/* * Copyright (c) 2009-2014, Vsevolod Stakhov * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY AUTHOR ''AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL AUTHOR BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "radix.h" #include "main.h" #include "mem_pool.h" static void * radix_alloc (radix_tree_t * tree); struct radix_node_s { radix_node_t *right; radix_node_t *left; radix_node_t *parent; uintptr_t value; guint32 key; }; struct radix_tree_s { radix_node_t *root; size_t size; rspamd_mempool_t *pool; }; struct radix_compressed_node { union { struct { struct radix_compressed_node *right; struct radix_compressed_node *left; } n; struct { uint8_t *key; size_t keylen; } s; } d; gboolean skipped; uintptr_t value; }; struct radix_tree_compressed { struct radix_compressed_node *root; size_t size; rspamd_mempool_t *pool; }; radix_tree_t * radix_tree_create (void) { radix_tree_t *tree; tree = g_malloc (sizeof (radix_tree_t)); if (tree == NULL) { return NULL; } tree->pool = rspamd_mempool_new (rspamd_mempool_suggest_size ()); tree->size = 0; tree->root = radix_alloc (tree); if (tree->root == NULL) { return NULL; } tree->root->right = NULL; tree->root->left = NULL; tree->root->parent = NULL; tree->root->value = RADIX_NO_VALUE; return tree; } static uintptr_t radix32tree_insert_common (radix_tree_t * tree, guint32 key, guint32 mask, uintptr_t value, enum radix_insert_type type) { guint32 bit; radix_node_t *node, *next; bit = 0x80000000; node = tree->root; next = tree->root; /* Find a place in trie to insert */ while (bit & mask) { if (key & bit) { next = node->right; } else { next = node->left; } if (next == NULL) { break; } bit >>= 1; node = next; } if (next) { if (node->value != RADIX_NO_VALUE) { /* Value was found, switch on insert type */ switch (type) { case RADIX_INSERT: return 1; case RADIX_ADD: node->value += value; return value; case RADIX_REPLACE: node->value = value; return 1; } } node->value = value; node->key = key; return 0; } /* Inserting value in trie creating all path components */ while (bit & mask) { next = radix_alloc (tree); if (next == NULL) { return -1; } next->right = NULL; next->left = NULL; next->parent = node; next->value = RADIX_NO_VALUE; if (key & bit) { node->right = next; } else { node->left = next; } bit >>= 1; node = next; } node->value = value; node->key = key; return 0; } gint radix32tree_insert (radix_tree_t *tree, guint32 key, guint32 mask, uintptr_t value) { return (gint)radix32tree_insert_common (tree, key, mask, value, RADIX_INSERT); } uintptr_t radix32tree_add (radix_tree_t *tree, guint32 key, guint32 mask, uintptr_t value) { return radix32tree_insert_common (tree, key, mask, value, RADIX_ADD); } gint radix32tree_replace (radix_tree_t *tree, guint32 key, guint32 mask, uintptr_t value) { return (gint)radix32tree_insert_common (tree, key, mask, value, RADIX_REPLACE); } /* * per recursion step: * ptr + ptr + ptr + gint = 4 words * result = 1 word * 5 words total in stack */ static gboolean radix_recurse_nodes (radix_node_t *node, radix_tree_traverse_func func, void *user_data, gint level) { if (node->left) { if (radix_recurse_nodes (node->left, func, user_data, level + 1)) { return TRUE; } } if (node->value != RADIX_NO_VALUE) { if (func (node->key, level, node->value, user_data)) { return TRUE; } } if (node->right) { if (radix_recurse_nodes (node->right, func, user_data, level + 1)) { return TRUE; } } return FALSE; } void radix32tree_traverse (radix_tree_t *tree, radix_tree_traverse_func func, void *user_data) { radix_recurse_nodes (tree->root, func, user_data, 0); } gint radix32tree_delete (radix_tree_t * tree, guint32 key, guint32 mask) { guint32 bit; radix_node_t *node; bit = 0x80000000; node = tree->root; while (node && (bit & mask)) { if (key & bit) { node = node->right; } else { node = node->left; } bit >>= 1; } if (node == NULL || node->parent == NULL) { return -1; } if (node->right || node->left) { if (node->value != RADIX_NO_VALUE) { node->value = RADIX_NO_VALUE; return 0; } return -1; } for (;; ) { if (node->parent->right == node) { node->parent->right = NULL; } else { node->parent->left = NULL; } node = node->parent; if (node->right || node->left) { break; } if (node->value != RADIX_NO_VALUE) { break; } if (node->parent == NULL) { break; } } return 0; } uintptr_t radix32tree_find (radix_tree_t * tree, guint32 key) { guint32 bit; uintptr_t value; radix_node_t *node; bit = 0x80000000; value = RADIX_NO_VALUE; node = tree->root; while (node) { if (node->value != RADIX_NO_VALUE) { value = node->value; } if (key & bit) { node = node->right; } else { node = node->left; } bit >>= 1; } return value; } static void * radix_alloc (radix_tree_t * tree) { gchar *p; p = rspamd_mempool_alloc (tree->pool, sizeof (radix_node_t)); tree->size += sizeof (radix_node_t); return p; } void radix_tree_free (radix_tree_t * tree) { g_return_if_fail (tree != NULL); rspamd_mempool_delete (tree->pool); g_free (tree); } uintptr_t radix32_tree_find_addr (radix_tree_t *tree, rspamd_inet_addr_t *addr) { if (addr == NULL || addr->af != AF_INET) { return RADIX_NO_VALUE; } return radix32tree_find (tree, ntohl (addr->addr.s4.sin_addr.s_addr)); } uintptr_t radix_find_compressed (radix_compressed_t * tree, guint8 *key, gsize keylen) { struct radix_compressed_node *node; guint8 bit; gsize kremain = keylen; uintptr_t value; bit = 1 << 7; value = RADIX_NO_VALUE; node = tree->root; while (node && kremain) { if (node->value != RADIX_NO_VALUE) { value = node->value; } if (node->skipped) { /* It is obviously a leaf node */ if (node->d.s.keylen <= keylen && memcmp (node->d.s.key, key, node->d.s.keylen) == 0) { return node->value; } else { return value; } } if (*key & bit) { node = node->d.n.right; } else { node = node->d.n.left; } bit >>= 1; if (bit == 0) { key ++; bit = 1 << 7; kremain --; } } return value; } static struct radix_compressed_node * radix_uncompress_path (struct radix_compressed_node *node, guint start_level, guint levels_uncompress) { guint8 *nkey = node->d.s.key + start_level / NBBY; guint8 bit = 1 << (8 - start_level % NBBY); struct radix_compressed_node *leaf, *next; /* Make compressed leaf */ leaf = g_slice_alloc (sizeof (*node)); memcpy (leaf, node, sizeof (*node)); node->skipped = FALSE; msg_debug ("uncompress %ud levels of tree", levels_uncompress); while (levels_uncompress) { next = g_slice_alloc (sizeof (*node)); next->skipped = FALSE; next->d.n.right = NULL; next->d.n.left = NULL; next->value = RADIX_NO_VALUE; if (*nkey & bit) { node->d.n.right = next; node->d.n.left = NULL; } else { node->d.n.left = next; node->d.n.right = NULL; } bit >>= 1; if (bit == 0) { nkey ++; bit = 1 << 7; } node = next; levels_uncompress --; } /* Attach leaf node */ if (*nkey & bit) { node->d.n.right = leaf; node->d.n.left = NULL; } else { node->d.n.left = leaf; node->d.n.right = NULL; } /* Return node */ return node; } static struct radix_compressed_node * radix_make_leaf_node (guint8 *key, gsize keylen, gsize masklen, uintptr_t value, gboolean compressed) { struct radix_compressed_node *node; node = g_slice_alloc (sizeof (struct radix_compressed_node)); if (compressed) { node->skipped = TRUE; node->d.s.keylen = keylen; node->d.s.key = g_slice_alloc (node->d.s.keylen); memcpy (node->d.s.key, key, node->d.s.keylen); } else { /* Uncompressed leaf node */ memset (node, 0, sizeof (*node)); } node->value = value; return node; } static uintptr_t radix_uncompress_node (struct radix_compressed_node *node, guint8 *key, gsize keylen, uintptr_t value, guint cur_level, guint target_level, guint8 bit) { /* Find the largest common prefix of the compressed node and target node */ gsize kremain = keylen - cur_level / NBBY; guint8 *nkey = node->d.s.key + cur_level / NBBY; guint levels_uncompress = 0, start_level = cur_level; msg_debug ("want to uncompress nodes from level %ud to level %ud", cur_level, target_level); while (cur_level < target_level) { guint8 kb = *key & bit; guint8 nb = *nkey & bit; if (kb != nb) { msg_debug ("found available path at level %ud", cur_level); break; } cur_level ++; levels_uncompress ++; bit >>= 1; if (bit == 0) { key ++; nkey ++; bit = 1 << 7; kremain --; } } if (kremain == 0) { /* Nodes are equal */ uintptr_t oldval = node->value; node->value = value; return oldval; } else { /* * We need to uncompress the common path */ struct radix_compressed_node *nnode; nnode = radix_uncompress_path (node, start_level, levels_uncompress); /* * Now nnode is the last uncompressed node with compressed leaf inside * and we also know that the current bit is different * * - if we have target_level == cur_level, then we can safely assign the * value of that parent node * - otherwise we insert new compressed leaf node */ if (cur_level == target_level) { nnode->value = value; } else { node = radix_make_leaf_node (key, keylen, value, keylen - target_level / NBBY, TRUE); if (nnode->d.n.left == NULL) { nnode->d.n.left = node; } else { nnode->d.n.right = node; } } } return value; } uintptr_t radix_insert_compressed (radix_compressed_t * tree, guint8 *key, gsize keylen, gsize masklen, uintptr_t value) { struct radix_compressed_node *node, *next = NULL, **prev; gsize keybits = keylen * NBBY; guint target_level = (keylen * NBBY - masklen); guint cur_level = 0; guint8 bit; gsize kremain = keylen; bit = 1 << 7; node = tree->root; g_assert (keybits >= masklen); node = tree->root; prev = &tree->root; /* Search for the place to insert element */ while (node && cur_level < target_level) { if (node->skipped) { /* We have found skipped node and we need to uncompress it */ return radix_uncompress_node (node, key, keylen, value, cur_level, target_level, bit); } if (*key & bit) { next = node->d.n.right; prev = &node->d.n.right; } else { next = node->d.n.left; prev = &node->d.n.left; } if (next == NULL) { /* Need to insert some nodes */ break; } bit >>= 1; if (bit == 0) { key ++; bit = 1 << 7; kremain --; } cur_level ++; node = next; } if (next == NULL) { next = radix_make_leaf_node (key, keylen, masklen, value, TRUE); *prev = next; } return next->value; } radix_compressed_t * radix_tree_create_compressed (void) { radix_compressed_t *tree; tree = g_slice_alloc (sizeof (radix_tree_t)); if (tree == NULL) { return NULL; } tree->size = 0; tree->root = NULL; return tree; } /* * vi:ts=4 */