/*- * Copyright 2016 Vsevolod Stakhov * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* Imported from Public Domain djb code */ #ifndef SRC_LIBCRYPTOBOX_CURVE25519_FE_H_ #define SRC_LIBCRYPTOBOX_CURVE25519_FE_H_ typedef int32_t fe[10]; void fe_frombytes(fe,const unsigned char *); void fe_tobytes(unsigned char *,const fe); void fe_copy(fe,const fe); int fe_isnonzero(const fe); int fe_isnegative(const fe); void fe_0(fe); void fe_1(fe); void fe_cmov(fe,const fe,unsigned int); void fe_add(fe,const fe,const fe); void fe_sub(fe,const fe,const fe); void fe_neg(fe,const fe); void fe_mul(fe,const fe,const fe); void fe_sq(fe,const fe); void fe_sq2(fe,const fe); void fe_invert(fe,const fe); void fe_pow22523(fe,const fe); /* ge means group element. Here the group is the set of pairs (x,y) of field elements (see fe.h) satisfying -x^2 + y^2 = 1 + d x^2y^2 where d = -121665/121666. Representations: ge_p2 (projective): (X:Y:Z) satisfying x=X/Z, y=Y/Z ge_p3 (extended): (X:Y:Z:T) satisfying x=X/Z, y=Y/Z, XY=ZT ge_p1p1 (completed): ((X:Z),(Y:T)) satisfying x=X/Z, y=Y/T ge_precomp (Duif): (y+x,y-x,2dxy) */ typedef struct { fe X; fe Y; fe Z; } ge_p2; typedef struct { fe X; fe Y; fe Z; fe T; } ge_p3; typedef struct { fe X; fe Y; fe Z; fe T; } ge_p1p1; typedef struct { fe yplusx; fe yminusx; fe xy2d; } ge_precomp; typedef struct { fe YplusX; fe YminusX; fe Z; fe T2d; } ge_cached; void ge_tobytes(unsigned char *,const ge_p2 *); void ge_p3_tobytes(unsigned char *,const ge_p3 *); int ge_frombytes_negate_vartime(ge_p3 *,const unsigned char *); void ge_p2_0(ge_p2 *); void ge_p3_0(ge_p3 *); void ge_precomp_0(ge_precomp *); void ge_p3_to_p2(ge_p2 *,const ge_p3 *); void ge_p3_to_cached(ge_cached *,const ge_p3 *); void ge_p1p1_to_p2(ge_p2 *,const ge_p1p1 *); void ge_p1p1_to_p3(ge_p3 *,const ge_p1p1 *); void ge_p2_dbl(ge_p1p1 *,const ge_p2 *); void ge_p3_dbl(ge_p1p1 *,const ge_p3 *); void ge_madd(ge_p1p1 *,const ge_p3 *,const ge_precomp *); void ge_msub(ge_p1p1 *,const ge_p3 *,const ge_precomp *); void ge_add(ge_p1p1 *,const ge_p3 *,const ge_cached *); void ge_sub(ge_p1p1 *,const ge_p3 *,const ge_cached *); void ge_scalarmult_base(ge_p3 *,const unsigned char *); void ge_double_scalarmult_vartime(ge_p2 *,const unsigned char *,const ge_p3 *,const unsigned char *); void ge_scalarmult_vartime(ge_p3 *,const unsigned char *,const ge_p3 *); int verify_32(const unsigned char *x, const unsigned char *y); /* The set of scalars is \Z/l where l = 2^252 + 27742317777372353535851937790883648493. */ void sc_reduce(unsigned char *); void sc_muladd(unsigned char *,const unsigned char *,const unsigned char *,const unsigned char *); #endif /* SRC_LIBCRYPTOBOX_CURVE25519_FE_H_ */