/* Copyright 2008, Google Inc.
 * All rights reserved.
 *
 * Code released into the public domain.
 *
 * curve25519-donna: Curve25519 elliptic curve, public key function
 *
 * http://code.google.com/p/curve25519-donna/
 *
 * Adam Langley <agl@imperialviolet.org>
 *
 * Derived from public domain C code by Daniel J. Bernstein <djb@cr.yp.to>
 *
 * More information about curve25519 can be found here
 *   http://cr.yp.to/ecdh.html
 *
 * djb's sample implementation of curve25519 is written in a special assembly
 * language called qhasm and uses the floating point registers.
 *
 * This is, almost, a clean room reimplementation from the curve25519 paper. It
 * uses many of the tricks described therein. Only the crecip function is taken
 * from the sample implementation.
 */

#include <string.h>
#include <stdint.h>
#include "curve25519.h"

typedef uint8_t u8;
typedef uint64_t limb;
typedef limb felem[5];
// This is a special gcc mode for 128-bit integers. It's implemented on 64-bit
// platforms only as far as I know.
typedef unsigned uint128_t __attribute__((mode(TI)));

#undef force_inline
#define force_inline __attribute__((always_inline))

/* Sum two numbers: output += in */
static inline void force_inline
fsum (limb *output, const limb *in)
{
	output[0] += in[0];
	output[1] += in[1];
	output[2] += in[2];
	output[3] += in[3];
	output[4] += in[4];
}

/* Find the difference of two numbers: output = in - output
 * (note the order of the arguments!)
 *
 * Assumes that out[i] < 2**52
 * On return, out[i] < 2**55
 */
static inline void force_inline
fdifference_backwards (felem out, const felem in)
{
	/* 152 is 19 << 3 */
	static const limb two54m152 = (((limb) 1) << 54) - 152;
	static const limb two54m8 = (((limb) 1) << 54) - 8;

	out[0] = in[0] + two54m152 - out[0];
	out[1] = in[1] + two54m8 - out[1];
	out[2] = in[2] + two54m8 - out[2];
	out[3] = in[3] + two54m8 - out[3];
	out[4] = in[4] + two54m8 - out[4];
}

/* Multiply a number by a scalar: output = in * scalar */
static inline void force_inline
fscalar_product (felem output, const felem in, const limb scalar)
{
	uint128_t a;

	a = ((uint128_t) in[0]) * scalar;
	output[0] = ((limb) a) & 0x7ffffffffffff;

	a = ((uint128_t) in[1]) * scalar + ((limb) (a >> 51));
	output[1] = ((limb) a) & 0x7ffffffffffff;

	a = ((uint128_t) in[2]) * scalar + ((limb) (a >> 51));
	output[2] = ((limb) a) & 0x7ffffffffffff;

	a = ((uint128_t) in[3]) * scalar + ((limb) (a >> 51));
	output[3] = ((limb) a) & 0x7ffffffffffff;

	a = ((uint128_t) in[4]) * scalar + ((limb) (a >> 51));
	output[4] = ((limb) a) & 0x7ffffffffffff;

	output[0] += (a >> 51) * 19;
}

/* Multiply two numbers: output = in2 * in
 *
 * output must be distinct to both inputs. The inputs are reduced coefficient
 * form, the output is not.
 *
 * Assumes that in[i] < 2**55 and likewise for in2.
 * On return, output[i] < 2**52
 */
static inline void force_inline
fmul (felem output, const felem in2, const felem in)
{
	uint128_t t[5];
	limb r0, r1, r2, r3, r4, s0, s1, s2, s3, s4, c;

	r0 = in[0];
	r1 = in[1];
	r2 = in[2];
	r3 = in[3];
	r4 = in[4];

	s0 = in2[0];
	s1 = in2[1];
	s2 = in2[2];
	s3 = in2[3];
	s4 = in2[4];

