--[[ Copyright (c) 2022, Vsevolod Stakhov Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ]]-- -- This file contains functions to simplify bayes classifier auto-learning local lua_util = require "lua_util" local lua_verdict = require "lua_verdict" local N = "lua_bayes" local exports = {} exports.can_learn = function(task, is_spam, is_unlearn) local learn_type = task:get_request_header('Learn-Type') if not (learn_type and tostring(learn_type) == 'bulk') then local prob = task:get_mempool():get_variable('bayes_prob', 'double') if prob then local in_class = false local cl if is_spam then cl = 'spam' in_class = prob >= 0.95 else cl = 'ham' in_class = prob <= 0.05 end if in_class then return false,string.format( 'already in class %s; probability %.2f%%', cl, math.abs((prob - 0.5) * 200.0)) end end end return true end exports.autolearn = function(task, conf) local function log_can_autolearn(verdict, score, threshold) local from = task:get_from('smtp') local mime_rcpts = 'undef' local mr = task:get_recipients('mime') if mr then for _,r in ipairs(mr) do if mime_rcpts == 'undef' then mime_rcpts = r.addr else mime_rcpts = mime_rcpts .. ',' .. r.addr end end end lua_util.debugm(N, task, 'id: %s, from: <%s>: can autolearn %s: score %s %s %s, mime_rcpts: <%s>', task:get_header('Message-Id') or '', from and from[1].addr or 'undef', verdict, string.format("%.2f", score), verdict == 'ham' and '<=' or verdict == 'spam' and '>=' or '/', threshold, mime_rcpts) end -- We have autolearn config so let's figure out what is requested local verdict,score = lua_verdict.get_specific_verdict("bayes", task) local learn_spam,learn_ham = false, false if verdict == 'passthrough' then -- No need to autolearn lua_util.debugm(N, task, 'no need to autolearn - verdict: %s', verdict) return end if conf.spam_threshold and conf.ham_threshold then if verdict == 'spam' then if conf.spam_threshold and score >= conf.spam_threshold then log_can_autolearn(verdict, score, conf.spam_threshold) learn_spam = true end elseif verdict == 'junk' then if conf.junk_threshold and score >= conf.junk_threshold then log_can_autolearn(verdict, score, conf.junk_threshold) learn_spam = true end elseif verdict == 'ham' then if conf.ham_threshold and score <= conf.ham_threshold then log_can_autolearn(verdict, score, conf.ham_threshold) learn_ham = true end end elseif conf.learn_verdict then if verdict == 'spam' or verdict == 'junk' then learn_spam = true elseif verdict == 'ham' then learn_ham = true end end if conf.check_balance then -- Check balance of learns local spam_learns = task:get_mempool():get_variable('spam_learns', 'int64') or 0 local ham_learns = task:get_mempool():get_variable('ham_learns', 'int64') or 0 local min_balance = 0.9 if conf.min_balance then min_balance = conf.min_balance end if spam_learns > 0 or ham_learns > 0 then local max_ratio = 1.0 / min_balance local spam_learns_ratio = spam_learns / (ham_learns + 1) if spam_learns_ratio > max_ratio and learn_spam then lua_util.debugm(N, task, 'skip learning spam, balance is not satisfied: %s < %s; %s spam learns; %s ham learns', spam_learns_ratio, min_balance, spam_learns, ham_learns) learn_spam = false end local ham_learns_ratio = ham_learns / (spam_learns + 1) if ham_learns_ratio > max_ratio and learn_ham then lua_util.debugm(N, task, 'skip learning ham, balance is not satisfied: %s < %s; %s spam learns; %s ham learns', ham_learns_ratio, min_balance, spam_learns, ham_learns) learn_ham = false end end end if learn_spam then return 'spam' elseif learn_ham then return 'ham' end end return exports