/* * Copyright (c) 2012, Vsevolod Stakhov * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY AUTHOR ''AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL AUTHOR BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "mem_pool.h" #include "fstring.h" #include "logger.h" #include "main.h" /* Sleep time for spin lock in nanoseconds */ #define MUTEX_SLEEP_TIME 10000000L #define MUTEX_SPIN_COUNT 100 #ifdef _THREAD_SAFE pthread_mutex_t stat_mtx = PTHREAD_MUTEX_INITIALIZER; # define STAT_LOCK() do { pthread_mutex_lock (&stat_mtx); } while (0) # define STAT_UNLOCK() do { pthread_mutex_unlock (&stat_mtx); } while (0) #else # define STAT_LOCK() do {} while (0) # define STAT_UNLOCK() do {} while (0) #endif #if ((GLIB_MAJOR_VERSION == 2) && (GLIB_MINOR_VERSION <= 30)) # define POOL_MTX_LOCK() do { g_static_mutex_lock (&pool->mtx); } while (0) # define POOL_MTX_UNLOCK() do { g_static_mutex_unlock (&pool->mtx); } while (0) #else # define POOL_MTX_LOCK() do { g_mutex_lock (&pool->mtx); } while (0) # define POOL_MTX_UNLOCK() do { g_mutex_unlock (&pool->mtx); } while (0) #endif /* * This define specify whether we should check all pools for free space for new object * or just begin scan from current (recently attached) pool * If MEMORY_GREEDY is defined, then we scan all pools to find free space (more CPU usage, slower * but requires less memory). If it is not defined check only current pool and if object is too large * to place in it allocate new one (this may cause huge CPU usage in some cases too, but generally faster than * greedy method) */ #undef MEMORY_GREEDY /* Internal statistic */ static memory_pool_stat_t *mem_pool_stat = NULL; /** * Function that return free space in pool page * @param x pool page struct */ static gint pool_chain_free (struct _pool_chain *chain) { return (gint)chain->len - (chain->pos - chain->begin + MEM_ALIGNMENT); } static struct _pool_chain * pool_chain_new (gsize size) { struct _pool_chain *chain; g_return_val_if_fail (size > 0, NULL); chain = g_slice_alloc (sizeof (struct _pool_chain)); if (chain == NULL) { msg_err ("cannot allocate %z bytes, aborting", sizeof (struct _pool_chain)); abort (); } chain->begin = g_slice_alloc (size); if (chain->begin == NULL) { msg_err ("cannot allocate %z bytes, aborting", size); abort (); } chain->pos = align_ptr (chain->begin, MEM_ALIGNMENT); chain->len = size; chain->next = NULL; STAT_LOCK (); mem_pool_stat->bytes_allocated += size; mem_pool_stat->chunks_allocated++; STAT_UNLOCK (); return chain; } static struct _pool_chain_shared * pool_chain_new_shared (gsize size) { struct _pool_chain_shared *chain; gpointer map; #if defined(HAVE_MMAP_ANON) map = mmap (NULL, size + sizeof (struct _pool_chain_shared), PROT_READ | PROT_WRITE, MAP_ANON | MAP_SHARED, -1, 0); if (map == MAP_FAILED) { msg_err ("cannot allocate %z bytes, aborting", size + sizeof (struct _pool_chain)); abort (); } chain = (struct _pool_chain_shared *)map; chain->begin = ((guint8 *) chain) + sizeof (struct _pool_chain_shared); #elif defined(HAVE_MMAP_ZERO) gint fd; fd = open ("/dev/zero", O_RDWR); if (fd == -1) { return NULL; } map = mmap (NULL, size + sizeof (struct _pool_chain_shared), PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); if (map == MAP_FAILED) { msg_err ("cannot allocate %z bytes, aborting", size + sizeof (struct _pool_chain)); abort (); } chain = (struct _pool_chain_shared *)map; chain->begin = ((guint8 *) chain) + sizeof (struct _pool_chain_shared); #else # error No mmap methods are defined #endif chain->pos = align_ptr (chain->begin, MEM_ALIGNMENT); chain->len = size; chain->lock = NULL; chain->next = NULL; STAT_LOCK (); mem_pool_stat->shared_chunks_allocated++; mem_pool_stat->bytes_allocated += size; STAT_UNLOCK (); return chain; } /** * Allocate new memory poll * @param size size of pool's page * @return new memory pool object */ memory_pool_t * memory_pool_new (gsize size) { memory_pool_t *new; gpointer map; g_return_val_if_fail (size > 0, NULL); /* Allocate statistic structure if it is not allocated before */ if (mem_pool_stat == NULL) { #if defined(HAVE_MMAP_ANON) map = mmap (NULL, sizeof (memory_pool_stat_t), PROT_READ | PROT_WRITE, MAP_ANON | MAP_SHARED, -1, 0); if (map == MAP_FAILED) { msg_err ("cannot allocate %z bytes, aborting", sizeof (memory_pool_stat_t)); abort (); } mem_pool_stat = (memory_pool_stat_t *)map; #elif defined(HAVE_MMAP_ZERO) gint fd; fd = open ("/dev/zero", O_RDWR); g_assert (fd != -1); map = mmap (NULL, sizeof (memory_pool_stat_t), PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); if (map == MAP_FAILED) { msg_err ("cannot allocate %z bytes, aborting", sizeof (memory_pool_stat_t)); abort (); } mem_pool_stat = (memory_pool_stat_t *)map; #else # error No mmap methods are defined #endif memset (map, 0, sizeof (memory_pool_stat_t)); } new = g_slice_alloc (sizeof (memory_pool_t)); if (new == NULL) { msg_err ("cannot allocate %z bytes, aborting", sizeof (memory_pool_t)); abort (); } new->cur_pool = pool_chain_new (size); new->shared_pool = NULL; new->first_pool = new->cur_pool; new->cur_pool_tmp = NULL; new->first_pool_tmp = NULL; new->destructors = NULL; /* Set it upon first call of set variable */ new->variables = NULL; #if ((GLIB_MAJOR_VERSION == 2) && (GLIB_MINOR_VERSION <= 30)) g_static_mutex_init (&new->mtx); #else g_mutex_init (&new->mtx); #endif mem_pool_stat->pools_allocated++; return new; } static void * memory_pool_alloc_common (memory_pool_t * pool, gsize size, gboolean is_tmp) { guint8 *tmp; struct _pool_chain *new, *cur; gint free; if (pool) { POOL_MTX_LOCK (); #ifdef MEMORY_GREEDY if (is_tmp) { cur = pool->first_pool_tmp; } else { cur = pool->first_pool; } #else if (is_tmp) { cur = pool->cur_pool_tmp; } else { cur = pool->cur_pool; } #endif /* Find free space in pool chain */ while (cur != NULL && (free = pool_chain_free (cur)) < (gint)size && cur->next != NULL) { cur = cur->next; } if (cur == NULL || (free < (gint)size && cur->next == NULL)) { /* Allocate new pool */ if (cur == NULL) { if (pool->first_pool->len >= size + MEM_ALIGNMENT) { new = pool_chain_new (pool->first_pool->len); } else { new = pool_chain_new (size + pool->first_pool->len + MEM_ALIGNMENT); } /* Connect to pool subsystem */ if (is_tmp) { pool->first_pool_tmp = new; } else { pool->first_pool = new; } } else { if (cur->len >= size + MEM_ALIGNMENT) { new = pool_chain_new (cur->len); } else { mem_pool_stat->oversized_chunks++; new = pool_chain_new (size + pool->first_pool->len + MEM_ALIGNMENT); } /* Attach new pool to chain */ cur->next = new; } if (is_tmp) { pool->cur_pool_tmp = new; } else { pool->cur_pool = new; } /* No need to align again */ tmp = new->pos; new->pos = tmp + size; POOL_MTX_UNLOCK (); return tmp; } /* No need to allocate page */ tmp = align_ptr (cur->pos, MEM_ALIGNMENT); cur->pos = tmp + size; POOL_MTX_UNLOCK (); return tmp; } return NULL; } void * memory_pool_alloc (memory_pool_t * pool, gsize size) { return memory_pool_alloc_common (pool, size, FALSE); } void * memory_pool_alloc_tmp (memory_pool_t * pool, gsize size) { return memory_pool_alloc_common (pool, size, TRUE); } void * memory_pool_alloc0 (memory_pool_t * pool, gsize size) { void *pointer = memory_pool_alloc (pool, size); if (pointer) { memset (pointer, 0, size); } return pointer; } void * memory_pool_alloc0_tmp (memory_pool_t * pool, gsize size) { void *pointer = memory_pool_alloc_tmp (pool, size); if (pointer) { memset (pointer, 0, size); } return pointer; } void * memory_pool_alloc0_shared (memory_pool_t * pool, gsize size) { void *pointer = memory_pool_alloc_shared (pool, size); if (pointer) { memset (pointer, 0, size); } return pointer; } gchar * memory_pool_strdup (memory_pool_t * pool, const gchar *src) { gsize len; gchar *newstr; if (src == NULL) { return NULL; } len = strlen (src); newstr = memory_pool_alloc (pool, len + 1); memcpy (newstr, src, len); newstr[len] = '\0'; return newstr; } gchar * memory_pool_fstrdup (memory_pool_t * pool, const struct f_str_s *src) { gchar *newstr; if (src == NULL) { return NULL; } newstr = memory_pool_alloc (pool, src->len + 1); memcpy (newstr, src->begin, src->len); newstr[src->len] = '\0'; return newstr; } gchar * memory_pool_strdup_shared (memory_pool_t * pool, const gchar *src) { gsize len; gchar *newstr; if (src == NULL) { return NULL; } len = strlen (src); newstr = memory_pool_alloc_shared (pool, len + 1); memcpy (newstr, src, len); newstr[len] = '\0'; return newstr; } void * memory_pool_alloc_shared (memory_pool_t * pool, gsize size) { guint8 *tmp; struct _pool_chain_shared *new, *cur; gint free; if (pool) { g_return_val_if_fail (size > 0, NULL); POOL_MTX_LOCK (); cur = pool->shared_pool; if (!cur) { cur = pool_chain_new_shared (pool->first_pool->len); pool->shared_pool = cur; } /* Find free space in pool chain */ while ((free = pool_chain_free ((struct _pool_chain *)cur)) < (gint)size && cur->next) { cur = cur->next; } if (free < (gint)size && cur->next == NULL) { /* Allocate new pool */ if (cur->len >= size + MEM_ALIGNMENT) { new = pool_chain_new_shared (cur->len); } else { mem_pool_stat->oversized_chunks++; new = pool_chain_new_shared (size + pool->first_pool->len + MEM_ALIGNMENT); } /* Attach new pool to chain */ cur->next = new; new->pos += size; STAT_LOCK (); mem_pool_stat->bytes_allocated += size; STAT_UNLOCK (); POOL_MTX_UNLOCK (); return new->begin; } tmp = align_ptr (cur->pos, MEM_ALIGNMENT); cur->pos = tmp + size; POOL_MTX_UNLOCK (); return tmp; } return NULL; } /* Find pool for a pointer, returns NULL if pointer is not in pool */ static struct _pool_chain_shared * memory_pool_find_pool (memory_pool_t * pool, void *pointer) { struct _pool_chain_shared *cur = pool->shared_pool; while (cur) { if ((guint8 *) pointer >= cur->begin && (guint8 *) pointer <= (cur->begin + cur->len)) { return cur; } cur = cur->next; } return NULL; } static inline gint __mutex_spin (memory_pool_mutex_t * mutex) { /* check spin count */ if (g_atomic_int_dec_and_test (&mutex->spin)) { /* This may be deadlock, so check owner of this lock */ if (mutex->owner == getpid ()) { /* This mutex was locked by calling process, so it is just double lock and we can easily unlock it */ g_atomic_int_set (&mutex->spin, MUTEX_SPIN_COUNT); return 0; } else if (kill (0, mutex->owner) == -1) { /* Owner process was not found, so release lock */ g_atomic_int_set (&mutex->spin, MUTEX_SPIN_COUNT); return 