/* Copyright (c) 2015-2016, Vsevolod Stakhov * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED ''AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL AUTHOR BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "stat_api.h" #include "rspamd.h" #include "stat_internal.h" #include "libmime/message.h" #include "libmime/filter.h" #include "libmime/images.h" #include "libserver/html.h" #include "lua/lua_common.h" #include #define RSPAMD_CLASSIFY_OP 0 #define RSPAMD_LEARN_OP 1 #define RSPAMD_UNLEARN_OP 2 static const gint similarity_treshold = 80; static void rspamd_stat_tokenize_header (struct rspamd_task *task, const gchar *name, const gchar *prefix, GArray *ar) { struct raw_header *rh, *cur; rspamd_ftok_t str; rh = g_hash_table_lookup (task->raw_headers, name); if (rh != NULL) { LL_FOREACH (rh, cur) { if (cur->name != NULL) { str.begin = cur->name; str.len = strlen (cur->name); g_array_append_val (ar, str); } if (cur->decoded != NULL) { str.begin = cur->decoded; str.len = strlen (cur->decoded); g_array_append_val (ar, str); } else if (cur->value != NULL) { str.begin = cur->value; str.len = strlen (cur->value); g_array_append_val (ar, str); } } msg_debug_task ("added stat tokens for header '%s'", name); } } static void rspamd_stat_tokenize_parts_metadata (struct rspamd_stat_ctx *st_ctx, struct rspamd_task *task) { struct rspamd_image *img; struct mime_part *part; struct mime_text_part *tp; GList *cur; GArray *ar; rspamd_ftok_t elt; guint i; ar = g_array_sized_new (FALSE, FALSE, sizeof (elt), 4); /* Insert images */ cur = g_list_first (task->images); while (cur) { img = cur->data; /* If an image has a linked HTML part, then we push its details to the stat */ if (img->html_image) { elt.begin = (gchar *)"image"; elt.len = 5; g_array_append_val (ar, elt); elt.begin = (gchar *)&img->html_image->height; elt.len = sizeof (img->html_image->height); g_array_append_val (ar, elt); elt.begin = (gchar *)&img->html_image->width; elt.len = sizeof (img->html_image->width); g_array_append_val (ar, elt); elt.begin = (gchar *)&img->type; elt.len = sizeof (img->type); g_array_append_val (ar, elt); if (img->filename) { elt.begin = (gchar *)img->filename; elt.len = strlen (elt.begin); g_array_append_val (ar, elt); } msg_debug_task ("added stat tokens for image '%s'", img->html_image->src); } cur = g_list_next (cur); } /* Process mime parts */ for (i = 0; i < task->parts->len; i ++) { part = g_ptr_array_index (task->parts, i); if (GMIME_IS_MULTIPART (part->mime)) { elt.begin = (gchar *)g_mime_multipart_get_boundary ( GMIME_MULTIPART (part->mime)); if (elt.begin) { elt.len = strlen (elt.begin); msg_debug_task ("added stat tokens for mime boundary '%s'", elt.begin); g_array_append_val (ar, elt); } } } /* Process text parts metadata */ for (i = 0; i < task->text_parts->len; i ++) { tp = g_ptr_array_index (task->text_parts, i); if (tp->language != NULL && tp->language[0] != '\0') { elt.begin = (gchar *)tp->language; elt.len = strlen (elt.begin); msg_debug_task ("added stat tokens for part language '%s'", elt.begin); g_array_append_val (ar, elt); } if (tp->real_charset != NULL) { elt.begin = (gchar *)tp->real_charset; elt.len = strlen (elt.begin); msg_debug_task ("added stat tokens for part charset '%s'", elt.begin); g_array_append_val (ar, elt); } } cur = g_list_first (task->cfg->classify_headers); while (cur) { rspamd_stat_tokenize_header (task, cur->data, "UA:", ar); cur = g_list_next (cur); } st_ctx->tokenizer->tokenize_func (st_ctx, task->task_pool, ar, TRUE, "META:", task->tokens); g_array_free (ar, TRUE); } /* * Tokenize task using the tokenizer specified */ static void rspamd_stat_process_tokenize (struct rspamd_stat_ctx *st_ctx, struct rspamd_task *task) { struct mime_text_part *part; GArray *words; gchar *sub; guint i, reserved_len = 0; gint *pdiff; for (i = 0; i < task->text_parts->len; i++) { part = g_ptr_array_index (task->text_parts, i); if (!IS_PART_EMPTY (part) && part->normalized_words != NULL) { reserved_len += part->normalized_words->len; } /* XXX: normal window size */ reserved_len += 5; } task->tokens = g_ptr_array_sized_new (reserved_len); rspamd_mempool_add_destructor (task->task_pool, rspamd_ptr_array_free_hard, task->tokens); pdiff = rspamd_mempool_get_variable (task->task_pool, "parts_distance"); for (i = 0; i < task->text_parts->len; i ++) { part = g_ptr_array_index (task->text_parts, i); if (!IS_PART_EMPTY (part) && part->normalized_words != NULL) { st_ctx->tokenizer->tokenize_func (st_ctx, task->task_pool, part->normalized_words, IS_PART_UTF (part), NULL, task->tokens); } if (pdiff != NULL && *pdiff > similarity_treshold) { msg_debug_task ("message has two common parts (%d%%), so skip the last one", *pdiff); break; } } if (task->subject != NULL) { sub = task->subject; } else { sub = (gchar *)g_mime_message_get_subject (task->message); } if (sub != NULL) { words = rspamd_tokenize_text (sub, strlen (sub), TRUE, NULL, NULL, FALSE, NULL); if (words != NULL) { st_ctx->tokenizer->tokenize_func (st_ctx, task->task_pool, words, TRUE, "SUBJECT", task->tokens); g_array_free (words, TRUE); } } rspamd_stat_tokenize_parts_metadata (st_ctx, task); } static void rspamd_stat_preprocess (struct rspamd_stat_ctx *st_ctx, struct rspamd_task *task, gboolean learn) { guint i; struct rspamd_statfile *st; gpointer bk_run; rspamd_stat_process_tokenize (st_ctx, task); task->stat_runtimes = g_ptr_array_sized_new (st_ctx->statfiles->len); rspamd_mempool_add_destructor (task->task_pool, rspamd_ptr_array_free_hard, task->stat_runtimes); for (i = 0; i < st_ctx->statfiles->len; i ++) { st = g_ptr_array_index (st_ctx->statfiles, i); g_assert (st != NULL); bk_run = st->backend->runtime (task, st->stcf, learn, st->bkcf); if (bk_run == NULL) { msg_err_task ("cannot init backend %s for statfile %s", st->backend->name, st->stcf->symbol); } g_ptr_array_add (task->stat_runtimes, bk_run); } } static void rspamd_stat_backends_process (struct rspamd_stat_ctx *st_ctx, struct rspamd_task *task) { guint i; struct rspamd_statfile *st; struct rspamd_classifier *cl; gpointer bk_run; g_assert (task->stat_runtimes != NULL); for (i = 0; i < st_ctx->statfiles->len; i++) { st = g_ptr_array_index (st_ctx->statfiles, i); bk_run = g_ptr_array_index (task->stat_runtimes, i); cl = st->classifier; g_assert (st != NULL); if (bk_run != NULL) { st->backend->process_tokens (task, task->tokens, i, bk_run); if (st->stcf->is_spam) { cl->spam_learns = st->backend->total_learns (task, bk_run, st_ctx); } else { cl->ham_learns = st->backend->total_learns (task, bk_run, st_ctx); } } } } static void rspamd_stat_backends_post_process (struct rspamd_stat_ctx *st_ctx, struct rspamd_task *task) { guint i; struct rspamd_statfile *st; gpointer bk_run; g_assert (task->stat_runtimes != NULL); for (i = 0; i < st_ctx->statfiles->len; i++) { st = g_ptr_array_index (st_ctx->statfiles, i); bk_run = g_ptr_array_index (task->stat_runtimes, i); g_assert (st != NULL); if (bk_run != NULL) { st->backend->finalize_process (task, bk_run, st_ctx); } } } static void rspamd_stat_classifiers_process (struct rspamd_stat_ctx *st_ctx, struct rspamd_task *task) { guint i; struct rspamd_classifier *cl; for (i = 0; i < st_ctx->classifiers->len; i++) { cl = g_ptr_array_index (st_ctx->classifiers, i); g_assert (cl != NULL); cl->subrs->classify_func (cl, task->tokens, task); } } rspamd_stat_result_t rspamd_stat_classify (struct rspamd_task *task, lua_State *L, guint stage, GError **err) { struct rspamd_stat_ctx *st_ctx; rspamd_stat_result_t ret = RSPAMD_STAT_PROCESS_OK; st_ctx = rspamd_stat_get_ctx (); g_assert (st_ctx != NULL); if (st_ctx->classifiers->len == 0) { task->processed_stages |= stage; return ret; } if (stage == RSPAMD_TASK_STAGE_CLASSIFIERS_PRE) { /* Preprocess tokens */ rspamd_stat_preprocess (st_ctx, task, FALSE); } else if (stage == RSPAMD_TASK_STAGE_CLASSIFIERS) { /* Process backends */ rspamd_stat_backends_process (st_ctx, task); } else if (stage == RSPAMD_TASK_STAGE_CLASSIFIERS_POST) { /* Process classifiers */ rspamd_stat_backends_post_process (st_ctx, task); rspamd_stat_classifiers_process (st_ctx, task); } task->processed_stages |= stage; return ret; } static gboolean rspamd_stat_cache_check (struct rspamd_stat_ctx *st_ctx, struct rspamd_task *task, const gchar *classifier, gboolean spam, GError **err) { rspamd_learn_t learn_res = RSPAMD_LEARN_OK; struct rspamd_classifier *cl; gpointer rt; guint i; /* Check whether we have learned that file */ for (i = 0; i < st_ctx->classifiers->len; i ++) { cl = g_ptr_array_index (st_ctx->classifiers, i); /* Skip other classifiers if they are not needed */ if (classifier != NULL && (cl->cfg->name == NULL || g_ascii_strcasecmp (classifier, cl->cfg->name) != 0)) { continue; } if (cl->cache && cl->cachecf) { rt = cl->cache->runtime (task, cl->cachecf, FALSE); learn_res = cl->cache->check (task, spam, rt); } if (learn_res == RSPAMD_LEARN_INGORE) { /* Do not learn twice */ g_set_error (err, rspamd_stat_quark (), 404, "<%s> has been already " "learned as %s, ignore it", task->message_id, spam ? "spam" : "ham"); task->flags |= RSPAMD_TASK_FLAG_ALREADY_LEARNED; return FALSE; } else if (learn_res == RSPAMD_LEARN_UNLEARN) { task->flags |= RSPAMD_TASK_FLAG_UNLEARN; break; } } return TRUE; } static gboolean rspamd_stat_classifiers_learn (struct rspamd_stat_ctx *st_ctx, struct rspamd_task *task, const gchar *classifier, gboolean spam, GError **err) { struct rspamd_classifier *cl; guint i; gboolean learned = FALSE, too_small = FALSE, too_large = FALSE; /* Check whether we have learned that file */ for (i = 0; i < st_ctx->classifiers->len; i ++) { cl = g_ptr_array_index (st_ctx->classifiers, i); /* Skip other classifiers if they are not needed */ if (classifier != NULL && (cl->cfg->name == NULL || g_ascii_strcasecmp (classifier, cl->cfg->name) != 0)) { continue; } /* Now check max and min tokens */ if (cl->cfg->min_tokens > 0 && task->tokens->len < cl->cfg->min_tokens) { msg_info_task ( "<%s> contains less tokens than required for %s classifier: " "%ud < %ud", task->message_id, cl->cfg->name, task->tokens->len, cl->cfg->min_tokens); too_small = TRUE; continue; } else if (cl->cfg->max_tokens > 0 && task->tokens->len > cl->cfg->max_tokens) { msg_info_task ( "<%s> contains more