	t[0] = ((uint128_t) r0) * s0;
	t[1] = ((uint128_t) r0) * s1 + ((uint128_t) r1) * s0;
	t[2] = ((uint128_t) r0) * s2 + ((uint128_t) r2) * s0
			+ ((uint128_t) r1) * s1;
	t[3] = ((uint128_t) r0) * s3 + ((uint128_t) r3) * s0 + ((uint128_t) r1) * s2
			+ ((uint128_t) r2) * s1;
	t[4] = ((uint128_t) r0) * s4 + ((uint128_t) r4) * s0 + ((uint128_t) r3) * s1
			+ ((uint128_t) r1) * s3 + ((uint128_t) r2) * s2;

	r4 *= 19;
	r1 *= 19;
	r2 *= 19;
	r3 *= 19;

	t[0] += ((uint128_t) r4) * s1 + ((uint128_t) r1) * s4
			+ ((uint128_t) r2) * s3 + ((uint128_t) r3) * s2;
	t[1] += ((uint128_t) r4) * s2 + ((uint128_t) r2) * s4
			+ ((uint128_t) r3) * s3;
	t[2] += ((uint128_t) r4) * s3 + ((uint128_t) r3) * s4;
	t[3] += ((uint128_t) r4) * s4;

	r0 = (limb) t[0] & 0x7ffffffffffff;
	c = (limb) (t[0] >> 51);
	t[1] += c;
	r1 = (limb) t[1] & 0x7ffffffffffff;
	c = (limb) (t[1] >> 51);
	t[2] += c;
	r2 = (limb) t[2] & 0x7ffffffffffff;
	c = (limb) (t[2] >> 51);
	t[3] += c;
	r3 = (limb) t[3] & 0x7ffffffffffff;
	c = (limb) (t[3] >> 51);
	t[4] += c;
	r4 = (limb) t[4] & 0x7ffffffffffff;
	c = (limb) (t[4] >> 51);
	r0 += c * 19;
	c = r0 >> 51;
	r0 = r0 & 0x7ffffffffffff;
	r1 += c;
	c = r1 >> 51;
	r1 = r1 & 0x7ffffffffffff;
	r2 += c;

	output[0] = r0;
	output[1] = r1;
	output[2] = r2;
	output[3] = r3;
	output[4] = r4;
}

static inline void force_inline
fsquare_times (felem output, const felem in, limb count)
{
	uint128_t t[5];
	limb r0, r1, r2, r3, r4, c;
	limb d0, d1, d2, d4, d419;

	r0 = in[0];
	r1 = in[1];
	r2 = in[2];
	r3 = in[3];
	r4 = in[4];

	do {
		d0 = r0 * 2;
		d1 = r1 * 2;
		d2 = r2 * 2 * 19;
		d419 = r4 * 19;
		d4 = d419 * 2;

		t[0] = ((uint128_t) r0) * r0 + ((uint128_t) d4) * r1
				+ (((uint128_t) d2) * (r3));
		t[1] = ((uint128_t) d0) * r1 + ((uint128_t) d4) * r2
				+ (((uint128_t) r3) * (r3 * 19));
		t[2] = ((uint128_t) d0) * r2 + ((uint128_t) r1) * r1
				+ (((uint128_t) d4) * (r3));
		t[3] = ((uint128_t) d0) * r3 + ((uint128_t) d1) * r2
				+ (((uint128_t) r4) * (d419));
		t[4] = ((uint128_t) d0) * r4 + ((uint128_t) d1) * r3
				+ (((uint128_t) r2) * (r2));

