--[[ Copyright (c) 2022, Vsevolod Stakhov Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ]]-- local fun = require "fun" local lua_redis = require "lua_redis" local lua_settings = require "lua_settings" local lua_util = require "lua_util" local meta_functions = require "lua_meta" local rspamd_kann = require "rspamd_kann" local rspamd_logger = require "rspamd_logger" local rspamd_tensor = require "rspamd_tensor" local rspamd_util = require "rspamd_util" local ucl = require "ucl" local N = 'neural' -- Used in prefix to avoid wrong ANN to be loaded local plugin_ver = '2' -- Module vars local default_options = { train = { max_trains = 1000, max_epoch = 1000, max_usages = 10, max_iterations = 25, -- Torch style mse = 0.001, autotrain = true, train_prob = 1.0, learn_threads = 1, learn_mode = 'balanced', -- Possible values: balanced, proportional learning_rate = 0.01, classes_bias = 0.0, -- balanced mode: what difference is allowed between classes (1:1 proportion means 0 bias) spam_skip_prob = 0.0, -- proportional mode: spam skip probability (0-1) ham_skip_prob = 0.0, -- proportional mode: ham skip probability store_pool_only = false, -- store tokens in cache only (disables autotrain); -- neural_vec_mpack stores vector of training data in messagepack neural_profile_digest stores profile digest }, watch_interval = 60.0, lock_expire = 600, learning_spawned = false, ann_expire = 60 * 60 * 24 * 2, -- 2 days hidden_layer_mult = 1.5, -- number of neurons in the hidden layer roc_enabled = false, -- Use ROC to find the best possible thresholds for ham and spam. If spam_score_threshold or ham_score_threshold is defined, it takes precedence over ROC thresholds. roc_misclassification_cost = 0.5, -- Cost of misclassifying a spam message (must be 0..1). spam_score_threshold = nil, -- neural score threshold for spam (must be 0..1 or nil to disable) ham_score_threshold = nil, -- neural score threshold for ham (must be 0..1 or nil to disable) flat_threshold_curve = false, -- use binary classification 0/1 when threshold is reached symbol_spam = 'NEURAL_SPAM', symbol_ham = 'NEURAL_HAM', max_inputs = nil, -- when PCA is used blacklisted_symbols = {}, -- list of symbols skipped in neural processing } -- Rule structure: -- * static config fields (see `default_options`) -- * prefix - name or defined prefix -- * settings - table of settings indexed by settings id, -1 is used when no settings defined -- Rule settings element defines elements for specific settings id: -- * symbols - static symbols profile (defined by config or extracted from symcache) -- * name - name of settings id -- * digest - digest of all symbols -- * ann - dynamic ANN configuration loaded from Redis -- * train - train data for ANN (e.g. the currently trained ANN) -- Settings ANN table is loaded from Redis and represents dynamic profile for ANN -- Some elements are directly stored in Redis, ANN is, in turn loaded dynamically -- * version - version of ANN loaded from redis -- * redis_key - name of ANN key in Redis -- * symbols - symbols in THIS PARTICULAR ANN (might be different from set.symbols) -- * distance - distance between set.symbols and set.ann.symbols -- * ann - kann object local settings = { rules = {}, prefix = 'rn', -- Neural network default prefix max_profiles = 3, -- Maximum number of NN profiles stored } -- Get module & Redis configuration local module_config = rspamd_config:get_all_opt(N) settings = lua_util.override_defaults(settings, module_config) local redis_params = lua_redis.parse_redis_server('neural') local redis_lua_script_vectors_len = "neural_train_size.lua" local redis_lua_script_maybe_invalidate = "neural_maybe_invalidate.lua" local redis_lua_script_maybe_lock = "neural_maybe_lock.lua" local redis_lua_script_save_unlock = "neural_save_unlock.lua" local redis_script_id = {} local function load_scripts() redis_script_id.vectors_len = lua_redis.load_redis_script_from_file(redis_lua_script_vectors_len, redis_params) redis_script_id.maybe_invalidate = lua_redis.load_redis_script_from_file(redis_lua_script_maybe_invalidate, redis_params) redis_script_id.maybe_lock = lua_redis.load_redis_script_from_file(redis_lua_script_maybe_lock, redis_params) redis_script_id.save_unlock = lua_redis.load_redis_script_from_file(redis_lua_script_save_unlock, redis_params) end local function create_ann(n, nlayers, rule) -- We ignore number of layers so far when using kann local nhidden = math.floor(n * (rule.hidden_layer_mult or 1.0) + 1.0) local t = rspamd_kann.layer.input(n) t = rspamd_kann.transform.relu(t) t = rspamd_kann.layer.dense(t, nhidden); t = rspamd_kann.layer.cost(t, 1, rspamd_kann.cost.ceb_neg) return rspamd_kann.new.kann(t) end -- Fills ANN data for a specific settings element local function fill_set_ann(set, ann_key) if not set.ann then set.ann = { symbols = set.symbols, distance = 0, digest = set.digest, redis_key = ann_key, version = 0, } end end -- This function takes all inputs, applies PCA transformation and returns the final -- PCA matrix as rspamd_tensor local function learn_pca(inputs, max_inputs) local scatter_matrix = rspamd_tensor.scatter_matrix(rspamd_tensor.fromtable(inputs)) local eigenvals = scatter_matrix:eigen() -- scatter matrix is not filled with eigenvectors lua_util.debugm(N, 'eigenvalues: %s', eigenvals) local w = rspamd_tensor.new(2, max_inputs, #scatter_matrix[1]) for i=1,max_inputs do w[i] = scatter_matrix[#scatter_matrix - i + 1] end lua_util.debugm(N, 'pca matrix: %s', w) return w end -- This function computes optimal threshold using ROC for the given set of inputs. -- Returns a threshold that minimizes: -- alpha * (false_positive_rate) + beta * (false_negative_rate) -- Where alpha is cost of false positive result -- beta is cost of false negative result local function get_roc_thresholds(ann, inputs, outputs, alpha, beta) -- Sorts list x and list y based on the values in list x. local sort_relative = function(x, y) local r = {} assert(#x == #y) local n = #x local a = {} local b = {} for i=1,n do r[i] = i end local cmp = function(p, q) return p < q end table.sort(r, function(p, q) return cmp(x[p], x[q]) end) for i=1,n do a[i] = x[r[i]] b[i] = y[r[i]] end return a, b end local function get_scores(nn, input_vectors) local scores = {} for i=1,#inputs do local score = nn:apply1(input_vectors[i], nn.pca)[1] scores[#scores+1] = score end return scores end local fpr = {} local fnr = {} local scores = get_scores(ann, inputs) scores, outputs = sort_relative(scores, outputs) local n_samples = #outputs local n_spam = 0 local n_ham = 0 local ham_count_ahead = {} local spam_count_ahead = {} local ham_count_behind = {} local spam_count_behind = {} ham_count_ahead[n_samples + 1] = 0 spam_count_ahead[n_samples + 1] = 0 for i=n_samples,1,-1 do if outputs[i][1] == 0 then n_ham = n_ham + 1 ham_count_ahead[i] = 1 spam_count_ahead[i] = 0 else n_spam = n_spam + 1 ham_count_ahead[i] = 0 spam_count_ahead[i] = 1 end ham_count_ahead[i] = ham_count_ahead[i] + ham_count_ahead[i + 1] spam_count_ahead[i] = spam_count_ahead[i] + spam_count_ahead[i + 1] end for i=1,n_samples do if outputs[i][1] == 0 then ham_count_behind[i] = 1 spam_count_behind[i] = 0 else ham_count_behind[i] = 0 spam_count_behind[i] = 1 end if i ~= 1 then ham_count_behind[i] = ham_count_behind[i] + ham_count_behind[i - 1] spam_count_behind[i] = spam_count_behind[i] + spam_count_behind[i - 1] end end for i=1,n_samples do fpr[i] = 0 fnr[i] = 0 if (ham_count_ahead[i + 1] + ham_count_behind[i]) ~= 0 then fpr[i] = ham_count_ahead[i + 1] / (ham_count_ahead[i + 1] + ham_count_behind[i]) end if (spam_count_behind[i] + spam_count_ahead[i + 1]) ~= 0 then fnr[i] = spam_count_behind[i] / (spam_count_behind[i] + spam_count_ahead[i + 1]) end end local p = n_spam / (n_spam + n_ham) local cost = {} local min_cost_idx = 0 local min_cost = math.huge for i=1,n_samples do cost[i] = ((1 - p) * alpha * fpr[i]) + (p * beta * fnr[i]) if min_cost >= cost[i] then min_cost = cost[i] min_cost_idx = i end end return scores[min_cost_idx] end -- This function is intended to extend lock for ANN during training -- It registers periodic that increases locked key each 30 seconds unless -- `set.learning_spawned` is set to `true` local function register_lock_extender(rule, set, ev_base, ann_key) rspamd_config:add_periodic(ev_base, 30.0, function() local function