/*- * Copyright 2016 Vsevolod Stakhov * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "lua_common.h" #include "util.h" #ifdef WITH_FANN #include #endif #include "unix-std.h" /*** * @module rspamd_fann * This module enables [fann](http://libfann.github.io) interaction in rspamd * Please note, that this module works merely if you have `ENABLE_FANN=ON` option * definition when building rspamd */ /* * Fann functions */ LUA_FUNCTION_DEF (fann, is_enabled); LUA_FUNCTION_DEF (fann, create); LUA_FUNCTION_DEF (fann, create_full); LUA_FUNCTION_DEF (fann, load_file); LUA_FUNCTION_DEF (fann, load_data); /* * Fann methods */ LUA_FUNCTION_DEF (fann, train); LUA_FUNCTION_DEF (fann, train_threaded); LUA_FUNCTION_DEF (fann, test); LUA_FUNCTION_DEF (fann, save); LUA_FUNCTION_DEF (fann, data); LUA_FUNCTION_DEF (fann, get_inputs); LUA_FUNCTION_DEF (fann, get_outputs); LUA_FUNCTION_DEF (fann, get_layers); LUA_FUNCTION_DEF (fann, get_mse); LUA_FUNCTION_DEF (fann, dtor); static const struct luaL_reg fannlib_f[] = { LUA_INTERFACE_DEF (fann, is_enabled), LUA_INTERFACE_DEF (fann, create), LUA_INTERFACE_DEF (fann, create_full), LUA_INTERFACE_DEF (fann, load_file), {"load", lua_fann_load_file}, LUA_INTERFACE_DEF (fann, load_data), {NULL, NULL} }; static const struct luaL_reg fannlib_m[] = { LUA_INTERFACE_DEF (fann, train), LUA_INTERFACE_DEF (fann, train_threaded), LUA_INTERFACE_DEF (fann, test), LUA_INTERFACE_DEF (fann, save), LUA_INTERFACE_DEF (fann, data), LUA_INTERFACE_DEF (fann, get_inputs), LUA_INTERFACE_DEF (fann, get_outputs), LUA_INTERFACE_DEF (fann, get_layers), LUA_INTERFACE_DEF (fann, get_mse), {"__gc", lua_fann_dtor}, {"__tostring", rspamd_lua_class_tostring}, {NULL, NULL} }; #ifdef WITH_FANN struct fann * rspamd_lua_check_fann (lua_State *L, gint pos) { void *ud = rspamd_lua_check_udata (L, pos, "rspamd{fann}"); luaL_argcheck (L, ud != NULL, pos, "'fann' expected"); return ud ? *((struct fann **) ud) : NULL; } #endif /*** * @function rspamd_fann.is_enabled() * Checks if fann is enabled for this rspamd build * @return {boolean} true if fann is enabled */ static gint lua_fann_is_enabled (lua_State *L) { #ifdef WITH_FANN lua_pushboolean (L, true); #else lua_pushboolean (L, false); #endif return 1; } /*** * @function rspamd_fann.create(nlayers, [layer1, ... layern]) * Creates new neural network with `nlayers` that contains `layer1`...`layern` * neurons in each layer * @param {number} nlayers number of layers * @param {number} layerI number of neurons in each layer * @return {fann} fann object */ static gint lua_fann_create (lua_State *L) { #ifndef WITH_FANN return 0; #else struct fann *f, **pfann; guint nlayers, *layers, i; nlayers = luaL_checknumber (L, 1); if (nlayers > 0) { layers = g_malloc (nlayers * sizeof (layers[0])); if (lua_type (L, 2) == LUA_TNUMBER) { for (i = 0; i < nlayers; i ++) { layers[i] = luaL_checknumber (L, i + 2); } } else if (lua_type (L, 2) == LUA_TTABLE) { for (i = 0; i < nlayers; i ++) { lua_rawgeti (L, 2, i + 1); layers[i] = luaL_checknumber (L, -1); lua_pop (L, 1); } } f = fann_create_standard_array (nlayers, layers); fann_set_activation_function_hidden (f, FANN_SIGMOID_SYMMETRIC); fann_set_activation_function_output (f, FANN_SIGMOID_SYMMETRIC); fann_set_training_algorithm (f, FANN_TRAIN_INCREMENTAL); fann_randomize_weights (f, 0, 1); if (f != NULL) { pfann = lua_newuserdata (L, sizeof (gpointer)); *pfann = f; rspamd_lua_setclass (L, "rspamd{fann}", -1); } else { lua_pushnil (L); } g_free (layers); } else { lua_pushnil (L); } return 1; #endif } #ifdef WITH_FANN static enum