		r0 = (limb) t[0] & 0x7ffffffffffff;
		c = (limb) (t[0] >> 51);
		t[1] += c;
		r1 = (limb) t[1] & 0x7ffffffffffff;
		c = (limb) (t[1] >> 51);
		t[2] += c;
		r2 = (limb) t[2] & 0x7ffffffffffff;
		c = (limb) (t[2] >> 51);
		t[3] += c;
		r3 = (limb) t[3] & 0x7ffffffffffff;
		c = (limb) (t[3] >> 51);
		t[4] += c;
		r4 = (limb) t[4] & 0x7ffffffffffff;
		c = (limb) (t[4] >> 51);
		r0 += c * 19;
		c = r0 >> 51;
		r0 = r0 & 0x7ffffffffffff;
		r1 += c;
		c = r1 >> 51;
		r1 = r1 & 0x7ffffffffffff;
		r2 += c;
	} while (--count);

	output[0] = r0;
	output[1] = r1;
	output[2] = r2;
	output[3] = r3;
	output[4] = r4;
}

/* Load a little-endian 64-bit number  */
static limb load_limb (const u8 *in)
{
	return ((limb) in[0]) | (((limb) in[1]) << 8) | (((limb) in[2]) << 16)
			| (((limb) in[3]) << 24) | (((limb) in[4]) << 32)
			| (((limb) in[5]) << 40) | (((limb) in[6]) << 48)
			| (((limb) in[7]) << 56);
}

static void store_limb (u8 *out, limb in)
{
	out[0] = in & 0xff;
	out[1] = (in >> 8) & 0xff;
	out[2] = (in >> 16) & 0xff;
	out[3] = (in >> 24) & 0xff;
	out[4] = (in >> 32) & 0xff;
	out[5] = (in >> 40) & 0xff;
	out[6] = (in >> 48) & 0xff;
	out[7] = (in >> 56) & 0xff;
}

/* Take a little-endian, 32-byte number and expand it into polynomial form */
static void fexpand (limb *output, const u8 *in)
{
	output[0] = load_limb (in) & 0x7ffffffffffff;
	output[1] = (load_limb (in + 6) >> 3) & 0x7ffffffffffff;
	output[2] = (load_limb (in + 12) >> 6) & 0x7ffffffffffff;
	output[3] = (load_limb (in + 19) >> 1) & 0x7ffffffffffff;
	output[4] = (load_limb (in + 24) >> 12) & 0x7ffffffffffff;
}

/* Take a fully reduced polynomial form number and contract it into a
 * little-endian, 32-byte array
 */
static void fcontract (u8 *output, const felem input)
{
	uint128_t t[5];

	t[0] = input[0];
	t[1] = input[1];
	t[2] = input[2];
	t[3] = input[3];
	t[4] = input[4];

	t[1] += t[0] >> 51;
	t[0] &= 0x7ffffffffffff;
	t[2] += t[1] >> 51;
	t[1] &= 0x7ffffffffffff;
	t[3] += t[2] >> 51;
	t[2] &= 0x7ffffffffffff;
	t[4] += t[3] >> 51;
	t[3] &= 0x7ffffffffffff;
	t[0] += 19 * (t[4] >> 51);
	t[4] &= 0x7ffffffffffff;

	t[1] += t[0] >> 51;
	t[0] &= 0x7ffffffffffff;
	t[2] += t[1] >> 51;
	t[1] &= 0x7ffffffffffff;
	t[3] += t[2] >> 51;
	t[2] &= 0x7ffffffffffff;
	t[4] += t[3] >> 51;
	t[3] &= 0x7ffffffffffff;
	t[0] += 19 * (t[4] >> 51);
	t[4] &= 0x7ffffffffffff;

	/* now t is between 0 and 2^255-1, properly carried. */
	/* case 1: between 0 and 2^255-20. case 2: between 2^255-19 and 2^255-1. */

	t[0] += 19;

	t[1] += t[0] >> 51;
	t[0] &= 0x7ffffffffffff;
	t[2] += t[1] >> 51;
	t[1] &= 0x7ffffffffffff;
	t[3] += t[2] >> 51;
	t[2] &= 0x7ffffffffffff;
	t[4] += t[3] >> 51;
	t[3] &= 0x7ffffffffffff;
	t[0] += 19 * (t[4] >> 51);
	t[4] &= 0x7ffffffffffff;

