/* * Copyright 2024 Vsevolod Stakhov * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "config.h" #include "stat_api.h" #include "rspamd.h" #include "stat_internal.h" #include "libmime/message.h" #include "libmime/images.h" #include "libserver/html/html.h" #include "lua/lua_common.h" #include "lua/lua_classnames.h" #include "libserver/mempool_vars_internal.h" #include "utlist.h" #include #define RSPAMD_CLASSIFY_OP 0 #define RSPAMD_LEARN_OP 1 #define RSPAMD_UNLEARN_OP 2 static const double similarity_threshold = 80.0; static void rspamd_stat_tokenize_parts_metadata(struct rspamd_stat_ctx *st_ctx, struct rspamd_task *task) { GArray *ar; rspamd_stat_token_t elt; unsigned int i; lua_State *L = task->cfg->lua_state; ar = g_array_sized_new(FALSE, FALSE, sizeof(elt), 16); memset(&elt, 0, sizeof(elt)); elt.flags = RSPAMD_STAT_TOKEN_FLAG_META; if (st_ctx->lua_stat_tokens_ref != -1) { int err_idx, ret; struct rspamd_task **ptask; lua_pushcfunction(L, &rspamd_lua_traceback); err_idx = lua_gettop(L); lua_rawgeti(L, LUA_REGISTRYINDEX, st_ctx->lua_stat_tokens_ref); ptask = lua_newuserdata(L, sizeof(*ptask)); *ptask = task; rspamd_lua_setclass(L, rspamd_task_classname, -1); if ((ret = lua_pcall(L, 1, 1, err_idx)) != 0) { msg_err_task("call to stat_tokens lua " "script failed (%d): %s", ret, lua_tostring(L, -1)); } else { if (lua_type(L, -1) != LUA_TTABLE) { msg_err_task("stat_tokens invocation must return " "table and not %s", lua_typename(L, lua_type(L, -1))); } else { unsigned int vlen; rspamd_ftok_t tok; vlen = rspamd_lua_table_size(L, -1); for (i = 0; i < vlen; i++) { lua_rawgeti(L, -1, i + 1); tok.begin = lua_tolstring(L, -1, &tok.len); if (tok.begin && tok.len > 0) { elt.original.begin = rspamd_mempool_ftokdup(task->task_pool, &tok); elt.original.len = tok.len; elt.stemmed.begin = elt.original.begin; elt.stemmed.len = elt.original.len; elt.normalized.begin = elt.original.begin; elt.normalized.len = elt.original.len; g_array_append_val(ar, elt); } lua_pop(L, 1); } } } lua_settop(L, 0); } if (ar->len > 0) { st_ctx->tokenizer->tokenize_func(st_ctx, task, ar, TRUE, "M", task->tokens); } rspamd_mempool_add_destructor(task->task_pool, rspamd_array_free_hard, ar); } /* * Tokenize task using the tokenizer specified */ void rspamd_stat_process_tokenize(struct rspamd_stat_ctx *st_ctx, struct rspamd_task *task) { struct rspamd_mime_text_part *part; rspamd_cryptobox_hash_state_t hst; rspamd_token_t *st_tok; unsigned int i, reserved_len = 0; double *pdiff; unsigned char hout[rspamd_cryptobox_HASHBYTES]; char *b32_hout; if (st_ctx == NULL) { st_ctx = rspamd_stat_get_ctx(); } g_assert(st_ctx != NULL); PTR_ARRAY_FOREACH(MESSAGE_FIELD(task, text_parts), i, part) { if (!IS_TEXT_PART_EMPTY(part) && part->utf_words != NULL) { reserved_len += part->utf_words->len; } /* XXX: normal window size */ reserved_len += 5; } task->tokens = g_ptr_array_sized_new(reserved_len); rspamd_mempool_add_destructor(task->task_pool, rspamd_ptr_array_free_hard, task->tokens); rspamd_mempool_notify_alloc(task->task_pool, reserved_len * sizeof(gpointer)); pdiff = rspamd_mempool_get_variable(task->task_pool, "parts_distance"); PTR_ARRAY_FOREACH(MESSAGE_FIELD(task, text_parts), i, part) { if (!IS_TEXT_PART_EMPTY(part) && part->utf_words != NULL) { st_ctx->tokenizer->tokenize_func(st_ctx, task, part->utf_words, IS_TEXT_PART_UTF(part), NULL, task->tokens); } if (pdiff != NULL && (1.0 - *pdiff) * 100.0 > similarity_threshold) { msg_debug_bayes("message has two common parts (%.2f), so skip the last one", *pdiff); break; } } if (task->meta_words != NULL) { st_ctx->tokenizer->tokenize_func(st_ctx, task, task->meta_words, TRUE, "SUBJECT", task->tokens); } rspamd_stat_tokenize_parts_metadata(st_ctx, task); /* Produce signature */ rspamd_cryptobox_hash_init(&hst, NULL, 0); PTR_ARRAY_FOREACH(task->tokens, i, st_tok) { rspamd_cryptobox_hash_update(&hst, (unsigned char *) &st_tok->data, sizeof(st_tok->data)); } rspamd_cryptobox_hash_final(&hst, hout); b32_hout = rspamd_encode_base32(hout, sizeof(hout), RSPAMD_BASE32_DEFAULT); /* * We need to strip it to 32 characters providing ~160 bits of * hash distribution */ b32_hout[32] = '\0'; rspamd_mempool_set_variable(task->task_pool, RSPAMD_MEMPOOL_STAT_SIGNATURE, b32_hout, g_free); } static gboolean rspamd_stat_classifier_is_skipped(struct rspamd_task *task, struct rspamd_classifier *cl, gboolean is_learn, gboolean is_spam) { GList *cur = is_learn ? cl->cfg->learn_conditions : cl->cfg->classify_conditions; lua_State *L = task->cfg->lua_state; gboolean ret = FALSE; while (cur) { int cb_ref = GPOINTER_TO_INT(cur->data); int old_top = lua_gettop(L); int nargs; lua_rawgeti(L, LUA_REGISTRYINDEX, cb_ref); /* Push task and two booleans: is_spam and is_unlearn */ struct rspamd_task **ptask = lua_newuserdata(L, sizeof(*ptask)); *ptask = task; rspamd_lua_setclass(L, rspamd_task_classname, -1); if (is_learn) { lua_pushboolean(L, is_spam); lua_pushboolean(L, task->flags & RSPAMD_TASK_FLAG_UNLEARN ? true : false); nargs = 3; } else { nargs = 1; } if (lua_pcall(L, nargs, LUA_MULTRET, 0) != 0) { msg_err_task("call to %s failed: %s", "condition callback", lua_tostring(L, -1)); } else { if (lua_isboolean(L, 1)) { if (!lua_toboolean(L, 1)) { ret = TRUE; } } if (lua_isstring(L, 2)) { if (ret) { msg_notice_task("%s condition for classifier %s returned: %s; skip classifier", is_learn ? "learn" : "classify", cl->cfg->name, lua_tostring(L, 2)); } else { msg_info_task("%s condition for classifier %s returned: %s", is_learn ? "learn" : "classify", cl->cfg->name, lua_tostring(L, 2)); } } else if (ret) { msg_notice_task("%s condition for classifier %s returned false; skip classifier", is_learn ? "learn" : "classify", cl->cfg->name); } if (ret) { lua_settop(L, old_top); break; } } lua_settop(L, old_top); cur = g_list_next(cur); } return ret; } static void rspamd_stat_preprocess(struct rspamd_stat_ctx *st_ctx, struct rspamd_task *task, gboolean is_learn, gboolean is_spam) { unsigned int i; struct rspamd_statfile *st; gpointer bk_run; if (task->tokens == NULL) { rspamd_stat_process_tokenize(st_ctx, task); } task->stat_runtimes = g_ptr_array_sized_new(st_ctx->statfiles->len); g_ptr_array_set_size(task->stat_runtimes, st_ctx->statfiles->len); rspamd_mempool_add_destructor(task->task_pool, rspamd_ptr_array_free_hard, task->stat_runtimes); /* Temporary set all stat_runtimes to some max size to distinguish from NULL */ for (i = 0; i < st_ctx->statfiles->len; i++) { g_ptr_array_index(task->stat_runtimes, i) = GSIZE_TO_POINTER(G_MAXSIZE); } for (i = 0; i < st_ctx->classifiers->len; i++) { struct rspamd_classifier *cl = g_ptr_array_index(st_ctx->classifiers, i); gboolean skip_classifier = FALSE; if (cl->cfg->flags & RSPAMD_FLAG_CLASSIFIER_NO_BACKEND) { skip_classifier = TRUE; } else { if (rspamd_stat_classifier_is_skipped(task, cl, is_learn, is_spam)) { skip_classifier = TRUE; } } if (skip_classifier) { /* Set NULL for all statfiles indexed by id */ for (int j = 0; j < cl->statfiles_ids->len; j++) { int id = g_array_index(cl->statfiles_ids, int, j); g_ptr_array_index(task->stat_runtimes, id) = NULL; } } } for (i = 0; i < st_ctx->statfiles->len; i++) { st = g_ptr_array_index(st_ctx->statfiles, i); g_assert(st != NULL); if (g_ptr_array_index(task->stat_runtimes, i) == NULL) { /* The whole classifier is skipped */ continue; } if (is_learn && st->backend->read_only) { /* Read only backend, skip it */ g_ptr_array_index(task->stat_runtimes, i) = NULL; continue; } if (!is_learn && !rspamd_symcache_is_symbol_enabled(task, task->cfg->cache, st->stcf->symbol)) { g_ptr_array_index(task->stat_runtimes, i) = NULL; msg_debug_bayes("symbol %s is disabled, skip classification", st->stcf->symbol); /* We need to disable the whole classifier for this! */ struct rspamd_classifier *cl = st->classifier; for (int j = 0; j < st_ctx->statfiles->len; j++) { struct rspamd_statfile *nst = g_ptr_array_index(st_ctx->statfiles, j); if (st != nst && nst->classifier == cl) { g_ptr_array_index(task->stat_runtimes, j) = NULL; msg_debug_bayes("symbol %s is disabled, skip classification for %s as well", st->stcf->symbol, nst->stcf->symbol); } } continue; } bk_run = st->backend->runtime(task, st->stcf, is_learn, st->bkcf, i); if (bk_run == NULL) { msg_err_task("cannot init backend %s for statfile %s", st->backend->name, st->stcf->symbol); } g_ptr_array_index(task->stat_runtimes, i) = bk_run; } } static void rspamd_stat_backends_process(struct rspamd_stat_ctx *st_ctx, struct rspamd_task *task) { unsigned int i; struct rspamd_statfile *st; gpointer bk_run; g_assert(task->stat_runtimes != NULL); for (i = 0; i < st_ctx->statfiles->len; i++) { st = g_ptr_array_index(st_ctx->statfiles, i); bk_run = g_ptr_array_index(task->stat_runtimes, i); if (bk_run != NULL) { st->backend->process_tokens(task, task->tokens, i, bk_run); } } } static void rspamd_stat_classifiers_process(struct rspamd_stat_ctx *st_ctx, struct rspamd_task *task) { unsigned int i, j, id; struct rspamd_classifier *cl; struct rspamd_statfile *st; gpointer bk_run; gboolean skip; if (st_ctx->classifiers->len == 0) { return; } /* * Do not classify a message if some class is missing */ if (!(task->flags & RSPAMD_TASK_FLAG_HAS_SPAM_TOKENS)) { msg_info_task("skip statistics as SPAM class is missing"); return; } if (!(task->flags & RSPAMD_TASK_FLAG_HAS_HAM_TOKENS)) { msg_info_task("skip statistics as HAM class is missing"); return; } for (i = 0; i < st_ctx->classifiers->len; i++) { cl = g_ptr_array_index(st_ctx->classifiers, i); cl->spam_learns = 0; cl->ham_learns = 0; } g_assert(task->stat_runtimes != NULL); for (i = 0; i < st_ctx->statfiles->len; i++) { st = g_ptr_array_index(st_ctx->statfiles, i); cl = st->classifier; bk_run = g_ptr_array_index(task->stat_runtimes, i); g_assert(st != NULL); if (bk_run != NULL) { if (st->stcf->is_spam) { cl->spam_learns += st->backend->total_learns(task, bk_run, st_ctx); } else { cl->ham_learns += st->backend->total_learns(task, bk_run, st_ctx); } } } for (i = 0; i < st_ctx->classifiers->len; i++) { cl = g_ptr_array_index(st_ctx->classifiers, i); g_assert(cl != NULL); skip = FALSE; /* Do not process classifiers on backend failures */ for (j = 0; j < cl->statfiles_ids->len; j++) { id = g_array_index(cl->statfiles_ids, int, j); bk_run = g_ptr_array_index(task->stat_runtimes, id); st = g_ptr_array_index(st_ctx->statfiles, id); if (bk_run != NULL) { if (!st->backend->finalize_process(task, bk_run, st_ctx)) { skip = TRUE; break; } } } /* Ensure that all symbols enabled */ if (!skip && !