/*- * Copyright 2016 Vsevolod Stakhov * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "config.h" #include "mem_pool.h" #include "fstring.h" #include "logger.h" #include "ottery.h" #include "unix-std.h" #include "khash.h" #include "cryptobox.h" #ifdef WITH_JEMALLOC #include #if (JEMALLOC_VERSION_MAJOR == 3 && JEMALLOC_VERSION_MINOR >= 6) || (JEMALLOC_VERSION_MAJOR > 3) #define HAVE_MALLOC_SIZE 1 #define sys_alloc_size(sz) nallocx(sz, 0) #endif #elif defined(__APPLE__) #include #define HAVE_MALLOC_SIZE 1 #define sys_alloc_size(sz) malloc_good_size(sz) #endif #ifdef HAVE_SCHED_YIELD #include #endif /* Sleep time for spin lock in nanoseconds */ #define MUTEX_SLEEP_TIME 10000000L #define MUTEX_SPIN_COUNT 100 #define POOL_MTX_LOCK() do { } while (0) #define POOL_MTX_UNLOCK() do { } while (0) /* * This define specify whether we should check all pools for free space for new object * or just begin scan from current (recently attached) pool * If MEMORY_GREEDY is defined, then we scan all pools to find free space (more CPU usage, slower * but requires less memory). If it is not defined check only current pool and if object is too large * to place in it allocate new one (this may cause huge CPU usage in some cases too, but generally faster than * greedy method) */ #undef MEMORY_GREEDY #define ENTRY_LEN 128 #define ENTRY_NELTS 64 struct entry_elt { guint32 fragmentation; guint32 leftover; }; struct rspamd_mempool_entry_point { gchar src[ENTRY_LEN]; guint32 cur_suggestion; guint32 cur_elts; struct entry_elt elts[ENTRY_NELTS]; }; static inline uint32_t rspamd_entry_hash (const char *str) { return rspamd_cryptobox_fast_hash (str, strlen (str), rspamd_hash_seed ()); } static inline int rspamd_entry_equal (const char *k1, const char *k2) { return strcmp (k1, k2) == 0; } KHASH_INIT(mempool_entry, const gchar *, struct rspamd_mempool_entry_point *, 1, rspamd_entry_hash, rspamd_entry_equal) static khash_t(mempool_entry) *mempool_entries = NULL; /* Internal statistic */ static rspamd_mempool_stat_t *mem_pool_stat = NULL; /* Environment variable */ static gboolean env_checked = FALSE; static gboolean always_malloc = FALSE; /** * Function that return free space in pool page * @param x pool page struct */ static gsize pool_chain_free (struct _pool_chain *chain) { gint64 occupied = chain->pos - chain->begin + MEM_ALIGNMENT; return (occupied < (gint64)chain->len ? chain->len - occupied : 0); } /* By default allocate 8Kb chunks of memory */ #define FIXED_POOL_SIZE 4096 static inline struct rspamd_mempool_entry_point * rspamd_mempool_entry_new (const gchar *loc) { struct rspamd_mempool_entry_point **pentry, *entry; gint r; khiter_t k; k = kh_put (mempool_entry, mempool_entries, loc, &r); if (r >= 0) { pentry = &kh_value (mempool_entries, k); entry = g_malloc0 (sizeof (*entry)); *pentry = entry; memset (entry, 0, sizeof (*entry)); rspamd_strlcpy (entry->src, loc, sizeof (entry->src)); #ifdef HAVE_GETPAGESIZE entry->cur_suggestion = MAX (getpagesize (), FIXED_POOL_SIZE); #else entry->cur_suggestion = MAX (sysconf (_SC_PAGESIZE), FIXED_POOL_SIZE); #endif } else { g_assert_not_reached (); } return entry; } static inline struct rspamd_mempool_entry_point * rspamd_mempool_get_entry (const gchar *loc) { khiter_t k; struct rspamd_mempool_entry_point *elt; if (mempool_entries == NULL) { mempool_entries = kh_init (mempool_entry); } else { k = kh_get (mempool_entry, mempool_entries, loc); if (k != kh_end (mempool_entries)) { elt = kh_value (mempool_entries, k); return elt; } } return rspamd_mempool_entry_new (loc); } static struct _pool_chain * rspamd_mempool_chain_new (gsize size, enum rspamd_mempool_chain_type pool_type) { struct _pool_chain *chain; gsize total_size = size + sizeof (struct _pool_chain) + MEM_ALIGNMENT, optimal_size = 0; gpointer map; g_assert (size > 0); if (pool_type == RSPAMD_MEMPOOL_SHARED) { #if defined(HAVE_MMAP_ANON) map = mmap (NULL, total_size, PROT_READ | PROT_WRITE, MAP_ANON | MAP_SHARED, -1, 0); if (map == MAP_FAILED) { g_error ("%s: failed to allocate %"G_GSIZE_FORMAT" bytes", G_STRLOC, total_size); abort (); } chain = map; chain->begin = ((guint8 *) chain) + sizeof (struct _pool_chain); #elif defined(HAVE_MMAP_ZERO) gint fd; fd = open ("/dev/zero", O_RDWR); if (fd == -1) { return NULL; } map = mmap (NULL, size + sizeof (struct _pool_chain), PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); if (map == MAP_FAILED) { msg_err ("cannot allocate %z bytes, aborting", size + sizeof (struct _pool_chain)); abort (); } chain = map; chain->begin = ((guint8 *) chain) + sizeof (struct _pool_chain); #else #error No mmap methods are defined #endif g_atomic_int_inc (&mem_pool_stat->shared_chunks_allocated); g_atomic_int_add (&mem_pool_stat->bytes_allocated, total_size); } else { #ifdef HAVE_MALLOC_SIZE optimal_size = sys_alloc_size (total_size); #endif total_size = MAX (total_size, optimal_size); map = malloc (total_size); if (map == NULL) { g_error ("%s: failed to allocate %"G_GSIZE_FORMAT" bytes", G_STRLOC, total_size); abort (); } chain = map; chain->begin = ((guint8 *) chain) + sizeof (struct _pool_chain); g_atomic_int_add (&mem_pool_stat->bytes_allocated, total_size); g_atomic_int_inc (&mem_pool_stat->chunks_allocated); } chain->pos = align_ptr (chain->begin, MEM_ALIGNMENT); chain->len = total_size - sizeof (struct _pool_chain); chain->lock = NULL; return chain; } static void rspamd_mempool_create_pool_type (rspamd_mempool_t * pool, enum rspamd_mempool_chain_type pool_type) { gsize preallocated_len; switch (pool_type) { case RSPAMD_MEMPOOL_NORMAL: preallocated_len = 32; break; case RSPAMD_MEMPOOL_SHARED: case RSPAMD_MEMPOOL_TMP: default: preallocated_len = 2; break; } pool->pools[pool_type] = g_ptr_array_sized_new (preallocated_len); } /** * Get the current pool of the specified type, creating the corresponding * array if it's absent * @param pool * @param pool_type * @return */ static struct _pool_chain * rspamd_mempool_get_chain (rspamd_mempool_t * pool, enum rspamd_mempool_chain_type pool_type) { gsize len; g_assert (pool_type >= 0 && pool_type < RSPAMD_MEMPOOL_MAX); if (pool->pools[pool_type] == NULL) { rspamd_mempool_create_pool_type (pool, pool_type); } len = pool->pools[pool_type]->len; if (len == 0) { return NULL; } return (g_ptr_array_index (pool->pools[pool_type], len - 1)); } static void rspamd_mempool_append_chain (rspamd_mempool_t * pool, struct _pool_chain *chain, enum rspamd_mempool_chain_type pool_type) { g_assert (pool_type >= 0 && pool_type < RSPAMD_MEMPOOL_MAX); g_assert (chain != NULL); if (pool->pools[pool_type] == NULL) { rspamd_mempool_create_pool_type (pool, pool_type); } g_ptr_array_add (pool->pools[pool_type], chain); } /** * Allocate new memory poll * @param size size of pool's page * @return new memory pool object */ rspamd_mempool_t * rspamd_mempool_new_ (gsize size, const gchar *tag, const gchar *loc) { rspamd_mempool_t *new; gpointer map; unsigned char uidbuf[10]; const gchar hexdigits[] = "0123456789abcdef"; unsigned i; /* Allocate statistic structure if it is not allocated before */ if (mem_pool_stat == NULL) { #if defined(HAVE_MMAP_ANON) map = mmap (NULL, sizeof (rspamd_mempool_stat_t), PROT_READ | PROT_WRITE, MAP_ANON | MAP_SHARED, -1, 0); if (map == MAP_FAILED) { msg_err ("cannot allocate %z bytes, aborting", sizeof (rspamd_mempool_stat_t)); abort (); } mem_pool_stat = (rspamd_mempool_stat_t *)map; #elif defined(HAVE_MMAP_ZERO) gint fd; fd = open ("/dev/zero", O_RDWR); g_assert (fd != -1); map = mmap (NULL, sizeof (rspamd_mempool_stat_t), PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); if (map == MAP_FAILED) { msg_err ("cannot allocate %z bytes, aborting", sizeof (rspamd_mempool_stat_t)); abort (); } mem_pool_stat = (rspamd_mempool_stat_t *)map; #else # error No mmap methods are defined #endif memset (map, 0, sizeof (rspamd_mempool_stat_t)); } if (!env_checked) { /* Check G_SLICE=always-malloc to allow memory pool debug */ const char *g_slice; g_slice = getenv ("VALGRIND"); if (g_slice != NULL) { always_malloc = TRUE; } env_checked = TRUE; } new = g_malloc0 (sizeof (rspamd_mempool_t)); new->entry = rspamd_mempool_get_entry (loc); new->destructors = g_array_sized_new (FALSE, FALSE, sizeof (struct _pool_destructors), 32); rspamd_mempool_create_pool_type (new, RSPAMD_MEMPOOL_NORMAL); /* Set it upon first call of set variable */ if (size == 0) { new->elt_len = new->entry->cur_suggestion; } else { new->elt_len = size; } if (tag) { rspamd_strlcpy (new->tag.tagname, tag, sizeof (new->tag.tagname)); } else { new->tag.tagname[0] = '\0'; } /* Generate new uid */ ottery_rand_bytes (uidbuf, sizeof (uidbuf)); for (i = 0; i < G_N_ELEMENTS (uidbuf); i ++) { new->tag.uid[i * 2] = hexdigits[(uidbuf[i] >> 4) & 0xf]; new->tag.uid[i * 2 + 1] = hexdigits[uidbuf[i] & 0xf]; } new->tag.uid[19] = '\0'; mem_pool_stat->pools_allocated++; return new; } static void * memory_pool_alloc_common (rspamd_mempool_t * pool, gsize size, enum rspamd_mempool_chain_type pool_type) RSPAMD_ATTR_ALLOC_SIZE(2) RSPAMD_ATTR_ALLOC_ALIGN(MEM_ALIGNMENT) RSPAMD_ATTR_RETURNS_NONNUL; static void * memory_pool_alloc_common (rspamd_mempool_t * pool, gsize size, enum rspamd_mempool_chain_type pool_type) { guint8 *tmp; struct _pool_chain *new, *cur; gsize free = 0; if (pool) { POOL_MTX_LOCK (); if (always_malloc && pool_type != RSPAMD_MEMPOOL_SHARED) { void *ptr; ptr = g_malloc (size); POOL_MTX_UNLOCK (); if (pool->trash_stack == NULL) { pool->trash_stack = g_ptr_array_sized_new (128); } g_ptr_array_add (pool->trash_stack, ptr); return ptr; } cur = rspamd_mempool_get_chain (pool, pool_type); /* Find free space in pool chain */ if (cur) { free = pool_chain_free (cur); } if (cur == NULL || free < size) { /* Allocate new chain element */ if (pool->elt_len >= size + MEM_ALIGNMENT) { pool->entry->elts[pool->entry->cur_elts].fragmentation += size; new = rspamd_mempool_chain_new (pool->elt_len, pool_type); } else { mem_pool_stat->oversized_chunks++; g_atomic_int_add (&mem_pool_stat->fragmented_size, free); pool->entry->elts[pool->entry->cur_elts].fragmentation += free; new = rspamd_mempool_chain_new (size + pool->elt_len, pool_type); } /* Connect to pool subsystem */ rspamd_mempool_append_chain (pool, new, pool_type); /* No need