fann_activationfunc_enum string_to_activation_func (const gchar *str) { if (str == NULL) { return FANN_SIGMOID_SYMMETRIC; } if (strcmp (str, "sigmoid") == 0) { return FANN_SIGMOID; } else if (strcmp (str, "elliot") == 0) { return FANN_ELLIOT; } else if (strcmp (str, "elliot_symmetric") == 0) { return FANN_ELLIOT_SYMMETRIC; } else if (strcmp (str, "linear") == 0) { return FANN_LINEAR; } return FANN_SIGMOID_SYMMETRIC; } static enum fann_train_enum string_to_learn_alg (const gchar *str) { if (str == NULL) { return FANN_TRAIN_INCREMENTAL; } if (strcmp (str, "rprop") == 0) { return FANN_TRAIN_RPROP; } else if (strcmp (str, "qprop") == 0) { return FANN_TRAIN_QUICKPROP; } else if (strcmp (str, "batch") == 0) { return FANN_TRAIN_BATCH; } return FANN_TRAIN_INCREMENTAL; } /* * This is needed since libfann provides no versioning macros... */ static struct fann_train_data * rspamd_fann_create_train (guint num_data, guint num_input, guint num_output) { struct fann_train_data *t; fann_type *inp, *outp; guint i; t = calloc (1, sizeof (*t)); g_assert (t != NULL); t->num_data = num_data; t->num_input = num_input; t->num_output = num_output; t->input = calloc (num_data, sizeof (fann_type *)); g_assert (t->input != NULL); t->output = calloc (num_data, sizeof (fann_type *)); g_assert (t->output != NULL); inp = calloc (num_data * num_input, sizeof (fann_type)); g_assert (inp != NULL); outp = calloc (num_data * num_output, sizeof (fann_type)); g_assert (outp != NULL); for (i = 0; i < num_data; i ++) { t->input[i] = inp; inp += num_input; t->output[i] = outp; outp += num_output; } return t; } #endif /*** * @function rspamd_fann.create_full(params) * Creates new neural network with parameters: * - `layers` {table/numbers}: table of layers in form: {N1, N2, N3 ... Nn} where N is number of neurons in a layer * - `activation_hidden` {string}: activation function type for hidden layers (`tanh` by default) * - `activation_output` {string}: activation function type for output layer (`tanh` by default) * - `sparsed` {float}: create sparsed ANN, where number is a coefficient for sparsing * - `learn` {string}: learning algorithm (quickprop, rprop or incremental) * - `randomize` {boolean}: randomize weights (true by default) * @return {fann} fann object */ static gint lua_fann_create_full (lua_State *L) { #ifndef WITH_FANN return 0; #else struct fann *f, **pfann; guint nlayers, *layers, i; const gchar *activation_hidden = NULL, *activation_output, *learn_alg = NULL; gdouble sparsed = 0.0; gboolean randomize_ann = TRUE; GError *err = NULL; if (lua_type (L, 1) == LUA_TTABLE) { lua_pushstring (L, "layers"); lua_gettable (L, 1); if (lua_type (L, -1) != LUA_TTABLE) { return luaL_error (L, "bad layers attribute"); } nlayers = rspamd_lua_table_size (L, -1); if (nlayers < 2) { return luaL_error (L, "bad layers attribute"); } layers = g_new0 (guint, nlayers); for (i = 0; i < nlayers; i ++) { lua_rawgeti (L, -1, i + 1); layers[i] = luaL_checknumber (L, -1); lua_pop (L, 1); } lua_pop (L, 1); /* Table */ if (!rspamd_lua_parse_table_arguments (L, 1, &err, "sparsed=N;randomize=B;learn=S;activation_hidden=S;activation_output=S", &sparsed, &randomize_ann, &learn_alg, &activation_hidden, &activation_output)) { g_free (layers); if (err) { gint r; r = luaL_error (L, "invalid arguments: %s", err->message); g_error_free (err); return r; } else { return luaL_error (L, "invalid arguments"); } } if (sparsed != 0.0) { f = fann_create_standard_array (nlayers, layers); } else { f = fann_create_sparse_array (sparsed, nlayers, layers); } if (f != NULL) { pfann = lua_newuserdata (L, sizeof (gpointer)); *pfann = f; rspamd_lua_setclass (L, "rspamd{fann}", -1); } else { g_free (layers); return luaL_error (L, "cannot create fann"); } fann_set_activation_function_hidden (f, string_to_activation_func (activation_hidden)); fann_set_activation_function_output (f, string_to_activation_func (activation_output)); fann_set_training_algorithm (f, string_to_learn_alg (learn_alg)); if (randomize_ann) { fann_randomize_weights (f, 0, 1); } g_free (layers); } else { return luaL_error (L, "bad arguments"); } return 1; #endif } /*** * @function rspamd_fann.load(file) * Loads neural network from the file * @param {string} file filename where fann is stored * @return {fann} fann object */ static gint lua_fann_load_file (lua_State *L) { #ifndef WITH_FANN return 0; #else struct fann *f, **pfann; const gchar *fname; fname = luaL_checkstring (L, 1); if (fname != NULL) { f = fann_create_from_file (fname); if (f != NULL) { pfann = lua_newuserdata (L, sizeof (gpointer)); *pfann = f; rspamd_lua_setclass (L, "rspamd{fann}", -1); } else { lua_pushnil (L); } } else { lua_pushnil (L); } return 1; #endif } /*** * @function rspamd_fann.load_data(data) * Loads neural network from the data * @param {string} file filename where fann is stored * @return {fann} fann object */ static gint lua_fann_load_data (lua_State *L) { #ifndef WITH_FANN return 0; #else struct fann *f, **pfann; gint fd; struct rspamd_lua_text *t; gchar fpath[PATH_MAX]; if (lua_type (L, 1) == LUA_TUSERDATA) { t = lua_check_text (L, 1); if (!t) { return luaL_error (L, "text required"); } } else { t = g_alloca (sizeof (*t)); t->start = lua_tolstring (L, 1, (gsize *)&t->len); t->flags = 0; } /* We need to save data to file because of libfann stupidity */ rspamd_strlcpy (fpath, "/tmp/rspamd-fannXXXXXXXXXX", sizeof (fpath)); fd = mkstemp (fpath); if (fd == -1) { msg_warn ("cannot create tempfile: %s", strerror (errno)); lua_pushnil (L); } else { if (write (fd, t->start, t->len) == -1) { msg_warn ("cannot write tempfile: %s", strerror (errno)); lua_pushnil (L); unlink (fpath); close (fd); return 1; } f = fann_create_from_file (fpath); unlink (fpath); close (fd); if (f != NULL) { pfann = lua_newuserdata (L, sizeof (gpointer)); *pfann = f; rspamd_lua_setclass (L, "rspamd{fann}", -1); } else { lua_pushnil (L); } } return 1; #endif } /*** * @function rspamd_fann:data() * Returns serialized neural network * @return {rspamd_text} fann data */ static gint lua_fann_data (lua_State *L) { #ifndef WITH_FANN return 0; #else struct fann *f = rspamd_lua_check_fann (L, 1); gint fd; struct rspamd_lua_text *res; gchar fpath[PATH_MAX]; gpointer map; gsize sz; if (f == NULL) { return luaL_error (L, "invalid arguments"); } /* We need to save data to file because of libfann stupidity */ rspamd_strlcpy (fpath, "/tmp/rspamd-fannXXXXXXXXXX", sizeof (fpath)); fd = mkstemp (fpath); if (fd == -1) { msg_warn ("cannot create tempfile: %s", strerror (errno)); lua_pushnil (L); } else { if (fann_save (f, fpath) == -1) { msg_warn ("cannot write tempfile: %s", strerror (errno)); lua_pushnil (L); unlink (fpath); close (fd); return 1; } (void)lseek (fd, 0, SEEK_SET); map = rspamd_file_xmap (fpath, PROT_READ, &sz); unlink (fpath); close (fd); if (map != NULL) { res = lua_newuserdata (L, sizeof (*res)); res->len = sz; res->start = map; res->flags = RSPAMD_TEXT_FLAG_OWN|RSPAMD_TEXT_FLAG_MMAPED; rspamd_lua_setclass (L, "rspamd{text}", -1); } else { lua_pushnil (L); } } return 1; #endif } /** * @method rspamd_fann:train(inputs, outputs) * Trains neural network with samples. Inputs and