(cl->cfg->flags & RSPAMD_FLAG_CLASSIFIER_NO_BACKEND)) { for (j = 0; j < cl->statfiles_ids->len; j++) { id = g_array_index(cl->statfiles_ids, int, j); bk_run = g_ptr_array_index(task->stat_runtimes, id); st = g_ptr_array_index(st_ctx->statfiles, id); if (bk_run == NULL) { skip = TRUE; msg_debug_bayes("disable classifier %s as statfile symbol %s is disabled", cl->cfg->name, st->stcf->symbol); break; } } } if (!skip) { if (cl->cfg->min_tokens > 0 && task->tokens->len < cl->cfg->min_tokens) { msg_debug_bayes( "contains less tokens than required for %s classifier: " "%ud < %ud", cl->cfg->name, task->tokens->len, cl->cfg->min_tokens); continue; } else if (cl->cfg->max_tokens > 0 && task->tokens->len > cl->cfg->max_tokens) { msg_debug_bayes( "contains more tokens than allowed for %s classifier: " "%ud > %ud", cl->cfg->name, task->tokens->len, cl->cfg->max_tokens); continue; } cl->subrs->classify_func(cl, task->tokens, task); } } } rspamd_stat_result_t rspamd_stat_classify(struct rspamd_task *task, lua_State *L, unsigned int stage, GError **err) { struct rspamd_stat_ctx *st_ctx; rspamd_stat_result_t ret = RSPAMD_STAT_PROCESS_OK; st_ctx = rspamd_stat_get_ctx(); g_assert(st_ctx != NULL); if (st_ctx->classifiers->len == 0) { task->processed_stages |= stage; return ret; } if (stage == RSPAMD_TASK_STAGE_CLASSIFIERS_PRE) { /* Preprocess tokens */ rspamd_stat_preprocess(st_ctx, task, FALSE, FALSE); } else if (stage == RSPAMD_TASK_STAGE_CLASSIFIERS) { /* Process backends */ rspamd_stat_backends_process(st_ctx, task); } else if (stage == RSPAMD_TASK_STAGE_CLASSIFIERS_POST) { /* Process classifiers */ rspamd_stat_classifiers_process(st_ctx, task); } task->processed_stages |= stage; return ret; } static gboolean rspamd_stat_cache_check(struct rspamd_stat_ctx *st_ctx, struct rspamd_task *task, const char *classifier, gboolean spam, GError **err) { rspamd_learn_t learn_res = RSPAMD_LEARN_OK; struct rspamd_classifier *cl, *sel = NULL; gpointer rt; unsigned int i; /* Check whether we have learned that file */ for (i = 0; i < st_ctx->classifiers->len; i++) { cl = g_ptr_array_index(st_ctx->classifiers, i); /* Skip other classifiers if they are not needed */ if (classifier != NULL && (cl->cfg->name == NULL || g_ascii_strcasecmp(classifier, cl->cfg->name) != 0)) { continue; } sel = cl; if (sel->cache && sel->cachecf) { rt = cl->cache->runtime(task, sel->cachecf, FALSE); learn_res = cl->cache->check(task, spam, rt); } if (learn_res == RSPAMD_LEARN_IGNORE) { /* Do not learn twice */ g_set_error(err, rspamd_stat_quark(), 404, "<%s> has been already " "learned as %s, ignore it", MESSAGE_FIELD(task, message_id), spam ? "spam" : "ham"); task->flags |= RSPAMD_TASK_FLAG_ALREADY_LEARNED; return FALSE; } else if (learn_res == RSPAMD_LEARN_UNLEARN) { task->flags |= RSPAMD_TASK_FLAG_UNLEARN; break; } } if (sel == NULL) { if (classifier) { g_set_error(err, rspamd_stat_quark(), 404, "cannot find classifier " "with name %s", classifier); } else { g_set_error(err, rspamd_stat_quark(), 404, "no classifiers defined"); } return FALSE; } return TRUE; } static gboolean rspamd_stat_classifiers_learn(struct rspamd_stat_ctx *st_ctx, struct rspamd_task *task, const char *classifier, gboolean spam, GError **err) { struct rspamd_classifier *cl, *sel = NULL; unsigned int i; gboolean learned = FALSE, too_small = FALSE, too_large = FALSE; if ((task->flags & RSPAMD_TASK_FLAG_ALREADY_LEARNED) && err != NULL && *err == NULL) { /* Do not learn twice */ g_set_error(err, rspamd_stat_quark(), 208, "<%s> has been already " "learned as %s, ignore it", MESSAGE_FIELD(task, message_id), spam ? "spam" : "ham"); return FALSE; } /* Check whether we have learned that file */ for (i = 0; i < st_ctx->classifiers->len; i++) { cl = g_ptr_array_index(st_ctx->classifiers, i); /* Skip other classifiers if they are not needed */ if (classifier != NULL && (cl->cfg->name == NULL || g_ascii_strcasecmp(classifier, cl->cfg->name) != 0)) { continue; } sel = cl; /* Now check max and min tokens */ if (cl->cfg->min_tokens > 0 && task->tokens->len < cl->cfg->min_tokens) { msg_info_task( "<%s> contains less tokens than required for %s classifier: " "%ud < %ud", MESSAGE_FIELD(task, message_id), cl->cfg->name, task->tokens->len, cl->cfg->min_tokens); too_small = TRUE; continue; } else if (cl->cfg->max_tokens > 0 && task->tokens->len > cl->cfg->max_tokens) { msg_info_task( "<%s> contains more tokens than allowed for %s classifier: " "%ud > %ud", MESSAGE_FIELD(task, message_id), cl->cfg->name, task->tokens->len, cl->cfg->max_tokens); too_large = TRUE; continue; } if (cl->subrs->learn_spam_func(cl, task->tokens, task, spam, task->flags & RSPAMD_TASK_FLAG_UNLEARN, err)) { learned = TRUE; } } if (sel == NULL) { if (classifier) { g_set_error(err, rspamd_stat_quark(), 404, "cannot find classifier " "with name %s", classifier); } else { g_set_error(err, rspamd_stat_quark(), 404, "no classifiers defined"); } return FALSE; } if (!learned && err && *err == NULL) { if (too_large) { g_set_error(err, rspamd_stat_quark(), 204, "<%s> contains more tokens than allowed for %s classifier: " "%d > %d", MESSAGE_FIELD(task, message_id), sel->cfg->name, task->tokens->len, sel->cfg->max_tokens); } else if (too_small) { g_set_error(err, rspamd_stat_quark(), 204, "<%s> contains less tokens than required for %s classifier: " "%d < %d", MESSAGE_FIELD(task, message_id), sel->cfg->name, task->tokens->len, sel->cfg->min_tokens); } } return learned; } static gboolean rspamd_stat_backends_learn(struct rspamd_stat_ctx *st_ctx, struct rspamd_task *task, const char *classifier, gboolean spam, GError **err) { struct rspamd_classifier *cl, *sel = NULL; struct rspamd_statfile *st; gpointer bk_run; unsigned int i, j; int id; gboolean res = FALSE, backend_found = FALSE; for (i = 0; i < st_ctx->classifiers->len; i++) { cl = g_ptr_array_index(st_ctx->classifiers, i); /* Skip other classifiers if they are not needed */ if (classifier != NULL && (cl->cfg->name == NULL || g_ascii_strcasecmp(classifier, cl->cfg->name) != 0)) { continue; } if (cl->cfg->flags & RSPAMD_FLAG_CLASSIFIER_NO_BACKEND) { res = TRUE; continue; } sel = cl; for (j = 0; j < cl->statfiles_ids->len; j++) { id = g_array_index(cl->statfiles_ids, int, j); st = g_ptr_array_index(st_ctx->statfiles, id); bk_run = g_ptr_array_index(task->stat_runtimes, id); g_assert(st != NULL); if (bk_run == NULL) { /* XXX: must be error */ if (task->result->passthrough_result) { /* Passthrough email, cannot learn */ g_set_error(err, rspamd_stat_quark(), 204, "Cannot learn statistics when passthrough " "result has been set; not classified"); res = FALSE; goto end; } msg_debug_task("no runtime for backend %s; classifier %s; symbol %s", st->backend->name, cl->cfg->name, st->stcf->symbol); continue; } /* We set sel merely when we have runtime */ backend_found = TRUE; if (!(task->flags & RSPAMD_TASK_FLAG_UNLEARN)) { if (!!spam != !!st->stcf->is_spam) { /* If we are not unlearning, then do not touch another class */ continue; } } if (!st->backend->learn_tokens(task, task->tokens, id, bk_run)) { g_set_error(err, rspamd_stat_quark(), 500, "Cannot push " "learned results to the backend"); res = FALSE; goto end; } else { if (!!spam == !!st->stcf->is_spam) { st->backend->inc_learns(task, bk_run, st_ctx); } else if (task->flags & RSPAMD_TASK_FLAG_UNLEARN) { st->backend->dec_learns(task, bk_run, st_ctx); } res = TRUE; } } } end: if (!res) { if (err && *err) { /* Error has been set already */ return res; } if (sel == NULL) { if (classifier) { g_set_error(err, rspamd_stat_quark(), 404, "cannot find classifier " "with name %s", classifier); } else { g_set_error(err, rspamd_stat_quark(), 404, "no classifiers defined"); } return FALSE; } else if (!backend_found) { g_set_error(err, rspamd_stat_quark(), 204, "all learn conditions " "denied learning %s in %s", spam ? "spam" : "ham", classifier ? classifier : "default classifier"); } else { g_set_error(err, rspamd_stat_quark(), 404, "cannot find statfile " "backend to learn %s in %s", spam ? "spam" : "ham", classifier ? classifier : "default classifier"); } } return res; } static gboolean rspamd_stat_backends_post_learn(struct rspamd_stat_ctx *st_ctx, struct rspamd_task *task, const char *classifier, gboolean spam, GError **err) { struct rspamd_classifier *cl; struct rspamd_statfile *st; gpointer bk_run, cache_run; unsigned int i, j; int id; gboolean res = TRUE; for (i = 0; i < st_ctx->classifiers->len; i++) { cl = g_ptr_array_index(st_ctx->classifiers, i); /* Skip other classifiers if they are not needed */ if (classifier != NULL && (cl->cfg->name == NULL || g_ascii_strcasecmp(classifier, cl->cfg->name) != 0)) { continue; } if (cl->cfg->flags & RSPAMD_FLAG_CLASSIFIER_NO_BACKEND) { res = TRUE; continue; } for (j = 0; j < cl->statfiles_ids->len; j++) { id = g_array_index(cl->statfiles_ids, int, j); st = g_ptr_array_index(st_ctx->statfiles, id); bk_run = g_ptr_array_index(task->stat_runtimes, id); g_assert(st != NULL); if (bk_run == NULL) { /* XXX: must be error */ continue; } if (!st->backend->finalize_learn(task, bk_run, st_ctx, err)) { return RSPAMD_STAT_PROCESS_ERROR; } } if (cl->cache) { cache_run = cl->cache->runtime(task, cl->cachecf, TRUE); cl->cache->learn(task, spam, cache_run); } } g_atomic_int_add(&task->worker->srv->stat->messages_learned, 1); return res; } rspamd_stat_result_t rspamd_stat_learn(struct rspamd_task *task, gboolean spam, lua_State *L, const char *classifier, unsigned int stage, GError **err) { struct rspamd_stat_ctx *st_ctx; rspamd_stat_result_t ret = RSPAMD_STAT_PROCESS_OK; /* * We assume now that a task has been already classified before * coming to learn */ g_assert(RSPAMD_TASK_IS_CLASSIFIED(task)); st_ctx = rspamd_stat_get_ctx(); g_assert(st_ctx != NULL); msg_debug_bayes("learn stage %d has been called", stage); if (st_ctx->classifiers->len == 0) { msg_debug_bayes("no classifiers defined"); task->processed_stages |= stage; return ret; } if (stage == RSPAMD_TASK_STAGE_LEARN_PRE) { /* Process classifiers */ rspamd_stat_preprocess(st_ctx, task, TRUE, spam); if (!rspamd_stat_cache_check(st_ctx, task, classifier, spam, err)) { msg_debug_bayes("cache check failed, skip learning"); return RSPAMD_STAT_PROCESS_ERROR; } } else if (stage == RSPAMD_TASK_STAGE_LEARN) { /* Process classifiers */ if (!rspamd_stat_classifiers_learn(st_ctx, task, classifier, spam, err)) { if (err && *err == NULL) { g_set_error(err, rspamd_stat_quark(), 500, "Unknown statistics error, found when learning classifiers;" " classifier: %s", task->classifier); } return RSPAMD_STAT_PROCESS_ERROR; } /* Process backends */ if (!rspamd_stat_backends_learn(st_ctx, task, classifier, spam, err)) { if (err && *err == NULL) { g_set_error(err, rspamd_stat_quark(), 500, "Unknown statistics error, found when storing data on backend;" " classifier: %s", task->classifier); } return RSPAMD_STAT_PROCESS_ERROR; } } else if (stage == RSPAMD_TASK_STAGE_LEARN_POST) { if (!rspamd_stat_backends_post_learn(st_ctx, task, classifier, spam, err)) { return RSPAMD_STAT_PROCESS_ERROR; } } task->processed_stages |= stage; return ret; } static gboolean rspamd_stat_has_classifier_symbols(struct rspamd_task *task, struct rspamd_scan_result *mres, struct rspamd_classifier *cl) { unsigned int i; int id; struct rspamd_statfile *st; struct rspamd_stat_ctx *st_ctx; gboolean is_spam; if (mres == NULL) { return FALSE; } st_ctx = rspamd_stat_get_ctx(); is_spam = !!