/* * Copyright (c) 2009, Rambler media * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY Rambler media ''AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL Rambler BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "mem_pool.h" #include "fstring.h" #include "fuzzy.h" #define ROLL_WINDOW_SIZE 9 #define MIN_FUZZY_BLOCK_SIZE 3 #define HASH_INIT 0x28021967 struct roll_state { uint32_t h[3]; char window[ROLL_WINDOW_SIZE]; int n; }; static struct roll_state rs; /* Rolling hash function based on Adler-32 checksum */ static uint32_t fuzzy_roll_hash (char c) { /* Check window position */ if (rs.n == ROLL_WINDOW_SIZE) { rs.n = 0; } rs.h[1] -= rs.h[0]; rs.h[1] += ROLL_WINDOW_SIZE * c; rs.h[0] += c; rs.h[0] -= rs.window[rs.n]; /* Save current symbol */ rs.window[rs.n] = c; rs.n++; rs.h[2] <<= 5; rs.h[2] ^= c; return rs.h[0] + rs.h[1] + rs.h[2]; } /* A simple non-rolling hash, based on the FNV hash */ static uint32_t fuzzy_fnv_hash (char c, uint32_t hval) { hval ^= c; hval += (hval << 1) + (hval << 4) + (hval << 7) + (hval << 8) + (hval << 24); return hval; } /* Calculate blocksize depending on length of input */ static uint32_t fuzzy_blocksize (uint32_t len) { if (len < MIN_FUZZY_BLOCK_SIZE) { return MIN_FUZZY_BLOCK_SIZE; } return g_spaced_primes_closest (len / FUZZY_HASHLEN); } /* Update hash with new symbol */ void fuzzy_update (fuzzy_hash_t * h, char c) { h->rh = fuzzy_roll_hash (c); h->h = fuzzy_fnv_hash (c, h->h); if (h->rh % h->block_size == (h->block_size - 1)) { h->hash_pipe[h->hi] = h->h; if (h->hi < FUZZY_HASHLEN - 2) { h->h = HASH_INIT; h->hi++; } } } /* * Levenshtein distance between string1 and string2. * * Replace cost is normally 1, and 2 with nonzero xcost. */ uint32_t lev_distance (char *s1, int len1, char *s2, int len2) { int i; int *row; /* we only need to keep one row of costs */ int *end; int half, nx; char *sx, *char2p, char1; int *p, D, x, offset, c3; /* strip common prefix */ while (len1 > 0 && len2 > 0 && *s1 == *s2) { len1--; len2--; s1++; s2++; } /* strip common suffix */ while (len1 > 0 && len2 > 0 && s1[len1 - 1] == s2[len2 - 1]) { len1--; len2--; } /* catch trivial cases */ if (len1 == 0) { return len2; } if (len2 == 0) { return len1; } /* make the inner cycle (i.e. string2) the longer one */ if (len1 > len2) { nx = len1; sx = s1; len1 = len2; len2 = nx; s1 = s2; s2 = sx; } /* check len1 == 1 separately */ if (len1 == 1) { return len2 - (memchr (s2, *s1, len2) != NULL); } len1++; len2++; half = len1 >> 1; /* initalize first row */ row = g_malloc (len2 * sizeof (int)); end = row + len2 - 1; for (i = 0; i < len2; i++) { row[i] = i; } /* in this case we don't have to scan two corner triangles (of size len1/2) * in the matrix because no best path can go throught them. note this * breaks when len1 == len2 == 2 so the memchr() special case above is * necessary */ row[0] = len1 - half - 1; for (i = 1; i < len1; i++) { char1 = s1[i - 1]; /* skip the upper triangle */ if (i >= len1 - half) { offset = i - (len1 - half); char2p = s2 + offset; p = row + offset; c3 = *(p++) + (char1 != *(char2p++)); x = *p; x++; D = x; if (x > c3) x = c3; *(p++) = x; } else { p = row + 1; char2p = s2; D = x = i; } /* skip the lower triangle */ if (i <= half + 1) end = row + len2 + i - half - 2; /* main */ while (p <= end) { c3 = --D + (char1 != *(char2p++)); x++; if (x > c3) x = c3; D = *p; D++; if (x > D) x = D; *(p++) = x; } /* lower triangle sentinel */ if (i <= half) { c3 = --D + (char1 != *char2p); x++; if (x > c3) x = c3; *p = x; } } i = *end; g_free (row); return i; } /* Calculate fuzzy hash for specified string */ fuzzy_hash_t * fuzzy_init (f_str_t * in, memory_pool_t * pool) { fuzzy_hash_t *new; int i, repeats = 0; char *c = in->begin, last = '\0'; new = memory_pool_alloc0 (pool, sizeof (fuzzy_hash_t)); bzero (&rs, sizeof (rs)); new->block_size = fuzzy_blocksize (in->len); for (i = 0; i < in->len; i++) { if (*c == last) { repeats++; } else { repeats = 0; } if (!g_ascii_isspace (*c) && !g_ascii_ispunct (*c) && repeats < 3) { fuzzy_update (new, *c); } last = *c; c++; } return new; } fuzzy_hash_t * fuzzy_init_byte_array (GByteArray * in, memory_pool_t * pool) { f_str_t f; f.begin = in->data; f.len = in->len; return fuzzy_init (&f, pool); } /* Compare score of difference between two hashes 0 - different hashes, 100 - identical hashes */ int fuzzy_compare_hashes (fuzzy_hash_t * h1, fuzzy_hash_t * h2) { int res, l1, l2; /* If we have hashes of different size, input strings are too different */ if (h1->block_size != h2->block_size) { return 0; } l1 = strlen (h1->hash_pipe); l2 = strlen (h2->hash_pipe); if (l1 == 0 || l2 == 0) { return 0; } res = lev_distance (h1->hash_pipe, l1, h2->hash_pipe, l2); res = 100 - (2 * res * 100) / (l1 + l2); return res; } /* * vi:ts=4 */