-- Lua script to perform bayes classification -- This script accepts the following parameters: -- key1 - prefix for bayes tokens (e.g. for per-user classification) -- key2 - set of tokens encoded in messagepack array of int64_t local prefix = KEYS[1] local input_tokens = cmsgpack.unpack(KEYS[2]) local output_spam = {} local output_ham = {} local learned_ham = redis.call('HGET', prefix, 'learned_ham') or 0 local learned_spam = redis.call('HGET', prefix, 'learned_spam') or 0 local prefix_underscore = prefix .. '_' -- Output is a set of pairs (token_index, token_count), tokens that are not -- found are not filled. -- This optimisation will save a lot of space for sparse tokens, and in Bayes that assumption is normally held if learned_ham > 0 and learned_spam > 0 then for i, token in ipairs(input_tokens) do local token_data = redis.call('HMGET', prefix_underscore .. tostring(token), 'H', 'S') if token_data then local ham_count = token_data[1] local spam_count = tonumber(token_data[2]) or 0 if ham_count then table.insert(output_ham, { i, tonumber(ham_count) }) end if spam_count then table.insert(output_spam, { i, tonumber(spam_count) }) end end end end return { learned_ham, learned_spam, output_ham, output_spam }