[3] = height self._intermediateShape[4] = self.upscaleFactor self._intermediateShape[5] = width self._intermediateShape[6] = self.upscaleFactor local gradOutputView = torch.view(gradOutput, self._intermediateShape) self._shuffleIn:resize(gradOutputView:size(1), gradOutputView:size(2), gradOutputView:size(4), gradOutputView:size(6), gradOutputView:size(3), gradOutputView:size(5)) self._shuffleIn:copy(gradOutputView:permute(1, 2, 4, 6, 3, 5)) self.gradInput = torch.view(self._shuffleIn, input:size()) return self.gradInput end function PixelShuffle:clearState() nn.utils.clear(self, { "_intermediateShape", "_outShape", "_shuffleIn", "_shuffleOut", }) return parent.clearState(self) end