/* * Copyright (c) 2009, Rambler media * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY Rambler media ''AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL Rambler BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "upstream.h" #ifdef _THREAD_SAFE pthread_rwlock_t upstream_mtx = PTHREAD_RWLOCK_INITIALIZER; # define U_RLOCK() do { pthread_rwlock_rdlock (&upstream_mtx); } while (0) # define U_WLOCK() do { pthread_rwlock_wrlock (&upstream_mtx); } while (0) # define U_UNLOCK() do { pthread_rwlock_unlock (&upstream_mtx); } while (0) #else # define U_RLOCK() do {} while (0) # define U_WLOCK() do {} while (0) # define U_UNLOCK() do {} while (0) #endif #define MAX_TRIES 20 #define HASH_COMPAT /* * Poly: 0xedb88320 * Init: 0x0 */ static const guint32 crc32lookup[256] = { 0x00000000U, 0x77073096U, 0xee0e612cU, 0x990951baU, 0x076dc419U, 0x706af48fU, 0xe963a535U, 0x9e6495a3U, 0x0edb8832U, 0x79dcb8a4U, 0xe0d5e91eU, 0x97d2d988U, 0x09b64c2bU, 0x7eb17cbdU, 0xe7b82d07U, 0x90bf1d91U, 0x1db71064U, 0x6ab020f2U, 0xf3b97148U, 0x84be41deU, 0x1adad47dU, 0x6ddde4ebU, 0xf4d4b551U, 0x83d385c7U, 0x136c9856U, 0x646ba8c0U, 0xfd62f97aU, 0x8a65c9ecU, 0x14015c4fU, 0x63066cd9U, 0xfa0f3d63U, 0x8d080df5U, 0x3b6e20c8U, 0x4c69105eU, 0xd56041e4U, 0xa2677172U, 0x3c03e4d1U, 0x4b04d447U, 0xd20d85fdU, 0xa50ab56bU, 0x35b5a8faU, 0x42b2986cU, 0xdbbbc9d6U, 0xacbcf940U, 0x32d86ce3U, 0x45df5c75U, 0xdcd60dcfU, 0xabd13d59U, 0x26d930acU, 0x51de003aU, 0xc8d75180U, 0xbfd06116U, 0x21b4f4b5U, 0x56b3c423U, 0xcfba9599U, 0xb8bda50fU, 0x2802b89eU, 0x5f058808U, 0xc60cd9b2U, 0xb10be924U, 0x2f6f7c87U, 0x58684c11U, 0xc1611dabU, 0xb6662d3dU, 0x76dc4190U, 0x01db7106U, 0x98d220bcU, 0xefd5102aU, 0x71b18589U, 0x06b6b51fU, 0x9fbfe4a5U, 0xe8b8d433U, 0x7807c9a2U, 0x0f00f934U, 0x9609a88eU, 0xe10e9818U, 0x7f6a0dbbU, 0x086d3d2dU, 0x91646c97U, 0xe6635c01U, 0x6b6b51f4U, 0x1c6c6162U, 0x856530d8U, 0xf262004eU, 0x6c0695edU, 0x1b01a57bU, 0x8208f4c1U, 0xf50fc457U, 0x65b0d9c6U, 0x12b7e950U, 0x8bbeb8eaU, 0xfcb9887cU, 0x62dd1ddfU, 0x15da2d49U, 0x8cd37cf3U, 0xfbd44c65U, 0x4db26158U, 0x3ab551ceU, 0xa3bc0074U, 0xd4bb30e2U, 0x4adfa541U, 0x3dd895d7U, 0xa4d1c46dU, 0xd3d6f4fbU, 0x4369e96aU, 0x346ed9fcU, 0xad678846U, 0xda60b8d0U, 0x44042d73U, 0x33031de5U, 0xaa0a4c5fU, 0xdd0d7cc9U, 0x5005713cU, 0x270241aaU, 0xbe0b1010U, 0xc90c2086U, 0x5768b525U, 0x206f85b3U, 0xb966d409U, 0xce61e49fU, 0x5edef90eU, 0x29d9c998U, 0xb0d09822U, 0xc7d7a8b4U, 0x59b33d17U, 0x2eb40d81U, 0xb7bd5c3bU, 0xc0ba6cadU, 0xedb88320U, 0x9abfb3b6U, 0x03b6e20cU, 0x74b1d29aU, 0xead54739U, 0x9dd277afU, 0x04db2615U, 0x73dc1683U, 0xe3630b12U, 0x94643b84U, 0x0d6d6a3eU, 0x7a6a5aa8U, 0xe40ecf0bU, 0x9309ff9dU, 0x0a00ae27U, 0x7d079eb1U, 0xf00f9344U, 0x8708a3d2U, 0x1e01f268U, 0x6906c2feU, 0xf762575dU, 0x806567cbU, 0x196c3671U, 0x6e6b06e7U, 0xfed41b76U, 0x89d32be0U, 0x10da7a5aU, 0x67dd4accU, 0xf9b9df6fU, 0x8ebeeff9U, 0x17b7be43U, 0x60b08ed5U, 0xd6d6a3e8U, 0xa1d1937eU, 0x38d8c2c4U, 0x4fdff252U, 0xd1bb67f1U, 0xa6bc5767U, 0x3fb506ddU, 0x48b2364bU, 0xd80d2bdaU, 0xaf0a1b4cU, 0x36034af6U, 0x41047a60U, 0xdf60efc3U, 0xa867df55U, 0x316e8eefU, 0x4669be79U, 0xcb61b38cU, 