redis_lock_extend_cb(err, _) if err then rspamd_logger.errx(rspamd_config, 'cannot lock ANN %s from redis: %s', ann_key, err) else rspamd_logger.infox(rspamd_config, 'extend lock for ANN %s for 30 seconds', ann_key) end end if set.learning_spawned then lua_redis.redis_make_request_taskless(ev_base, rspamd_config, rule.redis, nil, true, -- is write redis_lock_extend_cb, --callback 'HINCRBY', -- command {ann_key, 'lock', '30'} ) else lua_util.debugm(N, rspamd_config, "stop lock extension as learning_spawned is false") return false -- do not plan any more updates end return true end ) end local function can_push_train_vector(rule, task, learn_type, nspam, nham) local train_opts = rule.train local coin = math.random() if train_opts.train_prob and coin < 1.0 - train_opts.train_prob then rspamd_logger.infox(task, 'probabilistically skip sample: %s', coin) return false end if train_opts.learn_mode == 'balanced' then -- Keep balanced training set based on number of spam and ham samples if learn_type == 'spam' then if nspam <= train_opts.max_trains then if nspam > nham then -- Apply sampling local skip_rate = 1.0 - nham / (nspam + 1) if coin < skip_rate - train_opts.classes_bias then rspamd_logger.infox(task, 'skip %s sample to keep spam/ham balance; probability %s; %s spam and %s ham vectors stored', learn_type, skip_rate - train_opts.classes_bias, nspam, nham) return false end end return true else -- Enough learns rspamd_logger.infox(task, 'skip %s sample to keep spam/ham balance; too many spam samples: %s', learn_type, nspam) end else if nham <= train_opts.max_trains then if nham > nspam then -- Apply sampling local skip_rate = 1.0 - nspam / (nham + 1) if coin < skip_rate - train_opts.classes_bias then rspamd_logger.infox(task, 'skip %s sample to keep spam/ham balance; probability %s; %s spam and %s ham vectors stored', learn_type, skip_rate - train_opts.classes_bias, nspam, nham) return false end end return true else rspamd_logger.infox(task, 'skip %s sample to keep spam/ham balance; too many ham samples: %s', learn_type, nham) end end else -- Probabilistic learn mode, we just skip learn if we already have enough samples or -- if our coin drop is less than desired probability if learn_type == 'spam' then if nspam <= train_opts.max_trains then if train_opts.spam_skip_prob then if coin <= train_opts.spam_skip_prob then rspamd_logger.infox(task, 'skip %s sample probabilistically; probability %s (%s skip chance)', learn_type, coin, train_opts.spam_skip_prob) return false end return true end else rspamd_logger.infox(task, 'skip %s sample; too many spam samples: %s (%s limit)', learn_type, nspam, train_opts.max_trains) end else if nham <= train_opts.max_trains then if train_opts.ham_skip_prob then if coin <= train_opts.ham_skip_prob then rspamd_logger.infox(task, 'skip %s sample probabilistically; probability %s (%s skip chance)', learn_type, coin, train_opts.ham_skip_prob) return false end return true end else rspamd_logger.infox(task, 'skip %s sample; too many ham samples: %s (%s limit)', learn_type, nham, train_opts.max_trains) end end end return false end -- Closure generator for unlock function local function gen_unlock_cb(rule, set, ann_key) return function (err) if err then rspamd_logger.errx(rspamd_config, 'cannot unlock ANN %s:%s at %s from redis: %s', rule.prefix, set.name, ann_key, err) else lua_util.debugm(N, rspamd_config, 'unlocked ANN %s:%s at %s', rule.prefix, set.name, ann_key) end end end -- Used to generate new ANN key for specific profile local function new_ann_key(rule, set, version) local ann_key = string.format('%s_%s_%s_%s_%s', settings.prefix, rule.prefix, set.name, set.digest:sub(1, 8), tostring(version)) return ann_key end local function redis_ann_prefix(rule, settings_name) -- We also need to count metatokens: local n = meta_functions.version return string.format('%s%d_%s_%d_%s', settings.prefix, plugin_ver, rule.prefix, n, settings_name) end -- This function receives training vectors, checks them, spawn learning and saves ANN in Redis local function spawn_train(params) -- Check training data sanity -- Now we need to join inputs and create the appropriate test vectors