/* * Copyright (c) 2009, Rambler media * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY Rambler media ''AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL Rambler BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "mem_pool.h" #include "fstring.h" /* Sleep time for spin lock in nanoseconds */ #define MUTEX_SLEEP_TIME 10000000L #define MUTEX_SPIN_COUNT 100 #ifdef _THREAD_SAFE pthread_mutex_t stat_mtx = PTHREAD_MUTEX_INITIALIZER; # define STAT_LOCK() do { pthread_mutex_lock (&stat_mtx); } while (0) # define STAT_UNLOCK() do { pthread_mutex_unlock (&stat_mtx); } while (0) #else # define STAT_LOCK() do {} while (0) # define STAT_UNLOCK() do {} while (0) #endif /* * This define specify whether we should check all pools for free space for new object * or just begin scan from current (recently attached) pool * If MEMORY_GREEDY is defined, then we scan all pools to find free space (more CPU usage, slower * but requires less memory). If it is not defined check only current pool and if object is too large * to place in it allocate new one (this may cause huge CPU usage in some cases too, but generally faster than * greedy method) */ #undef MEMORY_GREEDY /* Internal statistic */ static memory_pool_stat_t *mem_pool_stat = NULL; static struct _pool_chain * pool_chain_new (memory_pool_ssize_t size) { struct _pool_chain *chain; g_assert (size > 0); chain = g_slice_alloc (sizeof (struct _pool_chain)); g_assert (chain != NULL); chain->begin = g_slice_alloc (size); g_assert (chain->begin != NULL); chain->len = size; chain->pos = chain->begin; chain->next = NULL; STAT_LOCK (); mem_pool_stat->chunks_allocated++; STAT_UNLOCK (); return chain; } static struct _pool_chain_shared * pool_chain_new_shared (memory_pool_ssize_t size) { struct _pool_chain_shared *chain; #if defined(HAVE_MMAP_ANON) chain = mmap (NULL, size + sizeof (struct _pool_chain_shared), PROT_READ | PROT_WRITE, MAP_ANON | MAP_SHARED, -1, 0); g_assert (chain != MAP_FAILED); chain->begin = ((u_char *) chain) + sizeof (struct _pool_chain_shared); g_assert (chain->begin != MAP_FAILED); #elif defined(HAVE_MMAP_ZERO) int fd; fd = open ("/dev/zero", O_RDWR); if (fd == -1) { return NULL; } chain = mmap (NULL, size + sizeof (struct _pool_chain_shared), PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); g_assert (chain != MAP_FAILED); chain->begin = ((u_char *) chain) + sizeof (struct _pool_chain_shared); g_assert (chain->begin != MAP_FAILED); #else # error No mmap methods are defined #endif chain->len = size; chain->pos = chain->begin; chain->lock = 0; chain->next = NULL; STAT_LOCK (); mem_pool_stat->shared_chunks_allocated++; STAT_UNLOCK (); return chain; } /** * Allocate new memory poll * @param size size of pool's page * @return new memory pool object */ memory_pool_t * memory_pool_new (memory_pool_ssize_t size) { memory_pool_t *new; g_assert (size > 0); /* Allocate statistic structure if it is not allocated before */ if (mem_pool_stat == NULL) { #if defined(HAVE_MMAP_ANON) mem_pool_stat = mmap (NULL, sizeof (memory_pool_stat_t), PROT_READ | PROT_WRITE, MAP_ANON | MAP_SHARED, -1, 0); g_assert (stat != MAP_FAILED); #elif defined(HAVE_MMAP_ZERO) int fd; fd = open ("/dev/zero", O_RDWR); g_assert (fd != -1); mem_pool_stat = mmap (NULL, sizeof (memory_pool_stat_t), PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); g_assert (chain != MAP_FAILED); #else # error No mmap methods are defined #endif } new = g_slice_alloc (sizeof (memory_pool_t)); g_assert (new != NULL); new->cur_pool = pool_chain_new (size); new->shared_pool = NULL; new->first_pool = new->cur_pool; new->destructors = NULL; /* Set it upon first call of set variable */ new->variables = NULL; mem_pool_stat->pools_allocated++; return new; } void * memory_pool_alloc (memory_pool_t * pool, memory_pool_ssize_t size) { u_char *tmp; struct _pool_chain *new, *cur; if (pool) { #ifdef MEMORY_GREEDY cur = pool->first_pool; #else cur = pool->cur_pool; #endif /* Find free space in pool chain */ while (memory_pool_free (cur) < size && cur->next) { cur = cur->next; } if (cur->next == NULL && memory_pool_free (cur) < size) { /* Allocate new pool */ if (cur->len >= size) { new = pool_chain_new (cur->len); } else { mem_pool_stat->oversized_chunks++; new = pool_chain_new (size + cur->len); } /* Attach new pool to chain */ cur->next = new; pool->cur_pool = new; new->pos += size; STAT_LOCK (); mem_pool_stat->bytes_allocated += size; STAT_UNLOCK (); return new->begin; } tmp = cur->pos; cur->pos += size; STAT_LOCK (); mem_pool_stat->bytes_allocated += size; STAT_UNLOCK (); return tmp; } return NULL; } void * memory_pool_alloc0 (memory_pool_t * pool, memory_pool_ssize_t size) { void *pointer = memory_pool_alloc (pool, size); if (pointer) { bzero (pointer, size); } return pointer; } void * memory_pool_alloc0_shared (memory_pool_t * pool, memory_pool_ssize_t size) { void *pointer = memory_pool_alloc_shared (pool, size); if (pointer) { bzero (pointer, size); } return pointer; } char * memory_pool_strdup (memory_pool_t * pool, const char *src) { memory_pool_ssize_t len; char *newstr; if (src == NULL) { return NULL; } len = strlen (src); newstr = memory_pool_alloc (pool, len + 1); memcpy (newstr, src, len); newstr[len] = '\0'; return newstr; } char * memory_pool_fstrdup (memory_pool_t * pool, const struct f_str_s *src) { char *newstr; if (src == NULL) { return NULL; } newstr = memory_pool_alloc (pool, src->len + 1); memcpy (newstr, src->begin, src->len); newstr[src->len] = '\0'; return newstr; } char * memory_pool_strdup_shared (memory_pool_t * pool, const char *src) { memory_pool_ssize_t len; char *newstr; if (src == NULL) { return NULL; } len = strlen (src); newstr = memory_pool_alloc_shared (pool, len + 1); memcpy (newstr, src, len); newstr[len] = '\0'; return newstr; } void * memory_pool_alloc_shared (memory_pool_t * pool, memory_pool_ssize_t size) { u_char *tmp; struct _pool_chain_shared *new, *cur; if (pool) { g_assert (size > 0); cur = pool->shared_pool; if (!cur) { cur = pool_chain_new_shared (pool->first_pool->len); pool->shared_pool = cur; } /* Find free space in pool chain */ while (memory_pool_free (cur) < size && cur->next) { cur = cur->next; } if (cur->next == NULL && memory_pool_free (cur) < size) { /* Allocate new pool */ if (cur->len >= size) { new = pool_chain_new_shared (cur->len); } else { mem_pool_stat->oversized_chunks++; new = pool_chain_new_shared (size + cur->len); } /* Attach new pool to chain */ cur->next = new; new->pos += size; STAT_LOCK (); mem_pool_stat->bytes_allocated += size; STAT_UNLOCK (); return new->begin; } tmp = cur->pos; cur->pos += size; STAT_LOCK (); mem_pool_stat->bytes_allocated += size; STAT_UNLOCK (); return tmp; } return NULL; } /* Find pool for a pointer, returns NULL if pointer is not in pool */ static struct _pool_chain_shared * memory_pool_find_pool (memory_pool_t * pool, void *pointer) { struct _pool_chain_shared *cur = pool->shared_pool; while (cur) { if ((u_char *) pointer >= cur->begin && (u_char *) pointer <= (cur->begin + cur->len)) { return cur; } cur = cur->next; } return NULL; } static inline int __mutex_spin (memory_pool_mutex_t * mutex) { /* check spin count */ if (g_atomic_int_dec_and_test (&mutex->spin)) { /* This may be deadlock, so check owner of this lock */ if (mutex->owner == getpid ()) { /* This mutex was locked by calling process, so it is just double lock and we can easily unlock it */ g_atomic_int_set (&mutex->spin, MUTEX_SPIN_COUNT); return 0; } else if (kill (0, mutex->owner) == -1) { /* Owner process was not found, so release lock */ g_atomic_int_set (&mutex->spin, MUTEX_SPIN_COUNT); return 0; } /* Spin again */ g_atomic_int_set (&mutex->spin, MUTEX_SPIN_COUNT); } #ifdef HAVE_ASM_PAUSE __asm __volatile ("pause"); #elif defined(HAVE_SCHED_YIELD) (void)sched_yield (); #elif defined(HAVE_NANOSLEEP) struct timespec ts; ts.tv_sec = 0; ts.tv_nsec = MUTEX_SLEEP_TIME; /* Spin */ while (nanosleep (&ts, &ts) == -1 && errno == EINTR); #else # error No methods to spin are defined #endif return 1; } static void memory_pool_mutex_spin (memory_pool_mutex_t * mutex) { while (!g_atomic_int_compare_and_exchange (&mutex->lock, 0, 1)) { if (!__mutex_spin (mutex)) { return; } } } /* Simple implementation of spinlock */ void memory_pool_lock_shared (memory_pool_t * pool, void *pointer) { struct _pool_chain_shared *chain; chain = memory_pool_find_pool (pool, pointer); if (chain == NULL) { return; } memory_pool_lock_mutex (chain->lock); } void memory_pool_unlock_shared (memory_pool_t * pool, void *pointer) { struct _pool_chain_shared *chain; chain = memory_pool_find_pool (pool, pointer); if (chain == NULL) { return; } memory_pool_unlock_mutex (chain->lock); } void memory_pool_add_destructor (memory_pool_t * pool, pool_destruct_func func, void *data) { struct _pool_destructors *cur, *tmp; cur = memory_pool_alloc (pool, sizeof (struct _pool_destructors)); if (cur) { /* Check whether we have identical destructor in pool */ tmp = pool->destructors; while (tmp) { if (tmp->func == func && tmp->data == data) { /* Do not add identical destructors, they must be unique */ return; } tmp = tmp->prev; } cur->func = func; cur->data = data; cur->prev = pool->destructors; pool->destructors = cur; } } void memory_pool_delete (memory_pool_t * pool) { struct _pool_chain *cur = pool->first_pool, *tmp; struct _pool_chain_shared *cur_shared = pool->shared_pool, *tmp_shared; struct _pool_destructors *destructor = pool->destructors; /* Call all pool destructors */ while (destructor) { /* Avoid calling destructors for NULL pointers */ if (destructor->data != NULL) { destructor->func (destructor->data); } destructor = destructor->prev; } while (cur) { tmp = cur; cur = cur->next; g_slice_free1 (tmp->len, tmp->begin); g_slice_free (struct _pool_chain, tmp); STAT_LOCK (); mem_pool_stat->chunks_freed++; STAT_UNLOCK (); } /* Unmap shared memory */ while (cur_shared) { tmp_shared = cur_shared; cur_shared = cur_shared->next; munmap (tmp_shared, tmp_shared->len + sizeof (struct _pool_chain_shared)); STAT_LOCK (); mem_pool_stat->chunks_freed++; STAT_UNLOCK (); } if (pool->variables) { g_hash_table_destroy (pool->variables); } mem_pool_stat->pools_freed++; g_slice_free (memory_pool_t, pool); } void memory_pool_stat (memory_pool_stat_t * st) { st->pools_allocated = mem_pool_stat->pools_allocated; st->pools_freed = mem_pool_stat->pools_freed; st->shared_chunks_allocated = mem_pool_stat->shared_chunks_allocated; st->bytes_allocated = mem_pool_stat->bytes_allocated; st->chunks_allocated = mem_pool_stat->chunks_allocated; st->shared_chunks_allocated = mem_pool_stat->shared_chunks_allocated; st->chunks_freed = mem_pool_stat->chunks_freed; st->oversized_chunks = mem_pool_stat->oversized_chunks; } /* By default allocate 8Kb chunks of memory */ #define FIXED_POOL_SIZE 8192 memory_pool_ssize_t memory_pool_get_size () { #ifdef HAVE_GETPAGESIZE return MAX (getpagesize (), FIXED_POOL_SIZE); #else return MAX (sysconf (_SC_PAGESIZE), FIXED_POOL_SIZE); #endif } memory_pool_mutex_t * memory_pool_get_mutex (memory_pool_t * pool) { memory_pool_mutex_t *res; if (pool != NULL) { res = memory_pool_alloc_shared (pool, sizeof (memory_pool_mutex_t)); res->lock = 0; res->owner = 0; res->spin = MUTEX_SPIN_COUNT; return res; } return NULL; } void memory_pool_lock_mutex (memory_pool_mutex_t * mutex) { memory_pool_mutex_spin (mutex); mutex->owner = getpid (); } void memory_pool_unlock_mutex (memory_pool_mutex_t * mutex) { mutex->owner = 0; (void)g_atomic_int_compare_and_exchange (&mutex->lock, 1, 0); } memory_pool_rwlock_t * memory_pool_get_rwlock (memory_pool_t * pool) { memory_pool_rwlock_t *lock; lock = memory_pool_alloc_shared (pool, sizeof (memory_pool_rwlock_t)); lock->__r_lock = memory_pool_get_mutex (pool); lock->__w_lock = memory_pool_get_mutex (pool); return lock; } void memory_pool_rlock_rwlock (memory_pool_rwlock_t * lock) { /* Spin on write lock */ while (g_atomic_int_get (&lock->__w_lock->lock)) { if (!__mutex_spin (lock->__w_lock)) { break; } } g_atomic_int_inc (&lock->__r_lock->lock); lock->__r_lock->owner = getpid (); } void memory_pool_wlock_rwlock (memory_pool_rwlock_t * lock) { /* Spin on write lock first */ memory_pool_lock_mutex (lock->__w_lock); /* Now we have write lock set up */ /* Wait all readers */ while (g_atomic_int_get (&lock->__r_lock->lock)) { __mutex_spin (lock->__r_lock); } } void memory_pool_runlock_rwlock (memory_pool_rwlock_t * lock) { if (g_atomic_int_get (&lock->__r_lock->lock)) { (void)g_atomic_int_dec_and_test (&lock->__r_lock->lock); } } void memory_pool_wunlock_rwlock (memory_pool_rwlock_t * lock) { memory_pool_unlock_mutex (lock->__w_lock); } void memory_pool_set_variable (memory_pool_t *pool, const gchar *name, gpointer value, pool_destruct_func destructor) { if (pool->variables == NULL) { pool->variables = g_hash_table_new (g_str_hash, g_str_equal); } g_hash_table_insert (pool->variables, memory_pool_strdup (pool, name), value); if (destructor != NULL) { memory_pool_add_destructor (pool, destructor, value); } } gpointer memory_pool_get_variable (memory_pool_t *pool, const gchar *name) { if (pool->variables == NULL) { return NULL; } return g_hash_table_lookup (pool->variables, name); } /* * vi:ts=4 */