/* * Copyright 2025 Vsevolod Stakhov * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* Detached unit tests for the cryptobox */ #ifndef RSPAMD_RSPAMD_CXX_UNIT_CRYPTOBOX_HXX #define RSPAMD_RSPAMD_CXX_UNIT_CRYPTOBOX_HXX #include "libcryptobox/cryptobox.h" #include #include #include #include namespace std// NOLINT(cert-dcl58-cpp) { template ostream &operator<<(ostream &stream, const vector &in) { stream << "["; for (size_t i = 0; i < in.size(); ++i) { if (i != 0) { stream << ", "; } stream << in[i]; } stream << "]"; return stream; } }// namespace std TEST_SUITE("rspamd_cryptobox") { TEST_CASE("rspamd_cryptobox_keypair") { rspamd_sk_t sk; rspamd_pk_t pk; rspamd_cryptobox_keypair(pk, sk); } TEST_CASE("rspamd_cryptobox_keypair_sig") { rspamd_sig_sk_t sk; rspamd_sig_pk_t pk; rspamd_cryptobox_keypair_sig(pk, sk); } TEST_CASE("rspamd_cryptobox_hash") { rspamd_cryptobox_hash_state_t p = {0}; std::string key{"key"}; rspamd_cryptobox_hash_init(&p, reinterpret_cast(key.data()), key.size()); std::string data{"key"}; rspamd_cryptobox_hash_update(&p, reinterpret_cast(data.data()), data.size()); unsigned char out1[rspamd_cryptobox_HASHBYTES]; rspamd_cryptobox_hash_final(&p, out1); unsigned char out2[rspamd_cryptobox_HASHBYTES]; rspamd_cryptobox_hash(out2, reinterpret_cast(data.data()), data.size(), reinterpret_cast(key.data()), key.size()); CHECK(memcmp(out1, out2, sizeof(out1)) == 0); } TEST_CASE("rspamd_cryptobox_fast_hash") { rspamd_cryptobox_fast_hash_state_s *st = rspamd_cryptobox_fast_hash_new(); uint64_t seed = 10; rspamd_cryptobox_fast_hash_init(st, seed); std::string data{"key"}; rspamd_cryptobox_fast_hash_update(st, reinterpret_cast(data.data()), data.size()); uint64_t out1 = rspamd_cryptobox_fast_hash_final(st); CHECK(out1 == 358126267837521635); uint64_t out2 = rspamd_cryptobox_fast_hash(reinterpret_cast(data.data()), data.size(), seed); CHECK(out1 == out2); rspamd_cryptobox_fast_hash_free(st); } TEST_CASE("rspamd_cryptobox_pbkdf") { std::string pass{"passpa"}; std::string salt{"salt"}; uint8_t key1[256] = {0}; gsize key_len1 = sizeof(key1); uint8_t key2[256] = {0}; gsize key_len2 = sizeof(key2); unsigned int complexity = 10; enum rspamd_cryptobox_pbkdf_type type = RSPAMD_CRYPTOBOX_PBKDF2; CHECK(rspamd_cryptobox_pbkdf(pass.data(), pass.size(), reinterpret_cast(salt.data()), salt.size(), key1, key_len1, complexity, type)); CHECK(rspamd_cryptobox_pbkdf(pass.data(), pass.size(), reinterpret_cast(salt.data()), salt.size(), key2, key_len2, complexity, type)); CHECK(memcmp(key1, key2, key_len1) == 0); type = RSPAMD_CRYPTOBOX_CATENA; CHECK(rspamd_cryptobox_pbkdf(pass.data(), pass.size(), reinterpret_cast(salt.data()), salt.size(), key1, key_len1, complexity, type)); CHECK(rspamd_cryptobox_pbkdf(pass.data(), pass.size(), reinterpret_cast(salt.data()), salt.size(), key2, key_len2, complexity, type)); CHECK(memcmp(key1, key2, key_len1) == 0); } TEST_CASE("rspamd_cryptobox_encrypt_inplace_25519") { unsigned char data[256]; gsize len = sizeof(data); rspamd_nonce_t nonce; rspamd_pk_t pk; rspamd_sk_t sk; rspamd_mac_t sig; ottery_rand_bytes(nonce, sizeof(nonce)); rspamd_cryptobox_keypair(pk, sk); memset(sig, 0, sizeof(sig)); rspamd_cryptobox_encrypt_inplace(data, len, nonce, pk, sk, sig); CHECK(rspamd_cryptobox_decrypt_inplace(data, len, nonce, pk, sk, sig)); } TEST_CASE("rspamd_cryptobox_sign_25519") { rspamd_sig_sk_t sk; rspamd_sig_pk_t pk; unsigned char sig[256]; unsigned long long siglen; std::string m{"data to be signed"}; rspamd_cryptobox_keypair_sig(pk, sk); rspamd_cryptobox_sign(sig, &siglen, reinterpret_cast(m.data()), m.size(), sk); bool check_result = rspamd_cryptobox_verify(sig, siglen, reinterpret_cast(m.data()), m.size(), pk); CHECK(check_result == true); } TEST_CASE("rspamd_keypair_encryption") { auto *kp = rspamd_keypair_new(RSPAMD_KEYPAIR_KEX); std::string data{"data to be encrypted"}; unsigned char *out; gsize outlen; GError *err = nullptr; auto ret = rspamd_keypair_encrypt(kp, reinterpret_cast(data.data()), data.size(), &out, &outlen, &err); CHECK(ret); CHECK(err == nullptr); unsigned char *decrypted; gsize decrypted_len; ret = rspamd_keypair_decrypt(kp, out, outlen, &decrypted, &decrypted_len, &err); CHECK(ret); CHECK(err == nullptr); CHECK(decrypted_len == data.size()); CHECK(data == std::string_view{reinterpret_cast(decrypted), decrypted_len}); g_free(out); g_free(decrypted); } TEST_CASE("rspamd x25519 scalarmult") { rspamd_sk_t sk; // Use a fixed zero secret key memset(sk, 0, sizeof(sk)); // Use a well known public key const char *pk = "k4nz984k36xmcynm1hr9kdbn6jhcxf4ggbrb1quay7f88rpm9kay"; gsize outlen; auto *pk_decoded = rspamd_decode_base32(pk, strlen(pk), &outlen, RSPAMD_BASE32_DEFAULT); unsigned char expected[32] = {95, 76, 225, 188, 0, 26, 146, 94, 70, 249, 90, 189, 35, 51, 1, 42, 9, 37, 94, 254, 204, 55, 198, 91, 180, 90, 46, 217, 140, 226, 211, 90}; const auto expected_arr = std::vector(std::begin(expected), std::end(expected)); CHECK(outlen == 32); unsigned char out[32]; /* Clamp integer */ sk[0] &= 248; sk[31] &= 127; sk[31] |= 64; CHECK(crypto_scalarmult(out, sk, pk_decoded) != -1); auto out_arr = std::vector(std::begin(out), std::end(out)); CHECK(out_arr == expected_arr); } TEST_CASE("rspamd