(task->flags & RSPAMD_TASK_FLAG_LEARN_SPAM); for (i = 0; i < cl->statfiles_ids->len; i++) { id = g_array_index(cl->statfiles_ids, int, i); st = g_ptr_array_index(st_ctx->statfiles, id); if (rspamd_task_find_symbol_result(task, st->stcf->symbol, NULL)) { if (is_spam == !!st->stcf->is_spam) { msg_debug_bayes("do not autolearn %s as symbol %s is already " "added", is_spam ? "spam" : "ham", st->stcf->symbol); return TRUE; } } } return FALSE; } gboolean rspamd_stat_check_autolearn(struct rspamd_task *task) { struct rspamd_stat_ctx *st_ctx; struct rspamd_classifier *cl; const ucl_object_t *obj, *elt1, *elt2; struct rspamd_scan_result *mres = task->result; struct rspamd_task **ptask; lua_State *L; unsigned int i; int err_idx; gboolean ret = FALSE; double ham_score, spam_score; const char *lua_script, *lua_ret; g_assert(RSPAMD_TASK_IS_CLASSIFIED(task)); st_ctx = rspamd_stat_get_ctx(); g_assert(st_ctx != NULL); L = task->cfg->lua_state; for (i = 0; i < st_ctx->classifiers->len; i++) { cl = g_ptr_array_index(st_ctx->classifiers, i); ret = FALSE; if (cl->cfg->opts) { obj = ucl_object_lookup(cl->cfg->opts, "autolearn"); if (ucl_object_type(obj) == UCL_BOOLEAN) { /* Legacy true/false */ if (ucl_object_toboolean(obj)) { /* * Default learning algorithm: * * - We learn spam if action is ACTION_REJECT * - We learn ham if score is less than zero */ if (mres) { if (mres->score > rspamd_task_get_required_score(task, mres)) { task->flags |= RSPAMD_TASK_FLAG_LEARN_SPAM; ret = TRUE; } else if (mres->score < 0) { task->flags |= RSPAMD_TASK_FLAG_LEARN_HAM; ret = TRUE; } } } } else if (ucl_object_type(obj) == UCL_ARRAY && obj->len == 2) { /* Legacy thresholds */ /* * We have an array of 2 elements, treat it as a * ham_score, spam_score */ elt1 = ucl_array_find_index(obj, 0); elt2 = ucl_array_find_index(obj, 1); if ((ucl_object_type(elt1) == UCL_FLOAT || ucl_object_type(elt1) == UCL_INT) && (ucl_object_type(elt2) == UCL_FLOAT || ucl_object_type(elt2) == UCL_INT)) { ham_score = ucl_object_todouble(elt1); spam_score = ucl_object_todouble(elt2); if (ham_score > spam_score) { double t; t = ham_score; ham_score = spam_score; spam_score = t; } if (mres) { if (mres->score >= spam_score) { task->flags |= RSPAMD_TASK_FLAG_LEARN_SPAM; ret = TRUE; } else if (mres->score <= ham_score) { task->flags |= RSPAMD_TASK_FLAG_LEARN_HAM; ret = TRUE; } } } } else if (ucl_object_type(obj) == UCL_STRING) { /* Legacy script */ lua_script = ucl_object_tostring(obj); if (luaL_dostring(L, lua_script) != 0) { msg_err_task("cannot execute lua script for autolearn " "extraction: %s", lua_tostring(L, -1)); } else { if (lua_type(L, -1) == LUA_TFUNCTION) { lua_pushcfunction(L, &rspamd_lua_traceback); err_idx = lua_gettop(L); lua_pushvalue(L, -2); /* Function itself */ ptask = lua_newuserdata(L, sizeof(struct rspamd_task *)); *ptask = task; rspamd_lua_setclass(L, rspamd_task_classname, -1); if (lua_pcall(L, 1, 1, err_idx) != 0) { msg_err_task("call to autolearn script failed: " "%s", lua_tostring(L, -1)); } else { lua_ret = lua_tostring(L, -1); /* We can have immediate results */ if (lua_ret) { if (strcmp(lua_ret, "ham") == 0) { task->flags |= RSPAMD_TASK_FLAG_LEARN_HAM; ret = TRUE; } else if (strcmp(lua_ret, "spam") == 