0; } /* Spin again */ g_atomic_int_set (&mutex->spin, MUTEX_SPIN_COUNT); } #ifdef HAVE_ASM_PAUSE __asm __volatile ("pause"); #elif defined(HAVE_SCHED_YIELD) (void)sched_yield (); #endif #if defined(HAVE_NANOSLEEP) struct timespec ts; ts.tv_sec = 0; ts.tv_nsec = MUTEX_SLEEP_TIME; /* Spin */ while (nanosleep (&ts, &ts) == -1 && errno == EINTR); #else # error No methods to spin are defined #endif return 1; } static void memory_pool_mutex_spin (memory_pool_mutex_t * mutex) { while (!g_atomic_int_compare_and_exchange (&mutex->lock, 0, 1)) { if (!__mutex_spin (mutex)) { return; } } } /* Simple implementation of spinlock */ void memory_pool_lock_shared (memory_pool_t * pool, void *pointer) { struct _pool_chain_shared *chain; chain = memory_pool_find_pool (pool, pointer); if (chain == NULL) { return; } if (chain->lock == NULL) { chain->lock = memory_pool_get_mutex (pool); } memory_pool_lock_mutex (chain->lock); } void memory_pool_unlock_shared (memory_pool_t * pool, void *pointer) { struct _pool_chain_shared *chain; chain = memory_pool_find_pool (pool, pointer); if (chain == NULL) { return; } if (chain->lock == NULL) { chain->lock = memory_pool_get_mutex (pool); return; } memory_pool_unlock_mutex (chain->lock); } void memory_pool_add_destructor_full (memory_pool_t * pool, pool_destruct_func func, void *data, const gchar *function, const gchar *line) { struct _pool_destructors *cur; cur = memory_pool_alloc (pool, sizeof (struct _pool_destructors)); if (cur) { POOL_MTX_LOCK (); cur->func = func; cur->data = data; cur->function = function; cur->loc = line; cur->prev = pool->destructors; pool->destructors = cur; POOL_MTX_UNLOCK (); } } void memory_pool_replace_destructor (memory_pool_t * pool, pool_destruct_func func, void *old_data, void *new_data) { struct _pool_destructors *tmp; tmp = pool->destructors; while (tmp) { if (tmp->func == func && tmp->data == old_data) { tmp->func = func; tmp->data = new_data; break; } tmp = tmp->prev; } } void memory_pool_delete (memory_pool_t * pool) { struct _pool_chain *cur = pool->first_pool, *tmp; struct _pool_chain_shared *cur_shared = pool->shared_pool, *tmp_shared; struct _pool_destructors *destructor = pool->destructors; POOL_MTX_LOCK (); /* Call all pool destructors */ while (destructor) { /* Avoid calling destructors for NULL pointers */ if (destructor->data != NULL) { destructor->func (destructor->data); } destructor = destructor->prev; } while (cur) { tmp = cur; cur = cur->next; STAT_LOCK (); mem_pool_stat->chunks_freed++; mem_pool_stat->bytes_allocated -= tmp->len; STAT_UNLOCK (); g_slice_free1 (tmp->len, tmp->begin); g_slice_free (struct _pool_chain, tmp); } /* Clean temporary pools */ cur = pool->first_pool_tmp; while (cur) { tmp = cur; cur = cur->next; STAT_LOCK (); mem_pool_stat->chunks_freed++; mem_pool_stat->bytes_allocated -= tmp->len; STAT_UNLOCK (); g_slice_free1 (tmp->len, tmp->begin); g_slice_free (struct _pool_chain, tmp); } /* Unmap shared memory */ while (cur_shared) { tmp_shared = cur_shared; cur_shared = cur_shared->next; STAT_LOCK (); mem_pool_stat->chunks_freed++; mem_pool_stat->bytes_allocated -= tmp_shared->len; STAT_UNLOCK (); munmap ((void *)tmp_shared, tmp_shared->len + sizeof (struct _pool_chain_shared)); } if (pool->variables) { g_hash_table_destroy (pool->variables); } mem_pool_stat->pools_freed++; POOL_MTX_UNLOCK (); #if ((GLIB_MAJOR_VERSION == 2) && (GLIB_MINOR_VERSION > 30)) g_mutex_clear (&pool->mtx); #endif