/* diff - compute a shortest edit script (SES) given two sequences * Copyright (c) 2004 Michael B. Allen * * The MIT License * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ /* This algorithm is basically Myers' solution to SES/LCS with * the Hirschberg linear space refinement as described in the * following publication: * * E. Myers, ``An O(ND) Difference Algorithm and Its Variations,'' * Algorithmica 1, 2 (1986), 251-266. * http://www.cs.arizona.edu/people/gene/PAPERS/diff.ps * * This is the same algorithm used by GNU diff(1). */ /* Copyright (c) 2010, Vsevolod Stakhov * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED ''AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL AUTHOR BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "diff.h" #define FV(k) _v(ctx, (k), 0) #define RV(k) _v(ctx, (k), 1) #define MAX_DIFF 1024 struct _ctx { GArray *buf; GArray *ses; gint si; gint dmax; }; struct middle_snake { gint x, y, u, v; }; static void maybe_resize_array(GArray *arr, guint k) { if (k > arr->len) { g_array_set_size (arr, k); } } static void _setv(struct _ctx *ctx, gint k, gint r, gint val) { gint j; gint *i; /* Pack -N to N ginto 0 to N * 2 */ j = k <= 0 ? -k * 4 + r : k * 4 + (r - 2); maybe_resize_array (ctx->buf, j); i = (gint *) &g_array_index (ctx->buf, gint, j); *i = val; } static gint _v(struct _ctx *ctx, gint k, gint r) { gint j; j = k <= 0 ? -k * 4 + r : k * 4 + (r - 2); return *((gint *) &g_array_index (ctx->buf, gint, j)); } static gint _find_middle_snake(const void *a, gint aoff, gint n, const void *b, gint boff, gint m, struct _ctx *ctx, struct middle_snake *ms) { gint delta, odd, mid, d; delta = n - m; odd = delta & 1; mid = (n + m) / 2; mid += odd; _setv (ctx, 1, 0, 0); _setv (ctx, delta - 1, 1, n); for (d = 0; d <= mid; d++) { gint k, x, y; if ((2 * d - 1) >= ctx->dmax) { return ctx->dmax; } for (k = d; k >= -d; k -= 2) { if (k == -d || (k != d && FV(k - 1) < FV(k + 1))) { x = FV(k + 1); } else { x = FV(k - 1) + 1; } y = x - k; ms->x = x; ms->y = y; const guchar *a0 = (const guchar *) a + aoff; const guchar *b0 = (const guchar *) b + boff; while (x < n && y < m && a0[x] == b0[y]) { x++; y++; } _setv (ctx, k, 0, x); if (odd && k >= (delta - (d - 1)) && k <= (delta + (d - 1))) { if (x >= RV(k)) { ms->u = x; ms->v = y; return 2 * d - 1; } } } for (k = d; k >= -d; k -= 2) { gint kr = (n - m) + k; if (k == d || (k != -d && RV(kr - 1) < RV(kr + 1))) { x = RV(kr - 1); } else { x = RV(kr + 1) - 1; } y = x - kr; ms->u = x; ms->v = y; const guchar *a0 = (const guchar *) a + aoff; const guchar *b0 = (const guchar *) b + boff; while (x > 0 && y > 0 && a0[x - 1] == b0[y - 1]) { x--; y--; } _setv (ctx, kr, 1, x); if (!odd && kr >= -d && kr <= d) { if (x <= FV(kr)) { ms->x = x; ms->y = y; return 2 * d; } } } } errno = EFAULT; return -1; } static void _edit(struct _ctx *ctx, gint op, gint off, gint len) { struct diff_edit *e = NULL, newe; if (len == 0 || ctx->ses == NULL) { return; } /* * Add an edit to the SES (or * coalesce if the op is the same) */ if (ctx->ses->len != 0) { e = &g_array_index (ctx->ses, struct diff_edit, ctx->ses->len - 1); } if (e == NULL || e->op != op) { newe.op = op; newe.off = off; newe.len = len; g_array_append_val (ctx->ses, newe); } else { e->len += len; } } static gint _ses(const void *a, gint aoff, gint n, const void *b, gint boff, gint m, struct _ctx *ctx) { struct middle_snake ms = { .x = 0, .y = 0, .u = 0, .v = 0 }; gint d; if (n == 0) { _edit (ctx, DIFF_INSERT, boff, m); d = m; } else if (m == 0) { _edit (ctx, DIFF_DELETE, aoff, n); d = n; } else { /* Find the middle "snake" around which we * recursively solve the sub-problems. */ d = _find_middle_snake (a, aoff, n, b, boff, m, ctx, &ms); if (d == -1) { return -1; } else if (d >= ctx->dmax) { return ctx->dmax; } else if (ctx->ses == NULL) { return d; } else if (d > 1) { if (_ses (a, aoff, ms.x, b, boff, ms.y, ctx) == -1) { return -1; } _edit (ctx, DIFF_MATCH, aoff + ms.x, ms.u - ms.x); aoff += ms.u; boff += ms.v; n -= ms.u; m -= ms.v; if (_ses (a, aoff, n, b, boff, m, ctx) == -1) { return -1; } } else { gint x = ms.x; gint u = ms.u; /* There are only 4 base cases when the * edit distance is 1. * * n > m m > n * * - | * \ \ x != u * \ \ * * \ \ * \ \ x == u * - | */ if (m > n) { if (x == u) { _edit (ctx, DIFF_MATCH, aoff, n); _edit (ctx, DIFF_INSERT, boff + (m - 1), 1); } else { _edit (ctx, DIFF_INSERT, boff, 1); _edit (ctx, DIFF_MATCH, aoff, n); } } else { if (x == u) { _edit (ctx, DIFF_MATCH, aoff, m); _edit (ctx, DIFF_DELETE, aoff + (n - 1), 1); } else { _edit (ctx, DIFF_DELETE, aoff, 1); _edit (ctx, DIFF_MATCH, aoff + 1, m); } } } } return d; } gint rspamd_diff(const void *a, gint aoff, gint n, const void *b, gint boff, gint m, gint dmax, GArray *ses, gint *sn) { struct _ctx ctx; gint d, x, y; struct diff_edit *e = NULL; GArray *tmp; tmp = g_array_sized_new (FALSE, TRUE, sizeof(gint), dmax); ctx.buf = tmp; ctx.ses = ses; ctx.si = 0; ctx.dmax = dmax; /* The _ses function assumes the SES will begin or end with a delete * or insert. The following will insure this is true by eating any * beginning matches. This is also a quick to process sequences * that match entirely. */ x = y = 0; const guchar *a0 = (const guchar *) a + aoff; const guchar *b0 = (const guchar *) b + boff; while (x < n && y < m && a0[x] == b0[y]) { x++; y++; } _edit (&ctx, DIFF_MATCH, aoff, x); if ((d = _ses (a, aoff + x, n - x, b, boff + y, m - y, &ctx)) == -1) { g_array_free (tmp, TRUE); return -1; } if (ses && sn && e) { *sn = e->op ? ctx.si + 1 : 0; } g_array_free (tmp, TRUE); return d; } guint32 compare_diff_distance (f_str_t *s1, f_str_t *s2) { GArray *ses; struct diff_edit *e; guint i; guint32 distance = 0; ses = g_array_sized_new (FALSE, TRUE, sizeof (struct diff_edit), MAX_DIFF); if (rspamd_diff (s1->begin, 0, s1->len, s2->begin, 0, s2->len, MAX_DIFF, ses, NULL) == -1) { /* Diff failed, strings are different */ g_array_free (ses, TRUE); return 0; } for (i = 0; i < ses->len; i ++) { e = &g_array_index(ses, struct diff_edit, i); if (e->op != DIFF_MATCH) { distance += e->len; } } g_array_free (ses, TRUE); return 100 - (2 * distance * 100) / (s1->len + s2->len); }