#ifndef TH_GENERIC_FILE #define TH_GENERIC_FILE "generic/SoftPlus.c" #else void THNN_(SoftPlus_updateOutput)( THNNState *state, THTensor *input, THTensor *output, accreal beta_, accreal threshold_) { real beta = TH_CONVERT_ACCREAL_TO_REAL(beta_); real threshold = TH_CONVERT_ACCREAL_TO_REAL(threshold_); THTensor_(resizeAs)(output, input); // f(x) = 1/beta * log(1 + exp(beta * x)) TH_TENSOR_APPLY2(real, output, real, input, \ *output_data = (*input_data * beta) > threshold ? *input_data : THLog1p(exp(*input_data * beta)) / beta; ); } void THNN_(SoftPlus_updateGradInput)( THNNState *state, THTensor *input, THTensor *gradOutput, THTensor *gradInput, THTensor *output, accreal beta_, accreal threshold_) { real beta = TH_CONVERT_ACCREAL_TO_REAL(beta_); real threshold = TH_CONVERT_ACCREAL_TO_REAL(threshold_); THNN_CHECK_NELEMENT(input, gradOutput); THTensor_(resizeAs)(gradInput, output); // d/dx[log(1+exp(k*x))/k] = exp(kx) / (exp(kx) + 1) // SINCE // y = (1/k)*log(1+exp(k*x)) --> x = (1/k)*log(exp(k*y)-1) // THEREFORE: // d/dx(f(x)) = (exp(k*y) - 1) / exp(k*y) TH_TENSOR_APPLY3(real, gradInput, real, gradOutput, real, output, real z = exp(*output_data * beta); *gradInput_data = (*output_data * beta) > threshold ? *gradOutput_data : *gradOutput_data * (z - 1.)/z; ); } #endif