g_slice_free (memory_pool_t, pool); } void memory_pool_cleanup_tmp (memory_pool_t* pool) { struct _pool_chain *cur = pool->first_pool, *tmp; POOL_MTX_LOCK (); cur = pool->first_pool_tmp; while (cur) { tmp = cur; cur = cur->next; STAT_LOCK (); mem_pool_stat->chunks_freed++; mem_pool_stat->bytes_allocated -= tmp->len; STAT_UNLOCK (); g_slice_free1 (tmp->len, tmp->begin); g_slice_free (struct _pool_chain, tmp); } mem_pool_stat->pools_freed++; POOL_MTX_UNLOCK (); } void memory_pool_stat (memory_pool_stat_t * st) { st->pools_allocated = mem_pool_stat->pools_allocated; st->pools_freed = mem_pool_stat->pools_freed; st->shared_chunks_allocated = mem_pool_stat->shared_chunks_allocated; st->bytes_allocated = mem_pool_stat->bytes_allocated; st->chunks_allocated = mem_pool_stat->chunks_allocated; st->shared_chunks_allocated = mem_pool_stat->shared_chunks_allocated; st->chunks_freed = mem_pool_stat->chunks_freed; st->oversized_chunks = mem_pool_stat->oversized_chunks; } /* By default allocate 8Kb chunks of memory */ #define FIXED_POOL_SIZE 8192 gsize memory_pool_get_size (void) { #ifdef HAVE_GETPAGESIZE return MAX (getpagesize (), FIXED_POOL_SIZE); #else return MAX (sysconf (_SC_PAGESIZE), FIXED_POOL_SIZE); #endif } memory_pool_mutex_t * memory_pool_get_mutex (memory_pool_t * pool) { memory_pool_mutex_t *res; if (pool != NULL) { res = memory_pool_alloc_shared (pool, sizeof (memory_pool_mutex_t)); res->lock = 0; res->owner = 0; res->spin = MUTEX_SPIN_COUNT; return res; } return NULL; } void memory_pool_lock_mutex (memory_pool_mutex_t * mutex) { memory_pool_mutex_spin (mutex); mutex->owner = getpid (); } void memory_pool_unlock_mutex (memory_pool_mutex_t * mutex) { mutex->owner = 0; (void)g_atomic_int_compare_and_exchange (&mutex->lock, 1, 0); } memory_pool_rwlock_t * memory_pool_get_rwlock (memory_pool_t * pool) { memory_pool_rwlock_t *lock; lock = memory_pool_alloc_shared (pool, sizeof (memory_pool_rwlock_t)); lock->__r_lock = memory_pool_get_mutex (pool); lock->__w_lock = memory_pool_get_mutex (pool); return lock; } void memory_pool_rlock_rwlock (memory_pool_rwlock_t * lock) { /* Spin on write lock */ while (g_atomic_int_get (&lock->__w_lock->lock)) { if (!__mutex_spin (lock->__w_lock)) { break; } } g_atomic_int_inc (&lock->__r_lock->lock); lock->__r_lock->owner = getpid (); } void memory_pool_wlock_rwlock (memory_pool_rwlock_t * lock) { /* Spin on write lock first */ memory_pool_lock_mutex (lock->__w_lock); /* Now we have write lock set up */ /* Wait all readers */ while (g_atomic_int_get (&lock->__r_lock->lock)) { __mutex_spin (lock->__r_lock); } } void memory_pool_runlock_rwlock (memory_pool_rwlock_t * lock) { if (g_atomic_int_get (&lock->__r_lock->lock)) { (void)g_atomic_int_dec_and_test (&lock->__r_lock->lock); } } void memory_pool_wunlock_rwlock (memory_pool_rwlock_t * lock) { memory_pool_unlock_mutex (lock->__w_lock); } void memory_pool_set_variable (memory_pool_t *pool, const gchar *name, gpointer value, pool_destruct_func destructor) { if (pool->variables == NULL) { pool->variables = g_hash_table_new (g_str_hash, g_str_equal); } g_hash_table_insert (pool->variables, memory_pool_strdup (pool, name), value); if (destructor != NULL) { memory_pool_add_destructor (pool, destructor, value); } } gpointer memory_pool_get_variable (memory_pool_t *pool, const gchar *name) { if (pool->variables == NULL) { return NULL; } return g_hash_table_lookup (pool->variables, name); } /* * vi:ts=4 */