outputs should be tables of * equal size, each row in table should be N inputs and M outputs, e.g. * {0, 1, 1} -> {0} * @param {table} inputs input samples * @param {table} outputs output samples * @return {number} number of samples learned */ static gint lua_fann_train (lua_State *L) { #ifndef WITH_FANN return 0; #else struct fann *f = rspamd_lua_check_fann (L, 1); guint ninputs, noutputs, j; fann_type *cur_input, *cur_output; gboolean ret = FALSE; if (f != NULL) { /* First check sanity, call for table.getn for that */ ninputs = rspamd_lua_table_size (L, 2); noutputs = rspamd_lua_table_size (L, 3); if (ninputs != fann_get_num_input (f) || noutputs != fann_get_num_output (f)) { msg_err ("bad number of inputs(%d, expected %d) and " "output(%d, expected %d) args for train", ninputs, fann_get_num_input (f), noutputs, fann_get_num_output (f)); } else { cur_input = g_malloc (ninputs * sizeof (fann_type)); for (j = 0; j < ninputs; j ++) { lua_rawgeti (L, 2, j + 1); cur_input[j] = lua_tonumber (L, -1); lua_pop (L, 1); } cur_output = g_malloc (noutputs * sizeof (fann_type)); for (j = 0; j < noutputs; j++) { lua_rawgeti (L, 3, j + 1); cur_output[j] = lua_tonumber (L, -1); lua_pop (L, 1); } fann_train (f, cur_input, cur_output); g_free (cur_input); g_free (cur_output); ret = TRUE; } } lua_pushboolean (L, ret); return 1; #endif } #ifdef WITH_FANN struct lua_fann_train_cbdata { lua_State *L; gint pair[2]; struct fann_train_data *train; struct fann *f; gint cbref; gdouble desired_mse; guint max_epochs; GThread *t; struct event io; }; struct lua_fann_train_reply { gint errcode; float mse; gchar errmsg[128]; }; static void lua_fann_push_train_result (struct lua_fann_train_cbdata *cbdata, gint errcode, float mse, const gchar *errmsg) { lua_rawgeti (cbdata->L, LUA_REGISTRYINDEX, cbdata->cbref); lua_pushnumber (cbdata->L, errcode); lua_pushstring (cbdata->L, errmsg); lua_pushnumber (cbdata->L, mse); if (lua_pcall (cbdata->L, 3, 0, 0) != 0) { msg_err ("call to train callback failed: %s", lua_tostring (cbdata->L, -1)); lua_pop (cbdata->L, 1); } } static void lua_fann_thread_notify (gint fd, short what, gpointer ud) { struct lua_fann_train_cbdata *cbdata = ud; struct lua_fann_train_reply rep; if (read (cbdata->pair[0], &rep, sizeof (rep)) == -1) { if (errno == EAGAIN || errno == EINTR) { event_add (&cbdata->io, NULL); return; } lua_fann_push_train_result (cbdata, errno, 0.0, strerror (errno)); } else { lua_fann_push_train_result (cbdata, rep.errcode, rep.mse, rep.errmsg); } write (cbdata->pair[0], "", 1); g_thread_join (cbdata->t); close (cbdata->pair[0]); close (cbdata->pair[1]); fann_destroy_train (cbdata->train); luaL_unref (cbdata->L, LUA_REGISTRYINDEX, cbdata->cbref); g_slice_free1 (sizeof (*cbdata), cbdata); } static void * lua_fann_train_thread (void *ud) { struct lua_fann_train_cbdata *cbdata = ud; struct lua_fann_train_reply rep; gchar repbuf[1]; msg_info ("start learning ANN, %d epochs are possible", cbdata->max_epochs); rspamd_socket_blocking (cbdata->pair[1]); fann_train_on_data (cbdata->f, cbdata->train, cbdata->max_epochs, 0, cbdata->desired_mse); rep.errcode = 0; rspamd_strlcpy (rep.errmsg, "OK", sizeof (rep.errmsg)); rep.mse = fann_get_MSE (cbdata->f); if (write (cbdata->pair[1], &rep, sizeof (rep)) == -1) { msg_err ("cannot write to socketpair: %s", strerror (errno)); return NULL; } if (read (cbdata->pair[1], repbuf, sizeof (repbuf)) == -1) { msg_err ("cannot read from socketpair: %s", strerror (errno)); return NULL; } return NULL; } #endif /** * @method rspamd_fann:train_threaded(inputs, outputs, callback, event_base, {params}) * Trains neural network with batch of samples. Inputs and outputs should be tables of * equal size, each row in table should be N inputs and M outputs, e.g. * {{0, 1, 1}, ...