0xbc66831aU, 0x256fd2a0U, 0x5268e236U, 0xcc0c7795U, 0xbb0b4703U, 0x220216b9U, 0x5505262fU, 0xc5ba3bbeU, 0xb2bd0b28U, 0x2bb45a92U, 0x5cb36a04U, 0xc2d7ffa7U, 0xb5d0cf31U, 0x2cd99e8bU, 0x5bdeae1dU, 0x9b64c2b0U, 0xec63f226U, 0x756aa39cU, 0x026d930aU, 0x9c0906a9U, 0xeb0e363fU, 0x72076785U, 0x05005713U, 0x95bf4a82U, 0xe2b87a14U, 0x7bb12baeU, 0x0cb61b38U, 0x92d28e9bU, 0xe5d5be0dU, 0x7cdcefb7U, 0x0bdbdf21U, 0x86d3d2d4U, 0xf1d4e242U, 0x68ddb3f8U, 0x1fda836eU, 0x81be16cdU, 0xf6b9265bU, 0x6fb077e1U, 0x18b74777U, 0x88085ae6U, 0xff0f6a70U, 0x66063bcaU, 0x11010b5cU, 0x8f659effU, 0xf862ae69U, 0x616bffd3U, 0x166ccf45U, 0xa00ae278U, 0xd70dd2eeU, 0x4e048354U, 0x3903b3c2U, 0xa7672661U, 0xd06016f7U, 0x4969474dU, 0x3e6e77dbU, 0xaed16a4aU, 0xd9d65adcU, 0x40df0b66U, 0x37d83bf0U, 0xa9bcae53U, 0xdebb9ec5U, 0x47b2cf7fU, 0x30b5ffe9U, 0xbdbdf21cU, 0xcabac28aU, 0x53b39330U, 0x24b4a3a6U, 0xbad03605U, 0xcdd70693U, 0x54de5729U, 0x23d967bfU, 0xb3667a2eU, 0xc4614ab8U, 0x5d681b02U, 0x2a6f2b94U, 0xb40bbe37U, 0xc30c8ea1U, 0x5a05df1bU, 0x2d02ef8dU }; /* * Check upstream parameters and mark it whether valid or dead */ static void check_upstream (struct upstream *up, time_t now, time_t error_timeout, time_t revive_timeout, size_t max_errors) { if (up->dead) { if (now - up->time >= revive_timeout) { U_WLOCK (); up->dead = 0; up->errors = 0; up->time = 0; up->weight = up->priority; U_UNLOCK (); } } else { if (now - up->time >= error_timeout && up->errors >= max_errors) { U_WLOCK (); up->dead = 1; up->time = now; up->weight = 0; U_UNLOCK (); } } } /* * Call this function after failed upstream request */ void upstream_fail (struct upstream *up, time_t now) { if (up->time != 0) { up->errors++; } else { U_WLOCK (); up->time = now; up->errors++; U_UNLOCK (); } } /* * Call this function after successfull upstream request */ void upstream_ok (struct upstream *up, time_t now) { if (up->errors != 0) { U_WLOCK (); up->errors = 0; up->time = 0; U_UNLOCK (); } up->weight--; } /* * Mark all upstreams as active. This function is used when all upstreams are marked as inactive */ void revive_all_upstreams (void *ups, size_t members, size_t msize) { guint i; struct upstream *cur; guchar *p; U_WLOCK (); p = ups; for (i = 0; i < members; i++) { cur = (struct upstream *)p; cur->time = 0; cur->errors = 0; cur->dead = 0; cur->weight = cur->priority; p += msize; } U_UNLOCK (); } /* * Scan all upstreams for errors and mark upstreams dead or alive depends on conditions, * return number of alive upstreams */ static gint rescan_upstreams (void *ups, size_t members, size_t msize, time_t now, time_t error_timeout, time_t revive_timeout, size_t max_errors) { guint i, alive; struct upstream *cur; guchar *p; /* Recheck all upstreams */ p = ups; alive = members; for (i = 0; i < members; i++) { cur = (struct upstream *)p; check_upstream (cur, now, error_timeout, revive_timeout, max_errors); alive -= cur->dead; p += msize; } /* All upstreams are dead */ if (alive == 0) { revive_all_upstreams (ups, members, msize); alive = members; } return alive; } /* Return alive upstream by its number */ static