-- Lua script to perform bayes classification -- This script accepts the following parameters: -- key1 - prefix for bayes tokens (e.g. for per-user classification) -- key2 - set of tokens encoded in messagepack array of strings local prefix = KEYS[1] local output_spam = {} local output_ham = {} local learned_ham = tonumber(redis.call('HGET', prefix, 'learns_ham')) or 0 local learned_spam = tonumber(redis.call('HGET', prefix, 'learns_spam')) or 0 -- Output is a set of pairs (token_index, token_count), tokens that are not -- found are not filled. -- This optimisation will save a lot of space for sparse tokens, and in Bayes that assumption is normally held if learned_ham > 0 and learned_spam > 0 then local input_tokens = cmsgpack.unpack(KEYS[2]) for i, token in ipairs(input_tokens) do local token_data = redis.call('HMGET', token, 'H', 'S') if token_data then local ham_count = token_data[1] local spam_count = token_data[2] if ham_count then table.insert(output_ham, { i, tonumber(ham_count) }) end if spam_count then table.insert(output_spam, { i, tonumber(spam_count) }) end end end end return { learned_ham, learned_spam, output_ham, output_spam }