local SpatialSubtractiveNormalization, parent = torch.class('nn.SpatialSubtractiveNormalization','nn.Module') function SpatialSubtractiveNormalization:__init(nInputPlane, kernel) parent.__init(self) -- get args self.nInputPlane = nInputPlane or 1 self.kernel = kernel or torch.Tensor(9,9):fill(1) local kdim = self.kernel:nDimension() -- check args if kdim ~= 2 and kdim ~= 1 then error(' averaging kernel must be 2D or 1D') end if (self.kernel:size(1) % 2) == 0 or (kdim == 2 and (self.kernel:size(2) % 2) == 0) then error(' averaging kernel must have ODD dimensions') end -- normalize kernel self.kernel:div(self.kernel:sum() * self.nInputPlane) -- padding values local padH = math.floor(self.kernel:size(1)/2) local padW = padH if kdim == 2 then padW = math.floor(self.kernel:size(2)/2) end -- create convolutional mean extractor self.meanestimator = nn.Sequential() self.meanestimator:add(nn.SpatialZeroPadding(padW, padW, padH, padH)) if kdim == 2 then self.meanestimator:add(nn.SpatialConvolution(self.nInputPlane, 1, self.kernel:size(2), self.kernel:size(1))) else self.meanestimator:add(nn.SpatialConvolutionMap(nn.tables.oneToOne(self.nInputPlane), self.kernel:size(1), 1)) self.meanestimator:add(nn.SpatialConvolution(self.nInputPlane, 1, 1, self.kernel:size(1))) end self.meanestimator:add(nn.Replicate(self.nInputPlane,1,3)) -- set kernel and bias if kdim == 2 then for i = 1,self.nInputPlane do self.meanestimator.modules[2].weight[1][i] = self.kernel end self.meanestimator.modules[2].bias:zero() else for i = 1,self.nInputPlane do self.meanestimator.modules[2].weight[i]:copy(self.kernel) self.meanestimator.modules[3].weight[1][i]:copy(self.kernel) end self.meanestimator.modules[2].bias:zero() self.meanestimator.modules[3].bias:zero() end -- other operation self.subtractor = nn.CSubTable() self.divider = nn.CDivTable() -- coefficient array, to adjust side effects self.coef = torch.Tensor(1,1,1) end function SpatialSubtractiveNormalization:updateOutput(input) -- compute side coefficients local dim = input:dim() if input:dim()+1 ~= self.coef:dim() or (input:size(dim) ~= self.coef:size(dim)) or (input:size(dim-1) ~= self.coef:size(dim-1)) then self.ones = self.ones or input.new() self._coef = self._coef or self.coef.new() if dim == 4 then -- batch mode self.ones:resizeAs(input[1]):fill(1) local coef = self.meanestimator:updateOutput(self.ones) self._coef:resizeAs(coef):copy(coef) -- make contiguous for view local size = coef:size():totable() table.insert(size,1,input:size(1)) self.coef = self._coef:view(1,table.unpack(self._coef:size():totable())):expand(table.unpack(size)) else self.ones:resizeAs(input):fill(1) local coef = self.meanestimator:updateOutput(self.ones) self._coef:resizeAs(coef):copy(coef) -- copy meanestimator.output as it will be used below self.coef = self._coef end end -- compute mean self.localsums = self.meanestimator:updateOutput(input) self.adjustedsums = self.divider:updateOutput{self.localsums, self.coef} self.output = self.subtractor:updateOutput{input, self.adjustedsums} -- done return self.output end function SpatialSubtractiveNormalization:updateGradInput(input, gradOutput) -- resize grad self.gradInput:resizeAs(input):zero() -- backprop through all modules local gradsub = self.subtractor:updateGradInput({input, self.adjustedsums}, gradOutput) local graddiv = self.divider:updateGradInput({self.localsums, self.coef}, gradsub[2]) local size = self.meanestimator:updateGradInput(input, graddiv[1]):size() self.gradInput:add(self.meanestimator:updateGradInput(input, graddiv[1])) self.gradInput:add(gradsub[1]) -- done return self.gradInput end function SpatialSubtractiveNormalization:clearState() if self.ones then self.ones:set() end if self._coef then self._coef:set() end self.meanestimator:clearState() return parent.clearState(self) end