	/* now between 19 and 2^255-1 in both cases, and offset by 19. */

	t[0] += 0x8000000000000 - 19;
	t[1] += 0x8000000000000 - 1;
	t[2] += 0x8000000000000 - 1;
	t[3] += 0x8000000000000 - 1;
	t[4] += 0x8000000000000 - 1;

	/* now between 2^255 and 2^256-20, and offset by 2^255. */

	t[1] += t[0] >> 51;
	t[0] &= 0x7ffffffffffff;
	t[2] += t[1] >> 51;
	t[1] &= 0x7ffffffffffff;
	t[3] += t[2] >> 51;
	t[2] &= 0x7ffffffffffff;
	t[4] += t[3] >> 51;
	t[3] &= 0x7ffffffffffff;
	t[4] &= 0x7ffffffffffff;

	store_limb (output, t[0] | (t[1] << 51));
	store_limb (output + 8, (t[1] >> 13) | (t[2] << 38));
	store_limb (output + 16, (t[2] >> 26) | (t[3] << 25));
	store_limb (output + 24, (t[3] >> 39) | (t[4] << 12));
}

/* Input: Q, Q', Q-Q'
 * Output: 2Q, Q+Q'
 *
 *   x2 z3: long form
 *   x3 z3: long form
 *   x z: short form, destroyed
 *   xprime zprime: short form, destroyed
 *   qmqp: short form, preserved
 */
static void fmonty (limb *x2, limb *z2, /* output 2Q */
limb *x3, limb *z3, /* output Q + Q' */
limb *x, limb *z, /* input Q */
limb *xprime, limb *zprime, /* input Q' */
const limb *qmqp /* input Q - Q' */)
{
	limb origx[5], origxprime[5], zzz[5], xx[5], zz[5], xxprime[5], zzprime[5],
			zzzprime[5];

	memcpy (origx, x, 5 * sizeof(limb));
	fsum (x, z);
	fdifference_backwards (z, origx);  // does x - z

	memcpy (origxprime, xprime, sizeof(limb) * 5);
	fsum (xprime, zprime);
	fdifference_backwards (zprime, origxprime);
	fmul (xxprime, xprime, z);
	fmul (zzprime, x, zprime);
	memcpy (origxprime, xxprime, sizeof(limb) * 5);
	fsum (xxprime, zzprime);
	fdifference_backwards (zzprime, origxprime);
	fsquare_times (x3, xxprime, 1);
	fsquare_times (zzzprime, zzprime, 1);
	fmul (z3, zzzprime, qmqp);

	fsquare_times (xx, x, 1);
	fsquare_times (zz, z, 1);
	fmul (x2, xx, zz);
	fdifference_backwards (zz, xx);  // does zz = xx - zz
	fscalar_product (zzz, zz, 121665);
	fsum (zzz, xx);
	fmul (z2, zz, zzz);
}

// -----------------------------------------------------------------------------
// Maybe swap the contents of two limb arrays (@a and @b), each @len elements
// long. Perform the swap iff @swap is non-zero.
//
// This function performs the swap without leaking any side-channel
// information.
// -----------------------------------------------------------------------------
static void swap_conditional (limb a[5], limb b[5], limb iswap)
{
	unsigned i;
	const limb swap = -iswap;

	for (i = 0; i < 5; ++i) {
		const limb x = swap & (a[i] ^ b[i]);
		a[i] ^= x;
		b[i] ^= x;
	}
}