tokens than allowed for %s classifier: " "%ud > %ud", task->message_id, cl->cfg->name, task->tokens->len, cl->cfg->max_tokens); too_large = TRUE; continue; } if (cl->subrs->learn_spam_func (cl, task->tokens, task, spam, task->flags & RSPAMD_TASK_FLAG_UNLEARN, err)) { learned = TRUE; } } if (!learned && err && *err == NULL) { if (too_large) { g_set_error (err, rspamd_stat_quark (), 400, "<%s> contains more tokens than allowed for %s classifier: " "%d > %d", task->message_id, cl->cfg->name, task->tokens->len, cl->cfg->max_tokens); } else if (too_small) { g_set_error (err, rspamd_stat_quark (), 400, "<%s> contains less tokens than required for %s classifier: " "%d < %d", task->message_id, cl->cfg->name, task->tokens->len, cl->cfg->max_tokens); } } return learned; } static gboolean rspamd_stat_backends_learn (struct rspamd_stat_ctx *st_ctx, struct rspamd_task *task, const gchar *classifier, gboolean spam, GError **err) { struct rspamd_classifier *cl; struct rspamd_statfile *st; gpointer bk_run; guint i, j; gint id; gboolean res = TRUE; for (i = 0; i < st_ctx->classifiers->len; i ++) { cl = g_ptr_array_index (st_ctx->classifiers, i); /* Skip other classifiers if they are not needed */ if (classifier != NULL && (cl->cfg->name == NULL || g_ascii_strcasecmp (classifier, cl->cfg->name) != 0)) { continue; } for (j = 0; j < cl->statfiles_ids->len; j ++) { id = g_array_index (cl->statfiles_ids, gint, j); st = g_ptr_array_index (st_ctx->statfiles, id); bk_run = g_ptr_array_index (task->stat_runtimes, id); g_assert (st != NULL); if (bk_run == NULL) { /* XXX: must be error */ continue; } if (!(task->flags & RSPAMD_TASK_FLAG_UNLEARN)) { if (!!spam != !!st->stcf->is_spam) { /* If we are not unlearning, then do not touch another class */ continue; } } if (!st->backend->learn_tokens (task, task->tokens, id, bk_run)) { if (err && *err == NULL) { g_set_error (err, rspamd_stat_quark (), 500, "Cannot push " "learned results to the backend"); } res = FALSE; } else { if (!!spam == !!st->stcf->is_spam) { st->backend->inc_learns (task, bk_run, st_ctx); } else if (task->flags & RSPAMD_TASK_FLAG_UNLEARN) { st->backend->dec_learns (task, bk_run, st_ctx); } } } } return res; } static gboolean rspamd_stat_backends_post_learn (struct rspamd_stat_ctx *st_ctx, struct rspamd_task *task, const gchar *classifier, gboolean spam) { struct rspamd_classifier *cl; struct rspamd_statfile *st; gpointer bk_run, cache_run; guint i, j; gint id; gboolean res = TRUE; for (i = 0; i < st_ctx->classifiers->len; i ++) { cl = g_ptr_array_index (st_ctx->classifiers, i); /* Skip other classifiers if they are not needed */ if (classifier != NULL && (cl->cfg->name == NULL || g_ascii_strcasecmp (classifier, cl->cfg->name) != 0)) { continue; } if (cl->cache) { cache_run = cl->cache->runtime (task, cl->cachecf, TRUE); cl->cache->learn (task, spam, cache_run); } for (j = 0; j < cl->statfiles_ids->len; j ++) { id = g_array_index (cl->statfiles_ids, gint, j); st = g_ptr_array_index (st_ctx->statfiles, id); bk_run = g_ptr_array_index (task->stat_runtimes, id); g_assert (st != NULL); if (bk_run == NULL) { /* XXX: must be error */ continue; } st->backend->finalize_learn (task, bk_run, st_ctx); } } return res; } rspamd_stat_result_t rspamd_stat_learn (struct rspamd_task *task, gboolean spam, lua_State *L, const gchar *classifier, guint stage, GError **err) { struct rspamd_stat_ctx *st_ctx; rspamd_stat_result_t