0) { task->flags |= RSPAMD_TASK_FLAG_LEARN_SPAM; ret = TRUE; } } } /* Result + error function + original function */ lua_pop(L, 3); } else { msg_err_task("lua script must return " "function(task) and not %s", lua_typename(L, lua_type( L, -1))); } } } else if (ucl_object_type(obj) == UCL_OBJECT) { /* Try to find autolearn callback */ if (cl->autolearn_cbref == 0) { /* We don't have preprocessed cb id, so try to get it */ if (!rspamd_lua_require_function(L, "lua_bayes_learn", "autolearn")) { msg_err_task("cannot get autolearn library from " "`lua_bayes_learn`"); } else { cl->autolearn_cbref = luaL_ref(L, LUA_REGISTRYINDEX); } } if (cl->autolearn_cbref != -1) { lua_pushcfunction(L, &rspamd_lua_traceback); err_idx = lua_gettop(L); lua_rawgeti(L, LUA_REGISTRYINDEX, cl->autolearn_cbref); ptask = lua_newuserdata(L, sizeof(struct rspamd_task *)); *ptask = task; rspamd_lua_setclass(L, rspamd_task_classname, -1); /* Push the whole object as well */ ucl_object_push_lua(L, obj, true); if (lua_pcall(L, 2, 1, err_idx) != 0) { msg_err_task("call to autolearn script failed: " "%s", lua_tostring(L, -1)); } else { lua_ret = lua_tostring(L, -1); if (lua_ret) { if (strcmp(lua_ret, "ham") == 0) { task->flags |= RSPAMD_TASK_FLAG_LEARN_HAM; ret = TRUE; } else if (strcmp(lua_ret, "spam") == 0) { task->flags |= RSPAMD_TASK_FLAG_LEARN_SPAM; ret = TRUE; } } } lua_settop(L, err_idx - 1); } } if (ret) { /* Do not autolearn if we have this symbol already */ if (rspamd_stat_has_classifier_symbols(task, mres, cl)) { ret = FALSE; task->flags &= ~(RSPAMD_TASK_FLAG_LEARN_HAM | RSPAMD_TASK_FLAG_LEARN_SPAM); } else if (mres != NULL) { if (task->flags & RSPAMD_TASK_FLAG_LEARN_HAM) { msg_info_task("<%s>: autolearn ham for classifier " "'%s' as message's " "score is negative: %.2f", MESSAGE_FIELD(task, message_id), cl->cfg->name, mres->score); } else { msg_info_task("<%s>: autolearn spam for classifier " "'%s' as message's " "action is reject, score: %.2f", MESSAGE_FIELD(task, message_id), cl->cfg->name, mres->score); } task->classifier = cl->cfg->name; break; } } } } return ret; } /** * Get the overall statistics for all statfile backends * @param cfg configuration * @param total_learns the total number of learns is stored here * @return array of statistical information */ rspamd_stat_result_t rspamd_stat_statistics(struct rspamd_task *task, struct rspamd_config *cfg, uint64_t *total_learns, ucl_object_t **target) { struct rspamd_stat_ctx *st_ctx; struct rspamd_classifier *cl; struct rspamd_statfile *st; gpointer backend_runtime; ucl_object_t *res = NULL, *elt; uint64_t learns = 0; unsigned int i, j; int id; st_ctx = rspamd_stat_get_ctx(); g_assert(st_ctx != NULL); res = ucl_object_typed_new(UCL_ARRAY); for (i = 0; i < st_ctx->classifiers->len; i++) { cl = g_ptr_array_index(st_ctx->classifiers, i); if (cl->cfg->flags & RSPAMD_FLAG_CLASSIFIER_NO_BACKEND) { continue; } for (j = 0; j < cl->statfiles_ids->len; j++) { id = g_array_index(cl->statfiles_ids, int, j); st = g_ptr_array_index(st_ctx->statfiles, id); backend_runtime = st->backend->runtime(task, st->stcf, FALSE, st->bkcf, id); elt = st->backend->get_stat(backend_runtime, st->bkcf); if (elt && ucl_object_type(elt) == UCL_OBJECT) { const ucl_object_t *rev = ucl_object_lookup(elt, "revision"); learns += ucl_object_toint(rev); } else { learns += st->backend->total_learns(task, backend_runtime, st->bkcf); } if (elt != NULL) { ucl_array_append(res, elt); } } } if (total_learns != NULL) { *total_learns = learns; } if (target) { *target = res; } else { ucl_object_unref(res); } return RSPAMD_STAT_PROCESS_OK; }