-- Lua script to perform bayes learning (multi-class) -- This script accepts the following parameters: -- key1 - prefix for bayes tokens (e.g. for per-user classification) -- key2 - class label string (e.g. "S", "H", "T") -- key3 - string symbol -- key4 - boolean is_unlearn -- key5 - set of tokens encoded in messagepack array of strings -- key6 - set of text tokens (if any) encoded in messagepack array of strings (size must be twice of `KEYS[5]`) local prefix = KEYS[1] local class_label = KEYS[2] local symbol = KEYS[3] local is_unlearn = KEYS[4] == 'true' and true or false local input_tokens = cmsgpack.unpack(KEYS[5]) local text_tokens if KEYS[6] then text_tokens = cmsgpack.unpack(KEYS[6]) end -- Handle backward compatibility for boolean values if class_label == 'true' then class_label = 'S' -- spam elseif class_label == 'false' then class_label = 'H' -- ham end local hash_key = class_label local learned_key = 'learns_' .. string.lower(class_label) -- Handle legacy keys for backward compatibility if class_label == 'S' then learned_key = 'learns_spam' elseif class_label == 'H' then learned_key = 'learns_ham' end redis.call('SADD', symbol .. '_keys', prefix) redis.call('HSET', prefix, 'version', '2') -- new schema -- Update learned count, but prevent it from going negative if is_unlearn then local current_count = tonumber(redis.call('HGET', prefix, learned_key)) or 0 if current_count > 0 then redis.call('HINCRBY', prefix, learned_key, -1) end else redis.call('HINCRBY', prefix, learned_key, 1) end for i, token in ipairs(input_tokens) do -- Update token count, but prevent it from going negative if is_unlearn then local current_token_count = tonumber(redis.call('HGET', token, hash_key)) or 0 if current_token_count > 0 then redis.call('HINCRBY', token, hash_key, -1) end else redis.call('HINCRBY', token, hash_key, 1) end if text_tokens then local tok1 = text_tokens[i * 2 - 1] local tok2 = text_tokens[i * 2] if tok1 then if tok2 then redis.call('HSET', token, 'tokens', string.format('%s:%s', tok1, tok2)) else redis.call('HSET', token, 'tokens', tok1) end if is_unlearn then local current_z_score = tonumber(redis.call('ZSCORE', prefix .. '_z', token)) or 0 if current_z_score > 0 then redis.call('ZINCRBY', prefix .. '_z', -1, token) end else redis.call('ZINCRBY', prefix .. '_z', 1, token) end end end end