to align again, aligned by rspamd_mempool_chain_new */ tmp = new->pos; new->pos = tmp + size; POOL_MTX_UNLOCK (); return tmp; } /* No need to allocate page */ tmp = align_ptr (cur->pos, MEM_ALIGNMENT); cur->pos = tmp + size; POOL_MTX_UNLOCK (); return tmp; } abort (); } void * rspamd_mempool_alloc (rspamd_mempool_t * pool, gsize size) { return memory_pool_alloc_common (pool, size, RSPAMD_MEMPOOL_NORMAL); } void * rspamd_mempool_alloc_tmp (rspamd_mempool_t * pool, gsize size) { return memory_pool_alloc_common (pool, size, RSPAMD_MEMPOOL_TMP); } void * rspamd_mempool_alloc0 (rspamd_mempool_t * pool, gsize size) { void *pointer = rspamd_mempool_alloc (pool, size); if (pointer) { memset (pointer, 0, size); } return pointer; } void * rspamd_mempool_alloc0_tmp (rspamd_mempool_t * pool, gsize size) { void *pointer = rspamd_mempool_alloc_tmp (pool, size); if (pointer) { memset (pointer, 0, size); } return pointer; } void * rspamd_mempool_alloc0_shared (rspamd_mempool_t * pool, gsize size) { void *pointer = rspamd_mempool_alloc_shared (pool, size); if (pointer) { memset (pointer, 0, size); } return pointer; } void * rspamd_mempool_alloc_shared (rspamd_mempool_t * pool, gsize size) { return memory_pool_alloc_common (pool, size, RSPAMD_MEMPOOL_SHARED); } gchar * rspamd_mempool_strdup (rspamd_mempool_t * pool, const gchar *src) { gsize len; gchar *newstr; if (src == NULL) { return NULL; } len = strlen (src); newstr = rspamd_mempool_alloc (pool, len + 1); memcpy (newstr, src, len); newstr[len] = '\0'; return newstr; } gchar * rspamd_mempool_fstrdup (rspamd_mempool_t * pool, const struct f_str_s *src) { gchar *newstr; if (src == NULL) { return NULL; } newstr = rspamd_mempool_alloc (pool, src->len + 1); memcpy (newstr, src->str, src->len); newstr[src->len] = '\0'; return newstr; } gchar * rspamd_mempool_ftokdup (rspamd_mempool_t *pool, const rspamd_ftok_t *src) { gchar *newstr; if (src == NULL) { return NULL; } newstr = rspamd_mempool_alloc (pool, src->len + 1); memcpy (newstr, src->begin, src->len); newstr[src->len] = '\0'; return newstr; } void rspamd_mempool_add_destructor_full (rspamd_mempool_t * pool, rspamd_mempool_destruct_t func, void *data, const gchar *function, const gchar *line) { struct _pool_destructors cur; POOL_MTX_LOCK (); cur.func = func; cur.data = data; cur.function = function; cur.loc = line; g_array_append_val (pool->destructors, cur); POOL_MTX_UNLOCK (); } void rspamd_mempool_replace_destructor (rspamd_mempool_t * pool, rspamd_mempool_destruct_t func, void *old_data, void *new_data) { struct _pool_destructors *tmp; guint i; for (i = 0; i < pool->destructors->len; i ++) { tmp = &g_array_index (pool->destructors, struct _pool_destructors, i); if (tmp->func == func && tmp->data == old_data) { tmp->func = func; tmp->data = new_data; break; } } } static gint cmp_int (gconstpointer a, gconstpointer b) { gint i1 = *(const gint *)a, i2 = *(const gint *)b; return i1 - i2; } static void rspamd_mempool_adjust_entry (struct rspamd_mempool_entry_point *e) { gint sz[G_N_ELEMENTS (e->elts)], sel_pos, sel_neg; guint i, jitter; for (i = 0; i < G_N_ELEMENTS (sz); i ++) { sz[i] = e->elts[i].fragmentation - (gint)e->elts[i].leftover; } qsort (sz, G_N_ELEMENTS (sz), sizeof (gint), cmp_int); jitter = rspamd_random_uint64_fast () % 10; /* * Take stochaistic quantiles */ sel_pos = sz[50 + jitter]; sel_neg = sz[4 + jitter]; if (sel_neg > 0) { /* We need