struct upstream * get_upstream_by_number (void *ups, size_t members, size_t msize, gint selected) { guint i; u_char *p, *c; struct upstream *cur; i = 0; p = ups; c = ups; U_RLOCK (); for (;;) { /* Out of range, return NULL */ if (p > c + members * msize) { break; } cur = (struct upstream *)p; p += msize; if (cur->dead) { /* Skip inactive upstreams */ continue; } /* Return selected upstream */ if ((gint)i == selected) { U_UNLOCK (); return cur; } i++; } U_UNLOCK (); /* Error */ return NULL; } /* * Get hash key for specified key (perl hash) */ static guint32 get_hash_for_key (guint32 hash, const gchar *key, size_t keylen) { guint32 h, index; const gchar *end = key + keylen; h = ~hash; if (end != key) { while (key < end) { index = (h ^ (u_char) * key) & 0x000000ffU; h = (h >> 8) ^ crc32lookup[index]; ++key; } } else { while (*key) { index = (h ^ (u_char) * key) & 0x000000ffU; h = (h >> 8) ^ crc32lookup[index]; ++key; } } return (~h); } /* * Recheck all upstreams and return random active upstream */ struct upstream * get_random_upstream (void *ups, size_t members, size_t msize, time_t now, time_t error_timeout, time_t revive_timeout, size_t max_errors) { gint alive, selected; alive = rescan_upstreams (ups, members, msize, now, error_timeout, revive_timeout, max_errors); selected = rand () % alive; return get_upstream_by_number (ups, members, msize, selected); } /* * Return upstream by hash, that is calculated from active upstreams number */ struct upstream * get_upstream_by_hash (void *ups, size_t members, size_t msize, time_t now, time_t error_timeout, time_t revive_timeout, size_t max_errors, const gchar *key, size_t keylen) { gint alive, tries = 0, r; guint32 h = 0, ht; gchar *p, numbuf[4]; struct upstream *cur; alive = rescan_upstreams (ups, members, msize, now, error_timeout, revive_timeout, max_errors); if (alive == 0) { return NULL; } h = get_hash_for_key (0, key, keylen); #ifdef HASH_COMPAT h = (h >> 16) & 0x7fff; #endif h %= members; for (;;) { p = (gchar *)ups + msize * h; cur = (struct upstream *)p; if (!cur->dead) { break; } r = snprintf (numbuf, sizeof (numbuf), "%d", tries); ht = get_hash_for_key (0, numbuf, r); ht = get_hash_for_key (ht, key, keylen); #ifdef HASH_COMPAT h += (ht >> 16) & 0x7fff; #else h += ht; #endif h %= members; tries++; if (tries > MAX_TRIES) { return NULL; } } U_RLOCK (); p = ups; U_UNLOCK (); return cur; } /* * Recheck all upstreams and return upstream in round-robin order according to weight and priority */ struct upstream * get_upstream_round_robin (void *ups, size_t members, size_t msize, time_t now, time_t error_timeout, time_t revive_timeout, size_t max_errors) { guint max_weight, i; struct upstream *cur, *selected = NULL; u_char *p; /* Recheck all upstreams */ (void)rescan_upstreams (ups, members, msize, now, error_timeout, revive_timeout, max_errors); p = ups; max_weight = 0; selected = (struct upstream *)p; U_RLOCK (); for (i = 0; i < members; i++) { cur = (struct upstream *)p; if (!cur->dead) { if (max_weight < (guint)cur->weight) { max_weight = cur->weight; selected = cur; } } p += msize; } U_UNLOCK (); if (max_weight == 0) { p = ups; U_WLOCK (); for (i = 0; i < members; i++) { cur = (struct upstream *)p; cur->weight = cur->priority; if (!cur->dead) { if (max_weight < cur->priority) { max_weight = cur->priority; selected = cur; } } p += msize; } U_UNLOCK (); } return selected; } /* * Recheck all upstreams and return upstream in round-robin order according to only priority (master-slaves) */ struct upstream * get_upstream_master_slave (void *ups, size_t members, size_t msize, time_t now, time_t error_timeout, time_t revive_timeout, size_t max_errors) { guint max_weight, i; struct upstream *cur, *selected = NULL; u_char *p; /* Recheck all upstreams */ (void)rescan_upstreams (ups, members, msize, now, error_timeout, revive_timeout, max_errors); p = ups; max_weight = 0; selected = (struct upstream *)p; U_RLOCK (); for (i = 0; i < members; i++) { cur = (struct upstream *)p; if (!cur->dead) { if (max_weight < cur->priority) { max_weight = cur->priority; selected = cur; } } p += msize; } U_UNLOCK (); return selected; } /* * Ketama manipulation functions */ static gint ketama_sort_cmp (const void *a1, const void *a2) { return *((guint32 *) a1) - *((guint32 *) a2); } /* * Add ketama points for specified upstream */ gint upstream_ketama_add (struct upstream *up, gchar *up_key, size_t keylen, size_t keypoints) { guint32 h = 0; gchar tmp[4]; guint i; /* Allocate ketama points array */ if (up->ketama_points == NULL) { up->ketama_points_size = keypoints; up->ketama_points = malloc (sizeof (guint32) * up->ketama_points_size); if (up->ketama_points == NULL) { return -1; } } h = get_hash_for_key (h, up_key, keylen); for (i = 0; i < keypoints; i++) { tmp[0] = i & 0xff; tmp[1] = (i >> 8) & 0xff; tmp[2] = (i >> 16) & 0xff; tmp[3] = (i >> 24) & 0xff; h = get_hash_for_key (h, tmp, sizeof (tmp) * sizeof (gchar)); up->ketama_points[i] = h; } /* Keep points sorted */ qsort (up->ketama_points, keypoints, sizeof (guint32), ketama_sort_cmp); return 0; } /* * Return upstream by hash and find nearest ketama point in some server */ struct upstream * get_upstream_by_hash_ketama (void *ups, size_t members, size_t msize, time_t now, time_t error_timeout, time_t revive_timeout, size_t max_errors, const gchar *key, size_t keylen) { guint alive, i; guint32 h = 0, step, middle, d, min_diff = UINT_MAX; gchar *p; struct upstream *cur = NULL, *nearest = NULL; alive = rescan_upstreams (ups, members, msize, now, error_timeout, revive_timeout, max_errors); if (alive == 0) { return NULL; } h = get_hash_for_key (h, key, keylen); U_RLOCK (); p = ups; nearest = (struct upstream *)p; for (i = 0; i < members; i++) { cur = (struct upstream *)p; if (!cur->dead && cur->ketama_points != NULL) { /* Find nearest ketama point for this key */ step = cur->ketama_points_size / 2; middle = step; while (step != 1) { d = cur->ketama_points[middle] - h; if (abs (d) < (gint)min_diff) { min_diff = abs (d); nearest = cur; } step /= 2; if (d > 0) { middle -= step; } else { middle += step; } } } } U_UNLOCK (); return nearest; } #undef U_LOCK #undef U_UNLOCK /* * vi:ts=4 */