} -> {{0}, {1} ...} * @param {table} inputs input samples * @param {table} outputs output samples * @param {callback} function that is called when train is completed */ static gint lua_fann_train_threaded (lua_State *L) { #ifndef WITH_FANN return 0; #else struct fann *f = rspamd_lua_check_fann (L, 1); guint ninputs, noutputs, ndata, i, j; struct lua_fann_train_cbdata *cbdata; struct event_base *ev_base = lua_check_ev_base (L, 5); GError *err = NULL; const guint max_epochs_default = 1000; const gdouble desired_mse_default = 0.0001; if (f != NULL && lua_type (L, 2) == LUA_TTABLE && lua_type (L, 3) == LUA_TTABLE && lua_type (L, 4) == LUA_TFUNCTION && ev_base != NULL) { /* First check sanity, call for table.getn for that */ ndata = rspamd_lua_table_size (L, 2); ninputs = fann_get_num_input (f); noutputs = fann_get_num_output (f); cbdata = g_slice_alloc0 (sizeof (*cbdata)); cbdata->L = L; cbdata->f = f; cbdata->train = rspamd_fann_create_train (ndata, ninputs, noutputs); lua_pushvalue (L, 4); cbdata->cbref = luaL_ref (L, LUA_REGISTRYINDEX); if (rspamd_socketpair (cbdata->pair) == -1) { msg_err ("cannot open socketpair: %s", strerror (errno)); cbdata->pair[0] = -1; cbdata->pair[1] = -1; goto err; } for (i = 0; i < ndata; i ++) { lua_rawgeti (L, 2, i + 1); if (rspamd_lua_table_size (L, -1) != ninputs) { msg_err ("invalid number of inputs: %d, %d expected", rspamd_lua_table_size (L, -1), ninputs); goto err; } for (j = 0; j < ninputs; j ++) { lua_rawgeti (L, -1, j + 1); cbdata->train->input[i][j] = lua_tonumber (L, -1); lua_pop (L, 1); } lua_pop (L, 1); lua_rawgeti (L, 3, i + 1); if (rspamd_lua_table_size (L, -1) != noutputs) { msg_err ("invalid number of outputs: %d, %d expected", rspamd_lua_table_size (L, -1), noutputs); goto err; } for (j = 0; j < noutputs; j++) { lua_rawgeti (L, -1, j + 1); cbdata->train->output[i][j] = lua_tonumber (L, -1); lua_pop (L, 1); } } cbdata->max_epochs = max_epochs_default; cbdata->desired_mse = desired_mse_default; if (lua_type (L, 5) == LUA_TTABLE) { rspamd_lua_parse_table_arguments (L, 5, NULL, "max_epochs=I;desired_mse=N", &cbdata->max_epochs, &cbdata->desired_mse); } /* Now we can call training in a separate thread */ rspamd_socket_nonblocking (cbdata->pair[0]); event_set (&cbdata->io, cbdata->pair[0], EV_READ, lua_fann_thread_notify, cbdata); event_base_set (ev_base, &cbdata->io); /* TODO: add timeout */ event_add (&cbdata->io, NULL); cbdata->t = rspamd_create_thread ("fann train", lua_fann_train_thread, cbdata, &err); if (cbdata->t == NULL) { msg_err ("cannot create training thread: %e", err); if (err) { g_error_free (err); } goto err; } } else { return luaL_error (L, "invalid arguments"); } return 0; err: if (cbdata->pair[0] != -1) { close (cbdata->pair[0]); } if (cbdata->pair[1] != -1) { close (cbdata->pair[1]); } fann_destroy_train (cbdata->train); luaL_unref (L, LUA_REGISTRYINDEX, cbdata->cbref); g_slice_free1 (sizeof (*cbdata), cbdata); return luaL_error (L, "invalid arguments"); #endif } /** * @method rspamd_fann:test(inputs) * Tests neural network with samples. Inputs is a single sample of input data. * The function returns table of results, e.g.: * {0, 1, 1} -> {0} * @param {table} inputs input sample * @return {table/number} outputs values */ static gint lua_fann_test (lua_State *L) { #ifndef WITH_FANN return 0; #else struct fann *f = rspamd_lua_check_fann (L, 1); guint