ret = RSPAMD_STAT_PROCESS_OK; /* * We assume now that a task has been already classified before * coming to learn */ g_assert (RSPAMD_TASK_IS_CLASSIFIED (task)); st_ctx = rspamd_stat_get_ctx (); g_assert (st_ctx != NULL); if (st_ctx->classifiers->len == 0) { task->processed_stages |= stage; return ret; } if (stage == RSPAMD_TASK_STAGE_LEARN_PRE) { /* Process classifiers */ if (!rspamd_stat_cache_check (st_ctx, task, classifier, spam, err)) { return RSPAMD_STAT_PROCESS_ERROR; } } else if (stage == RSPAMD_TASK_STAGE_LEARN) { /* Process classifiers */ if (!rspamd_stat_classifiers_learn (st_ctx, task, classifier, spam, err)) { return RSPAMD_STAT_PROCESS_ERROR; } /* Process backends */ if (!rspamd_stat_backends_learn (st_ctx, task, classifier, spam, err)) { return RSPAMD_STAT_PROCESS_ERROR; } } else if (stage == RSPAMD_TASK_STAGE_LEARN_POST) { if (!rspamd_stat_backends_post_learn (st_ctx, task, classifier, spam)) { return RSPAMD_STAT_PROCESS_ERROR; } } task->processed_stages |= stage; return ret; } static gboolean rspamd_stat_has_classifier_symbols (struct rspamd_task *task, struct metric_result *mres, struct rspamd_classifier *cl) { guint i; gint id; struct rspamd_statfile *st; struct rspamd_stat_ctx *st_ctx; gboolean is_spam; st_ctx = rspamd_stat_get_ctx (); is_spam = !!(task->flags & RSPAMD_TASK_FLAG_LEARN_SPAM); for (i = 0; i < cl->statfiles_ids->len; i ++) { id = g_array_index (cl->statfiles_ids, gint, i); st = g_ptr_array_index (st_ctx->statfiles, id); if (g_hash_table_lookup (mres->symbols, st->stcf->symbol)) { if (is_spam == !!st->stcf->is_spam) { msg_debug_task ("do not autolearn %s as symbol %s is already " "added", is_spam ? "spam" : "ham", st->stcf->symbol); return TRUE; } } } return FALSE; } gboolean rspamd_stat_check_autolearn (struct rspamd_task *task) { struct rspamd_stat_ctx *st_ctx; struct rspamd_classifier *cl; const ucl_object_t *obj, *elt1, *elt2; struct metric_result *mres; struct rspamd_task **ptask; lua_State *L; GString *tb; guint i; gint err_idx; gboolean ret = FALSE; gdouble ham_score, spam_score; const gchar *lua_script, *lua_ret; g_assert (RSPAMD_TASK_IS_CLASSIFIED (task)); st_ctx = rspamd_stat_get_ctx (); g_assert (st_ctx != NULL); for (i = 0; i < st_ctx->classifiers->len; i ++) { cl = g_ptr_array_index (st_ctx->classifiers, i); ret = FALSE; if (cl->cfg->opts) { obj = ucl_object_find_key (cl->cfg->opts, "autolearn"); if (ucl_object_type (obj) == UCL_BOOLEAN) { if (ucl_object_toboolean (obj)) { /* * Default learning algorithm: * * - We learn spam if action is ACTION_REJECT * - We learn ham if score is less than zero */ mres = g_hash_table_lookup (task->results, DEFAULT_METRIC); if (mres) { mres->action = rspamd_check_action_metric (task, mres->score, &mres->required_score, mres->metric); if (mres->action == METRIC_ACTION_REJECT) { task->flags |= RSPAMD_TASK_FLAG_LEARN_SPAM; ret = TRUE; } else if (mres->score < 0) { task->flags |= RSPAMD_TASK_FLAG_LEARN_HAM; ret = TRUE; } } } } else if (ucl_object_type (obj) == UCL_ARRAY && obj->len == 2) { /* * We have an array of 2 elements, treat it as a * ham_score, spam_score */ elt1 = ucl_array_find_index (obj, 0); elt2 = ucl_array_find_index (obj, 1); if ((ucl_object_type (elt1) == UCL_FLOAT || ucl_object_type (elt1) == UCL_INT) && (ucl_object_type (elt2) == UCL_FLOAT || ucl_object_type (elt1) == UCL_INT)) { ham_score = ucl_object_todouble (elt1); spam_score = ucl_object_todouble (elt2); if (ham_score > spam_score) { gdouble t; t = ham_score; ham_score = spam_score; spam_score = t; } mres = g_hash_table_lookup (task->results, DEFAULT_METRIC); if (mres) { if (mres->score >= spam_score) { task->flags |= RSPAMD_TASK_FLAG_LEARN_SPAM; ret = TRUE; } else if (mres->score <= ham_score) { task->flags |= RSPAMD_TASK_FLAG_LEARN_HAM; ret = TRUE; } } } } else if (ucl_object_type (obj) == UCL_STRING) { lua_script = ucl_object_tostring (obj); L = task->cfg->lua_state; if (luaL_dostring (L, lua_script) != 0) { msg_err_task ("cannot execute lua script for autolearn " "extraction: %s", lua_tostring (L, -1)); } else { if (lua_type (L, -1) == LUA_TFUNCTION) { lua_pushcfunction (L, &rspamd_lua_traceback); err_idx = lua_gettop (L); lua_pushvalue (L, -2); /* Function itself */ ptask = lua_newuserdata (L, sizeof (struct rspamd_task *)); *ptask = task; rspamd_lua_setclass (L, "rspamd{task}", -1); if (lua_pcall (L, 1, 1, err_idx) != 0) { tb = lua_touserdata (L, -1); msg_err_task ("call to autolearn script failed: " "%v", tb); g_string_free (tb, TRUE); } else { lua_ret = lua_tostring (L, -1); if (lua_ret) { if (strcmp (lua_ret, "ham") == 0) { task->flags |= RSPAMD_TASK_FLAG_LEARN_HAM; ret = TRUE; } else if (strcmp (lua_ret, "spam") == 0) { task->flags |= RSPAMD_TASK_FLAG_LEARN_SPAM; ret = TRUE; } } } /* Result + error function + original function */ lua_pop (L, 3); } else { msg_err_task ("lua script must return " "function(task) and not %s", lua_typename (L, lua_type ( L, -1))); } } } if (ret) { /* Do not autolearn if we have this symbol already */ if (rspamd_stat_has_classifier_symbols (task, mres, cl)) { ret = FALSE; task->flags &= ~(RSPAMD_TASK_FLAG_LEARN_HAM | RSPAMD_TASK_FLAG_LEARN_SPAM); } else { if (task->flags & RSPAMD_TASK_FLAG_LEARN_HAM) { msg_info_task ("<%s>: autolearn ham for classifier " "'%s' as message's " "score is negative: %.2f", task->message_id, cl->cfg->name, mres->score); } else { msg_info_task ("<%s>: autolearn spam for classifier " "'%s' as message's " "action is reject, score: %.2f", task->message_id, cl->cfg->name, mres->score); } task->classifier = cl->cfg->name; break; } } } } return ret; } /** * Get the overall statistics for all statfile backends * @param cfg configuration * @param total_learns the total number of learns is stored here * @return array of statistical information */ rspamd_stat_result_t rspamd_stat_statistics (struct rspamd_task *task, struct rspamd_config *cfg, guint64 *total_learns, ucl_object_t **target) { struct rspamd_stat_ctx *st_ctx; struct rspamd_classifier *cl; struct rspamd_statfile *st; gpointer backend_runtime; ucl_object_t *res = NULL, *elt; guint64 learns = 0; guint i, j; gint id; st_ctx = rspamd_stat_get_ctx (); g_assert (st_ctx != NULL); res = ucl_object_typed_new (UCL_ARRAY); for (i = 0; i < st_ctx->classifiers->len; i ++) { cl = g_ptr_array_index (st_ctx->classifiers, i); for (j = 0; j < cl->statfiles_ids->len; j ++) { id = g_array_index (cl->statfiles_ids, gint, j); st = g_ptr_array_index (st_ctx->statfiles, id); backend_runtime = st->backend->runtime (task, st->stcf, FALSE, st->bkcf); learns += st->backend->total_learns (task, backend_runtime, st->bkcf); elt = st->backend->get_stat (backend_runtime, st->bkcf); if (elt != NULL) { ucl_array_append (res, elt); } } } if (total_learns != NULL) { *total_learns = learns; } if (target) { *target = res; } return RSPAMD_STAT_PROCESS_OK; }