local n = #params.set.symbols + meta_functions.rspamd_count_metatokens() -- Now we can train ann local train_ann = create_ann(params.rule.max_inputs or n, 3, params.rule) if #params.ham_vec + #params.spam_vec < params.rule.train.max_trains / 2 then -- Invalidate ANN as it is definitely invalid -- TODO: add invalidation assert(false) else local inputs, outputs = {}, {} -- Used to show parsed vectors in a convenient format (for debugging only) local function debug_vec(t) local ret = {} for i,v in ipairs(t) do if v ~= 0 then ret[#ret + 1] = string.format('%d=%.2f', i, v) end end return ret end -- Make training set by joining vectors -- KANN automatically shuffles those samples -- 1.0 is used for spam and -1.0 is used for ham -- It implies that output layer can express that (e.g. tanh output) for _,e in ipairs(params.spam_vec) do inputs[#inputs + 1] = e outputs[#outputs + 1] = {1.0} --rspamd_logger.debugm(N, rspamd_config, 'spam vector: %s', debug_vec(e)) end for _,e in ipairs(params.ham_vec) do inputs[#inputs + 1] = e outputs[#outputs + 1] = {-1.0} --rspamd_logger.debugm(N, rspamd_config, 'ham vector: %s', debug_vec(e)) end -- Called in child process local function train() local log_thresh = params.rule.train.max_iterations / 10 local seen_nan = false local function train_cb(iter, train_cost, value_cost) if (iter * (params.rule.train.max_iterations / log_thresh)) % (params.rule.train.max_iterations) == 0 then if train_cost ~= train_cost and not seen_nan then -- We have nan :( try to log lot's of stuff to dig into a problem seen_nan = true rspamd_logger.errx(rspamd_config, 'ANN %s:%s: train error: observed nan in error cost!; value cost = %s', params.rule.prefix, params.set.name, value_cost) for i,e in ipairs(inputs) do lua_util.debugm(N, rspamd_config, 'train vector %s -> %s', debug_vec(e), outputs[i][1]) end end rspamd_logger.infox(rspamd_config, "ANN %s:%s: learned from %s redis key in %s iterations, error: %s, value cost: %s", params.rule.prefix, params.set.name, params.ann_key, iter, train_cost, value_cost) end end lua_util.debugm(N, rspamd_config, "subprocess to learn ANN %s:%s has been started", params.rule.prefix, params.set.name) local pca if params.rule.max_inputs then -- Train PCA in the main process, presumably it is not that long lua_util.debugm(N, rspamd_config, "start PCA train for ANN %s:%s", params.rule.prefix, params.set.name) pca = learn_pca(inputs, params.rule.max_inputs) end lua_util.debugm(N, rspamd_config, "start neural train for ANN %s:%s", params.rule.prefix, params.set.name) local ret,err = pcall(train_ann.train1, train_ann, inputs, outputs, { lr = params.rule.train.learning_rate, max_epoch = params.rule.train.max_iterations, cb = train_cb, pca = pca }) if not ret then rspamd_logger.errx(rspamd_config, "cannot train ann %s:%s: %s", params.rule.prefix, params.set.name, err) return nil else lua_util.debugm(N, rspamd_config, "finished neural train for ANN %s:%s", params.rule.prefix, params.set.name) end local roc_thresholds = {} if params.rule.roc_enabled then local spam_threshold = get_roc_thresholds(train_ann, inputs, outputs, 1 - params.rule.roc_misclassification_cost, params.rule.roc_misclassification_cost) local ham_threshold = get_roc_thresholds(train_ann, inputs, outputs, params.rule.roc_misclassification_cost, 1 - params.rule.roc_misclassification_cost) roc_thresholds = {spam_threshold, ham_threshold} rspamd_logger.messagex("ROC thresholds: (spam_threshold: %s, ham_threshold: %s)", roc_thresholds[1], roc_thresholds[2]) end if not seen_nan then -- Convert to strings as ucl cannot rspamd_text properly local pca_data if pca then pca_data = tostring(pca:save()) end local out = { ann_data = tostring(train_ann:save()), pca_data = pca_data, roc_thresholds = roc_thresholds, } local final_data = ucl.to_format(out, 'msgpack') lua_util.debugm(N, rspamd_config, "subprocess for ANN %s:%s returned %s bytes", params.rule.prefix, params.set.name, #final_data) return final_data else return nil end end params.set.learning_spawned = true local function redis_save_cb(err) if err then rspamd_logger.errx(rspamd_config, 'cannot save ANN %s:%s to redis key %s: %s', params.rule.prefix, params.set.name, params.ann_key, err) lua_redis.redis_make_request_taskless(params.ev_base, rspamd_config, params.rule.redis, nil, false, -- is write gen_unlock_cb(params.rule, params.set, params.ann_key), --callback 'HDEL', -- command {params.ann_key, 'lock'} ) else rspamd_logger.infox(rspamd_config, 'saved ANN %s:%s to redis: %s', params.rule.prefix, params.set.name, params.set.ann.redis_key) end end local function ann_trained(err, data) params.set.learning_spawned = false if err then rspamd_logger.errx(rspamd_config, 'cannot train ANN %s:%s : %s', params.rule.prefix, params.set.name, err) lua_redis.redis_make_request_taskless(params.ev_base, rspamd_config, params.rule.redis, nil, true, -- is write gen_unlock_cb(params.rule, params.set, params.ann_key), --callback 'HDEL', -- command {params.ann_key, 'lock'} ) else local parser = ucl.parser() local ok, parse_err = parser:parse_text(data, 'msgpack') assert(ok, parse_err) local parsed = parser:get_object() local ann_data = rspamd_util.zstd_compress(parsed.ann_data) local pca_data = parsed.pca_data local roc_thresholds = parsed.roc_thresholds fill_set_ann(params.set, params.ann_key) if pca_data then params.set.ann.pca = rspamd_tensor.load(pca_data) pca_data = rspamd_util.zstd_compress(pca_data) end if roc_thresholds then params.set.ann.roc_thresholds = roc_thresholds end -- Deserialise ANN from the child process ann_trained = rspamd_kann.load(parsed.ann_data) local version = (params.set.ann.version or 0) + 1 params.set.ann.version = version params.set.ann.ann = ann_trained params.set.ann.symbols = params.set.symbols params.set.ann.redis_key = new_ann_key(params.rule, params.set, version) local profile = { symbols = params.set.symbols, digest = params.set.digest, redis_key = params.set.ann.redis_key, version = version } local profile_serialized = ucl.to_format(profile, 'json-compact', true) local roc_thresholds_serialized = ucl.to_format(roc_thresholds, 'json-compact', true) rspamd_logger.infox(rspamd_config, 'trained ANN %s:%s, %s bytes (%s compressed); %s rows in pca (%sb compressed); redis key: %s (old key %s)', params.rule.prefix, params.set.name, #data, #ann_data, #(params.set.ann.pca or {}), #(pca_data or {}), params.set.ann.redis_key, params.ann_key) lua_redis.exec_redis_script(redis_script_id.save_unlock, {ev_base = params.ev_base, is_write = true}, redis_save_cb, {profile.redis_key, redis_ann_prefix(params.rule, params.set.name), ann_data, profile_serialized, tostring(params.rule.ann_expire), tostring(os.time()), params.ann_key, -- old key to unlock... roc_thresholds_serialized, pca_data, }) end end if params.rule.max_inputs then fill_set_ann(params.set, params.ann_key) end params.worker:spawn_process{ func = train, on_complete = ann_trained, proctitle = string.format("ANN train for %s/%s", params.rule.prefix, params.set.name), } -- Spawn learn and register lock extension params.set.learning_spawned = true register_lock_extender(params.rule, params.set, params.ev_base, params.ann_key) return end end -- This function is used to adjust profiles and allowed setting ids for each rule -- It must be called when all settings are already registered (e.g. at post-init for config) local function process_rules_settings() local function process_settings_elt(rule, selt) local profile = rule.profile[selt.name] if profile then -- Use static user defined profile -- Ensure that we have an array... lua_util.debugm(N, rspamd_config, "use static profile for %s (%s): %s", rule.prefix, selt.name, profile) if not profile[1] then profile = lua_util.keys(profile) end selt.symbols = profile else lua_util.debugm(N, rspamd_config, "use dynamic cfg based profile for %s (%s)", rule.prefix, selt.name) end local function filter_symbols_predicate(sname) if settings.blacklisted_symbols and settings.blacklisted_symbols[sname] then return false end local fl = rspamd_config:get_symbol_flags(sname) if fl then fl = lua_util.list_to_hash(fl) return not (fl.nostat or fl.idempotent or fl.skip or fl.composite) end return false end -- Generic stuff if not profile then -- Do filtering merely if we are using a dynamic profile selt.symbols = fun.totable(fun.filter(filter_symbols_predicate, selt.symbols)) end table.sort(selt.symbols) selt.digest = lua_util.table_digest(selt.symbols) selt.prefix = redis_ann_prefix(rule, selt.name) rspamd_logger.messagex(rspamd_config, 'use NN prefix for rule %s; settings id "%s"; symbols digest: "%s"', selt.prefix, selt.name, selt.digest) lua_redis.register_prefix(selt.prefix, N, string.format('NN prefix for rule "%s"; settings id "%s"', selt.prefix, selt.name), { persistent = true, type = 'zlist', }) -- Versions lua_redis.register_prefix(selt.prefix .. '_\\d+', N, string.format('NN storage for rule "%s"; settings id "%s"', selt.prefix, selt.name), { persistent = true, type = 'hash', }) lua_redis.register_prefix(selt.prefix .. '_\\d+_spam_set', N, string.format('NN learning set (spam) for rule "%s"; settings id "%s"', selt.prefix, selt.name), { persistent = true, type = 'set', }) lua_redis.register_prefix(selt.prefix .. '_\\d+_ham_set', N, string.format('NN learning set (spam) for rule "%s"; settings id "%s"', rule.prefix, selt.name), { persistent = true, type = 'set', }) end for k,rule in pairs(settings.rules) do if not rule.allowed_settings then rule.allowed_settings = {} elseif rule.allowed_settings == 'all' then -- Extract all settings ids rule.allowed_settings = lua_util.keys(lua_settings.all_settings()) end -- Convert to a map -> true rule.allowed_settings = lua_util.list_to_hash(rule.allowed_settings) -- Check if we can work without settings if k == 'default' or type(rule.default) ~= 'boolean' then rule.default = true end rule.settings = {} if rule.default then local default_settings = { symbols = lua_settings.default_symbols(), name = 'default' } process_settings_elt(rule, default_settings) rule.settings[-1] = default_settings -- Magic constant, but OK as settings are positive int32 end -- Now, for each allowed settings, we store sorted symbols + digest -- We set table rule.settings[id] -> { name = name, symbols = symbols, digest = digest } for s,_ in pairs(rule.allowed_settings) do -- Here, we have a name, set of symbols and local settings_id = s if type(settings_id) ~= 'number' then settings_id = lua_settings.numeric_settings_id(s) end local selt = lua_settings.settings_by_id(settings_id) local nelt = { symbols = selt.symbols, -- Already sorted name = selt.name } process_settings_elt(rule, nelt) for id,ex in pairs(rule.settings) do if type(ex) == 'table' then if nelt and lua_util.distance_sorted(ex.symbols, nelt.symbols) == 0 then -- Equal symbols, add reference lua_util.debugm(N, rspamd_config, 'added reference from settings id %s to %s; same symbols', nelt.name, ex.name) rule.settings[settings_id] = id nelt = nil end end end if nelt then rule.settings[settings_id] = nelt lua_util.debugm(N, rspamd_config, 'added new settings id %s(%s) to %s', nelt.name, settings_id, rule.prefix) end end end end -- Extract settings element for a specific settings id local function get_rule_settings(task, rule) local sid = task:get_settings_id() or -1 local set = rule.settings[sid] if not set then return nil end while type(set) == 'number' do -- Reference to another settings! set = rule.settings[set] end return set end local function result_to_vector(task, profile) if not profile.zeros then -- Fill zeros vector local zeros = {} for i=1,meta_functions.count_metatokens() do zeros[i] = 0.0 end for _,_ in ipairs(profile.symbols) do zeros[#zeros + 1] = 0.0 end profile.zeros = zeros end local vec = lua_util.shallowcopy(profile.zeros) local mt = meta_functions.rspamd_gen_metatokens(task) for i,v in ipairs(mt) do vec[i] = v end task:process_ann_tokens(profile.symbols, vec, #mt, 0.1) return vec end return { can_push_train_vector = can_push_train_vector, create_ann = create_ann, default_options = default_options, gen_unlock_cb = gen_unlock_cb, get_rule_settings = get_rule_settings, load_scripts = load_scripts, module_config = module_config, new_ann_key = new_ann_key, plugin_ver = plugin_ver, process_rules_settings = process_rules_settings, redis_ann_prefix = redis_ann_prefix, redis_params = redis_params, redis_script_id = redis_script_id, result_to_vector = result_to_vector, settings = settings, spawn_train = spawn_train, }