/* Calculates nQ where Q is the x-coordinate of a point on the curve
 *
 *   resultx/resultz: the x coordinate of the resulting curve point (short form)
 *   n: a little endian, 32-byte number
 *   q: a point of the curve (short form)
 */
static void cmult (limb *resultx, limb *resultz, const u8 *n, const limb *q)
{
	limb a[5] = { 0 }, b[5] = { 1 }, c[5] = { 1 }, d[5] = { 0 };
	limb *nqpqx = a, *nqpqz = b, *nqx = c, *nqz = d, *t;
	limb e[5] = { 0 }, f[5] = { 1 }, g[5] = { 0 }, h[5] = { 1 };
	limb *nqpqx2 = e, *nqpqz2 = f, *nqx2 = g, *nqz2 = h;

	unsigned i, j;

	memcpy (nqpqx, q, sizeof(limb) * 5);

	for (i = 0; i < 32; ++i) {
		u8 byte = n[31 - i];
		for (j = 0; j < 8; ++j) {
			const limb bit = byte >> 7;

			swap_conditional (nqx, nqpqx, bit);
			swap_conditional (nqz, nqpqz, bit);
			fmonty (nqx2, nqz2, nqpqx2, nqpqz2, nqx, nqz, nqpqx, nqpqz, q);
			swap_conditional (nqx2, nqpqx2, bit);
			swap_conditional (nqz2, nqpqz2, bit);

			t = nqx;
			nqx = nqx2;
			nqx2 = t;
			t = nqz;
			nqz = nqz2;
			nqz2 = t;
			t = nqpqx;
			nqpqx = nqpqx2;
			nqpqx2 = t;
			t = nqpqz;
			nqpqz = nqpqz2;
			nqpqz2 = t;

			byte <<= 1;
		}
	}

	memcpy (resultx, nqx, sizeof(limb) * 5);
	memcpy (resultz, nqz, sizeof(limb) * 5);
}

// -----------------------------------------------------------------------------
// Shamelessly copied from djb's code, tightened a little
// -----------------------------------------------------------------------------
static void crecip (felem out, const felem z)
{
	felem a, t0, b, c;

	/* 2 */fsquare_times (a, z, 1); // a = 2
	/* 8 */fsquare_times (t0, a, 2);
	/* 9 */fmul (b, t0, z); // b = 9
	/* 11 */fmul (a, b, a); // a = 11
	/* 22 */fsquare_times (t0, a, 1);
	/* 2^5 - 2^0 = 31 */fmul (b, t0, b);
	/* 2^10 - 2^5 */fsquare_times (t0, b, 5);
	/* 2^10 - 2^0 */fmul (b, t0, b);
	/* 2^20 - 2^10 */fsquare_times (t0, b, 10);
	/* 2^20 - 2^0 */fmul (c, t0, b);
	/* 2^40 - 2^20 */fsquare_times (t0, c, 20);
	/* 2^40 - 2^0 */fmul (t0, t0, c);
	/* 2^50 - 2^10 */fsquare_times (t0, t0, 10);
	/* 2^50 - 2^0 */fmul (b, t0, b);
	/* 2^100 - 2^50 */fsquare_times (t0, b, 50);
	/* 2^100 - 2^0 */fmul (c, t0, b);
	/* 2^200 - 2^100 */fsquare_times (t0, c, 100);
	/* 2^200 - 2^0 */fmul (t0, t0, c);
	/* 2^250 - 2^50 */fsquare_times (t0, t0, 50);
	/* 2^250 - 2^0 */fmul (t0, t0, b);
	/* 2^255 - 2^5 */fsquare_times (t0, t0, 5);
	/* 2^255 - 21 */fmul (out, t0, a);
}

int scalarmult_donna (u8 *mypublic, const u8 *secret, const u8 *basepoint)
{
	limb bp[5], x[5], z[5], zmone[5];
	unsigned char e[32];

	memcpy (e, secret, 32);
	e[0] &= 248;
	e[31] &= 127;
	e[31] |= 64;

	fexpand (bp, basepoint);
	cmult (x, z, e, bp);
	crecip (zmone, z);
	fmul (z, x, zmone);
	fcontract (mypublic, z);

	return 0;
}

int
scalarmult_base_donna (u8 *mypublic, const u8 *secret)
{
	return scalarmult_donna (mypublic, secret,
			curve25519_basepoint);
}