to increase our suggestion */ e->cur_suggestion *= (1 + (((double)sel_pos) / e->cur_suggestion)) * 1.5; } else if (-sel_neg > sel_pos) { /* We need to reduce current suggestion */ e->cur_suggestion /= (1 + (((double)-sel_neg) / e->cur_suggestion)) * 1.5; } else { /* We still want to grow */ e->cur_suggestion *= (1 + (((double)sel_pos) / e->cur_suggestion)) * 1.5; } /* Some sane limits counting mempool architecture */ if (e->cur_suggestion < 1024) { e->cur_suggestion = 1024; } else if (e->cur_suggestion > 1024 * 1024 * 10) { e->cur_suggestion = 1024 * 1024 * 10; } memset (e->elts, 0, sizeof (e->elts)); } void rspamd_mempool_destructors_enforce (rspamd_mempool_t *pool) { struct _pool_destructors *destructor; guint i; POOL_MTX_LOCK (); for (i = 0; i < pool->destructors->len; i ++) { destructor = &g_array_index (pool->destructors, struct _pool_destructors, i); /* Avoid calling destructors for NULL pointers */ if (destructor->data != NULL) { destructor->func (destructor->data); } } pool->destructors->len = 0; POOL_MTX_UNLOCK (); } void rspamd_mempool_delete (rspamd_mempool_t * pool) { struct _pool_chain *cur; struct _pool_destructors *destructor; gpointer ptr; guint i, j; gsize len; POOL_MTX_LOCK (); cur = NULL; if (pool->pools[RSPAMD_MEMPOOL_NORMAL] != NULL && pool->pools[RSPAMD_MEMPOOL_NORMAL]->len > 0) { cur = g_ptr_array_index (pool->pools[RSPAMD_MEMPOOL_NORMAL], pool->pools[RSPAMD_MEMPOOL_NORMAL]->len - 1); } if (cur) { pool->entry->elts[pool->entry->cur_elts].leftover = pool_chain_free (cur); pool->entry->cur_elts = (pool->entry->cur_elts + 1) % G_N_ELEMENTS (pool->entry->elts); if (pool->entry->cur_elts == 0) { rspamd_mempool_adjust_entry (pool->entry); } } /* Call all pool destructors */ for (i = 0; i < pool->destructors->len; i ++) { destructor = &g_array_index (pool->destructors, struct _pool_destructors, i); /* Avoid calling destructors for NULL pointers */ if (destructor->data != NULL) { destructor->func (destructor->data); } } g_array_free (pool->destructors, TRUE); for (i = 0; i < G_N_ELEMENTS (pool->pools); i ++) { if (pool->pools[i]) { for (j = 0; j < pool->pools[i]->len; j++) { cur = g_ptr_array_index (pool->pools[i], j); g_atomic_int_add (&mem_pool_stat->bytes_allocated, -((gint)cur->len)); g_atomic_int_add (&mem_pool_stat->chunks_allocated, -1); len = cur->len + sizeof (struct _pool_chain); if (i == RSPAMD_MEMPOOL_SHARED) { munmap ((void *)cur, len); } else { free (cur); /* Not g_free as we use system allocator */ } } g_ptr_array_free (pool->pools[i], TRUE); } } if (pool->variables) { g_hash_table_destroy (pool->variables); } if (pool->trash_stack) { for (i = 0; i < pool->trash_stack->len; i++) { ptr = g_ptr_array_index (pool->trash_stack, i); g_free (ptr); } g_ptr_array_free (pool->trash_stack, TRUE); } g_atomic_int_inc (&mem_pool_stat->pools_freed); POOL_MTX_UNLOCK (); g_free (pool); } void rspamd_mempool_cleanup_tmp (rspamd_mempool_t * pool) { struct _pool_chain *cur; guint i; POOL_MTX_LOCK (); if (pool->pools[RSPAMD_MEMPOOL_TMP]) { for (i = 0; i < pool->pools[RSPAMD_MEMPOOL_TMP]->len; i++) { cur = g_ptr_array_index (pool->pools[RSPAMD_MEMPOOL_TMP], i); g_atomic_int_add (&mem_pool_stat->bytes_allocated, -((gint)cur->len)); g_atomic_int_add (&mem_pool_stat->chunks_allocated, -1); free (cur); } g_ptr_array_free (pool->pools[RSPAMD_MEMPOOL_TMP], TRUE); pool->pools[RSPAMD_MEMPOOL_TMP] = NULL; } g_atomic_int_inc (&mem_pool_stat->pools_freed); POOL_MTX_UNLOCK (); } void rspamd_mempool_stat (rspamd_mempool_stat_t * st) { if (mem_pool_stat != NULL) { st->pools_allocated = mem_pool_stat->pools_allocated; st->pools_freed = mem_pool_stat->pools_freed; st->shared_chunks_allocated = mem_pool_stat->shared_chunks_allocated; st->bytes_allocated = mem_pool_stat->bytes_allocated; st->chunks_allocated = mem_pool_stat->chunks_allocated; st->shared_chunks_allocated = mem_pool_stat->shared_chunks_allocated; st->chunks_freed = mem_pool_stat->chunks_freed; st->oversized_chunks = mem_pool_stat->oversized_chunks; } } void rspamd_mempool_stat_reset (void) { if (mem_pool_stat != NULL) { memset (mem_pool_stat, 0, sizeof (rspamd_mempool_stat_t)); } } gsize rspamd_mempool_suggest_size_ (const char *loc) { return 0; } #if !defined(HAVE_PTHREAD_PROCESS_SHARED) || defined(DISABLE_PTHREAD_MUTEX) /* * Own emulation */ static inline gint __mutex_spin (rspamd_mempool_mutex_t * mutex) { /* check spin count */ if (g_atomic_int_dec_and_test (&mutex->spin)) { /* This may be deadlock, so check owner of this lock */ if (mutex->owner == getpid ()) { /* This mutex was locked by calling process, so it is just double lock and we can easily unlock it */ g_atomic_int_set (&mutex->spin, MUTEX_SPIN_COUNT); return 0; } else if (kill (mutex->owner, 0) == -1) { /* Owner process was not found, so release lock */ g_atomic_int_set (&mutex->spin, MUTEX_SPIN_COUNT); return 0; } /* Spin again */ g_atomic_int_set (&mutex->spin, MUTEX_SPIN_COUNT); } #ifdef HAVE_SCHED_YIELD (void)sched_yield (); #elif defined(HAVE_NANOSLEEP) struct timespec ts; ts.tv_sec = 0; ts.tv_nsec = MUTEX_SLEEP_TIME; /* Spin */ while (nanosleep (&ts, &ts) == -1 && errno == EINTR) ; #else # error No methods to spin are defined #endif return 1; } static void memory_pool_mutex_spin (rspamd_mempool_mutex_t * mutex) { while (!g_atomic_int_compare_and_exchange (&mutex->lock, 0, 1)) { if (!__mutex_spin (mutex)) { return; } } } rspamd_mempool_mutex_t * rspamd_mempool_get_mutex (rspamd_mempool_t * pool) { rspamd_mempool_mutex_t *res; if (pool != NULL) { res = rspamd_mempool_alloc_shared (pool, sizeof (rspamd_mempool_mutex_t)); res->lock = 0; res->owner = 0; res->spin = MUTEX_SPIN_COUNT; return res; } return NULL; } void rspamd_mempool_lock_mutex (rspamd_mempool_mutex_t * mutex) { memory_pool_mutex_spin (mutex); mutex->owner = getpid (); } void rspamd_mempool_unlock_mutex (rspamd_mempool_mutex_t * mutex) { mutex->owner = 0; (void)g_atomic_int_compare_and_exchange (&mutex->lock, 1, 0); } rspamd_mempool_rwlock_t * rspamd_mempool_get_rwlock (rspamd_mempool_t * pool) { rspamd_mempool_rwlock_t *lock; lock = rspamd_mempool_alloc_shared (pool, sizeof (rspamd_mempool_rwlock_t)); lock->__r_lock = rspamd_mempool_get_mutex (pool); lock->__w_lock = rspamd_mempool_get_mutex (pool); return lock; } void rspamd_mempool_rlock_rwlock (rspamd_mempool_rwlock_t * lock) { /* Spin on write lock */ while (g_atomic_int_get (&lock->__w_lock->lock)) { if (!