ninputs, noutputs, i, tbl_idx = 2; fann_type *cur_input, *cur_output; if (f != NULL) { /* First check sanity, call for table.getn for that */ if (lua_isnumber (L, 2)) { ninputs = lua_tonumber (L, 2); tbl_idx = 3; } else { ninputs = rspamd_lua_table_size (L, 2); if (ninputs == 0) { msg_err ("empty inputs number"); lua_pushnil (L); return 1; } } cur_input = g_slice_alloc (ninputs * sizeof (fann_type)); for (i = 0; i < ninputs; i++) { lua_rawgeti (L, tbl_idx, i + 1); cur_input[i] = lua_tonumber (L, -1); lua_pop (L, 1); } cur_output = fann_run (f, cur_input); noutputs = fann_get_num_output (f); lua_createtable (L, noutputs, 0); for (i = 0; i < noutputs; i ++) { lua_pushnumber (L, cur_output[i]); lua_rawseti (L, -2, i + 1); } g_slice_free1 (ninputs * sizeof (fann_type), cur_input); } else { lua_pushnil (L); } return 1; #endif } /*** * @method rspamd_fann:get_inputs() * Returns number of inputs for neural network * @return {number} number of inputs */ static gint lua_fann_get_inputs (lua_State *L) { #ifndef WITH_FANN return 0; #else struct fann *f = rspamd_lua_check_fann (L, 1); if (f != NULL) { lua_pushnumber (L, fann_get_num_input (f)); } else { lua_pushnil (L); } return 1; #endif } /*** * @method rspamd_fann:get_outputs() * Returns number of outputs for neural network * @return {number} number of outputs */ static gint lua_fann_get_outputs (lua_State *L) { #ifndef WITH_FANN return 0; #else struct fann *f = rspamd_lua_check_fann (L, 1); if (f != NULL) { lua_pushnumber (L, fann_get_num_output (f)); } else { lua_pushnil (L); } return 1; #endif } /*** * @method rspamd_fann:get_mse() * Returns mean square error for ANN * @return {number} MSE value */ static gint lua_fann_get_mse (lua_State *L) { #ifndef WITH_FANN return 0; #else struct fann *f = rspamd_lua_check_fann (L, 1); if (f != NULL) { lua_pushnumber (L, fann_get_MSE (f)); } else { lua_pushnil (L); } return 1; #endif } /*** * @method rspamd_fann:get_layers() * Returns array of neurons count for each layer * @return {table/number} table with number ofr neurons in each layer */ static gint lua_fann_get_layers (lua_State *L) { #ifndef WITH_FANN return 0; #else struct fann *f = rspamd_lua_check_fann (L, 1); guint nlayers, i, *layers; if (f != NULL) { nlayers = fann_get_num_layers (f); layers = g_new (guint, nlayers); fann_get_layer_array (f, layers); lua_createtable (L, nlayers, 0); for (i = 0; i < nlayers; i ++) { lua_pushnumber (L, layers[i]); lua_rawseti (L, -2, i + 1); } g_free (layers); } else { lua_pushnil (L); } return 1; #endif } /*** * @method rspamd_fann:save(fname) * Save fann to file named 'fname' * @param {string} fname filename to save fann into * @return {boolean} true if ann has been saved */ static gint lua_fann_save (lua_State *L) { #ifndef WITH_FANN return 0; #else struct fann *f = rspamd_lua_check_fann (L, 1); const gchar *fname = luaL_checkstring (L, 2); if (f != NULL && fname != NULL) { if (fann_save (f, fname) == 0) { lua_pushboolean (L, true); } else { msg_err ("cannot save ANN to %s: %s", fname, strerror (errno)); lua_pushboolean (L, false); } } else { lua_pushnil (L); } return 1; #endif } static gint lua_fann_dtor (lua_State *L) { #ifndef WITH_FANN return 0; #else struct fann *f = rspamd_lua_check_fann (L, 1); if (f) { fann_destroy (f); } return 0; #endif } static gint lua_load_fann (lua_State * L) { lua_newtable (L); luaL_register (L, NULL, fannlib_f); return 1; } void luaopen_fann (lua_State * L) { rspamd_lua_new_class (L, "rspamd{fann}", fannlib_m); lua_pop (L, 1); rspamd_lua_add_preload (L, "rspamd_fann", lua_load_fann); }