__mutex_spin (lock->__w_lock)) { break; } } g_atomic_int_inc (&lock->__r_lock->lock); lock->__r_lock->owner = getpid (); } void rspamd_mempool_wlock_rwlock (rspamd_mempool_rwlock_t * lock) { /* Spin on write lock first */ rspamd_mempool_lock_mutex (lock->__w_lock); /* Now we have write lock set up */ /* Wait all readers */ while (g_atomic_int_get (&lock->__r_lock->lock)) { __mutex_spin (lock->__r_lock); } } void rspamd_mempool_runlock_rwlock (rspamd_mempool_rwlock_t * lock) { if (g_atomic_int_get (&lock->__r_lock->lock)) { (void)g_atomic_int_dec_and_test (&lock->__r_lock->lock); } } void rspamd_mempool_wunlock_rwlock (rspamd_mempool_rwlock_t * lock) { rspamd_mempool_unlock_mutex (lock->__w_lock); } #else /* * Pthread bases shared mutexes */ rspamd_mempool_mutex_t * rspamd_mempool_get_mutex (rspamd_mempool_t * pool) { rspamd_mempool_mutex_t *res; pthread_mutexattr_t mattr; if (pool != NULL) { res = rspamd_mempool_alloc_shared (pool, sizeof (rspamd_mempool_mutex_t)); pthread_mutexattr_init (&mattr); pthread_mutexattr_setpshared (&mattr, PTHREAD_PROCESS_SHARED); pthread_mutexattr_setrobust (&mattr, PTHREAD_MUTEX_ROBUST); pthread_mutex_init (res, &mattr); rspamd_mempool_add_destructor (pool, (rspamd_mempool_destruct_t)pthread_mutex_destroy, res); pthread_mutexattr_destroy (&mattr); return res; } return NULL; } void rspamd_mempool_lock_mutex (rspamd_mempool_mutex_t * mutex) { pthread_mutex_lock (mutex); } void rspamd_mempool_unlock_mutex (rspamd_mempool_mutex_t * mutex) { pthread_mutex_unlock (mutex); } rspamd_mempool_rwlock_t * rspamd_mempool_get_rwlock (rspamd_mempool_t * pool) { rspamd_mempool_rwlock_t *res; pthread_rwlockattr_t mattr; if (pool != NULL) { res = rspamd_mempool_alloc_shared (pool, sizeof (rspamd_mempool_rwlock_t)); pthread_rwlockattr_init (&mattr); pthread_rwlockattr_setpshared (&mattr, PTHREAD_PROCESS_SHARED); pthread_rwlock_init (res, &mattr); rspamd_mempool_add_destructor (pool, (rspamd_mempool_destruct_t)pthread_rwlock_destroy, res); pthread_rwlockattr_destroy (&mattr); return res; } return NULL; } void rspamd_mempool_rlock_rwlock (rspamd_mempool_rwlock_t * lock) { pthread_rwlock_rdlock (lock); } void rspamd_mempool_wlock_rwlock (rspamd_mempool_rwlock_t * lock) { pthread_rwlock_wrlock (lock); } void rspamd_mempool_runlock_rwlock (rspamd_mempool_rwlock_t * lock) { pthread_rwlock_unlock (lock); } void rspamd_mempool_wunlock_rwlock (rspamd_mempool_rwlock_t * lock) { pthread_rwlock_unlock (lock); } #endif void rspamd_mempool_set_variable (rspamd_mempool_t *pool, const gchar *name, gpointer value, rspamd_mempool_destruct_t destructor) { if (pool->variables == NULL) { pool->variables = g_hash_table_new (rspamd_str_hash, rspamd_str_equal); } g_hash_table_insert (pool->variables, rspamd_mempool_strdup (pool, name), value); if (destructor != NULL) { rspamd_mempool_add_destructor (pool, destructor, value); } } gpointer rspamd_mempool_get_variable (rspamd_mempool_t *pool, const gchar *name) { if (pool->variables == NULL) { return NULL; } return g_hash_table_lookup (pool->variables, name); } void rspamd_mempool_remove_variable (rspamd_mempool_t *pool, const gchar *name) { if (pool->variables != NULL) { g_hash_table_remove (pool->variables, name); } } GList * rspamd_mempool_glist_prepend (rspamd_mempool_t *pool, GList *l, gpointer p) { GList *cell; cell = rspamd_mempool_alloc (pool, sizeof (*cell)); cell->prev = NULL; cell->data = p; if (l == NULL) { cell->next = NULL; } else { cell->next = l; l->prev = cell; } return cell; } GList * rspamd_mempool_glist_append (rspamd_mempool_t *pool, GList *l, gpointer p) { GList *cell, *cur; cell = rspamd_mempool_alloc (pool, sizeof (*cell)); cell->next = NULL; cell->data = p; if (l) { for (cur = l; cur->next != NULL; cur = cur->next) {} cur->next = cell; cell->prev = cur; } else { l = cell; l->prev = NULL; } return l; }