x25519 ecdh") { rspamd_sk_t sk; // Use a fixed zero secret key memset(sk, 0, sizeof(sk)); // Use a well known public key const char *pk = "k4nz984k36xmcynm1hr9kdbn6jhcxf4ggbrb1quay7f88rpm9kay"; gsize outlen; auto *pk_decoded = rspamd_decode_base32(pk, strlen(pk), &outlen, RSPAMD_BASE32_DEFAULT); unsigned char expected[32] = {61, 109, 220, 195, 100, 174, 127, 237, 148, 122, 154, 61, 165, 83, 93, 105, 127, 166, 153, 112, 103, 224, 2, 200, 136, 243, 73, 51, 8, 163, 150, 7}; const auto expected_arr = std::vector(std::begin(expected), std::end(expected)); CHECK(outlen == 32); unsigned char out[32]; rspamd_cryptobox_nm(out, pk_decoded, sk); auto out_arr = std::vector(std::begin(out), std::end(out)); CHECK(out_arr == expected_arr); } // Test vectors for XChaCha20-Poly1305 compatibility with Go implementation // These test cases use the same inputs as the Go version to verify compatibility TEST_CASE("rspamd xchacha20poly1305 compatibility all_zeros_64_bytes") { // Test case: all_zeros_64_bytes // Key: 32 zero bytes // Nonce: 24 zero bytes // Plaintext: 64 zero bytes rspamd_nm_t key; memset(key, 0, sizeof(key)); rspamd_nonce_t nonce; memset(nonce, 0, sizeof(nonce)); unsigned char plaintext[64]; memset(plaintext, 0, sizeof(plaintext)); // Expected values from C implementation unsigned char expected_cipher[64] = { 0x78, 0x9e, 0x96, 0x89, 0xe5, 0x20, 0x8d, 0x7f, 0xd9, 0xe1, 0xf3, 0xc5, 0xb5, 0x34, 0x1f, 0x48, 0xef, 0x18, 0xa1, 0x3e, 0x41, 0x89, 0x98, 0xad, 0xda, 0xdd, 0x97, 0xa3, 0x69, 0x3a, 0x98, 0x7f, 0x8e, 0x82, 0xec, 0xd5, 0xc1, 0x43, 0x3b, 0xfe, 0xd1, 0xaf, 0x49, 0x75, 0x0c, 0x0f, 0x1f, 0xf2, 0x9c, 0x41, 0x74, 0xa0, 0x5b, 0x11, 0x9a, 0xa3, 0xa9, 0xe8, 0x33, 0x38, 0x12, 0xe0, 0xc0, 0xfe}; rspamd_mac_t expected_mac = { 0x9c, 0x22, 0xbd, 0x8b, 0x7d, 0x68, 0x00, 0xca, 0x3f, 0x9d, 0xf1, 0xc0, 0x3e, 0x31, 0x3e, 0x68}; // Test encryption using Rspamd's nm (shared key) encryption unsigned char ciphertext[64]; memcpy(ciphertext, plaintext, sizeof(plaintext)); rspamd_mac_t mac; rspamd_cryptobox_encrypt_nm_inplace(ciphertext, sizeof(ciphertext), nonce, key, mac); CHECK(memcmp(ciphertext, expected_cipher, sizeof(expected_cipher)) == 0); CHECK(memcmp(mac, expected_mac, sizeof(expected_mac)) == 0); // Test decryption gboolean decrypt_ok = rspamd_cryptobox_decrypt_nm_inplace(ciphertext, sizeof(ciphertext), nonce, key, mac); CHECK(decrypt_ok == TRUE); CHECK(memcmp(ciphertext, plaintext, sizeof(plaintext)) == 0); } TEST_CASE("rspamd xchacha20poly1305 compatibility all_zeros_128_bytes") { // Test case: all_zeros_128_bytes // Key: 32 zero bytes // Nonce: 24 zero bytes // Plaintext: 128 zero bytes rspamd_nm_t key; memset(key, 0, sizeof(key)); rspamd_nonce_t nonce; memset(nonce, 0, sizeof(nonce)); unsigned char plaintext[128]; memset(plaintext, 0, sizeof(plaintext)); unsigned char expected_cipher[128] = { 0x78, 0x9e, 0x96, 0x89, 0xe5, 0x20, 0x8d, 0x7f, 0xd9, 0xe1, 0xf3, 0xc5, 0xb5, 0x34, 0x1f, 0x48, 0xef, 0x18, 0xa1, 0x3e, 0x41, 0x89, 0x98, 0xad, 0xda, 0xdd, 0x97, 0xa3, 0x69, 0x3a, 0x98, 0x7f, 0x8e, 0x82, 0xec, 0xd5, 0xc1, 0x43, 0x3b, 0xfe, 0xd1, 0xaf, 0x49, 0x75, 0x0c, 0x0f, 0x1f, 0xf2, 0x9c, 0x41, 0x74, 0xa0, 0x5b, 0x11, 0x9a, 0xa3, 0xa9, 0xe8, 0x33, 0x38, 0x12, 0xe0, 0xc0, 0xfe, 0xa4, 0x9e, 0x1e, 0xe0, 0x13, 0x4a, 0x70, 0xa9, 0xd4, 0x9c, 0x24, 0xe0, 0xcb, 0xd8, 0xfc, 0x3b, 0xa2, 0x7e, 0x97, 0xc3, 0x32, 0x2a, 0xd4, 0x87, 0xf7, 0x78, 0xf8, 0xdc, 0x6a, 0x12, 0x2f, 0xa5, 0x9c, 0xbe, 0x33, 0xe7, 0x78, 0xea, 0x2e, 0x50, 0xbb, 0x59, 0x09, 0xc9, 0x97, 0x1c, 0x4f, 0xec, 0x2f, 0x93, 0x52, 0x3f, 0x77, 0x89, 0x2d, 0x17, 0xca, 0xa5, 0x81, 0x67, 0xde, 0xc4, 0xd6, 0xc7}; rspamd_mac_t expected_mac = { 0xcf, 0xe1, 0x4a, 0xc3, 0x39, 0x35, 0xd3, 0x63, 0x1a, 0x06, 0xbf, 0x55, 0x88, 0xf4, 0x12, 0xfa}; unsigned char ciphertext[128]; memcpy(ciphertext, plaintext, sizeof(plaintext)); rspamd_mac_t mac; rspamd_cryptobox_encrypt_nm_inplace(ciphertext, sizeof(ciphertext), nonce, key, mac); CHECK(memcmp(ciphertext, expected_cipher, sizeof(expected_cipher)) == 0); CHECK(memcmp(mac, expected_mac, sizeof(expected_mac)) == 0); // Test decryption gboolean decrypt_ok = rspamd_cryptobox_decrypt_nm_inplace(ciphertext, sizeof(ciphertext), nonce, key, mac); CHECK(decrypt_ok == TRUE); CHECK(memcmp(ciphertext, plaintext, sizeof(plaintext)) == 0); } TEST_CASE("rspamd xchacha20poly1305 compatibility test_pattern_64_bytes") { // Test case: test_pattern_64_bytes // Key: 0x01 repeated 32 times // Nonce: 0x01, 0x02, 0x03, ... 0x18 (24 bytes) // Plaintext: 0x00, 0x01, 0x02, ... 0x41 (66 bytes) rspamd_nm_t key; memset(key, 0x01, sizeof(key)); rspamd_nonce_t nonce = { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x20, 0x21, 0x22, 0x23, 0x24}; unsigned char plaintext[66]; for (int i = 0; i < 66; i++) { plaintext[i] = i; } // Expected values from C implementation unsigned char expected_cipher[66] = { 0xe6, 0x0e, 0xf7, 0x6d, 0x7f, 0x04, 0x37, 0x81, 0x9f, 0x60, 0x03, 0x28, 0x60, 0xb1, 0x2b, 0xaa, 0xae, 0x2b, 0x13, 0xef, 0x6d, 0xd3, 0x18, 0xf1, 0x3b, 0xc6, 0x06, 0xfb, 0x65, 0x9a, 0x53, 0x3b, 0x23, 0xe6, 0x99, 0x0c, 0x65, 0x2f, 0xbf, 0x56, 0xcb, 0x7c, 0x18, 0x53, 0xa8, 0xbc, 0x11, 0xc4, 0x0b, 0x35, 0xc9, 0x40, 0x9a, 0xc2, 0xe1, 0x7f, 0x1a, 0x72, 0xaa, 0xb3, 0x8b, 0x4e, 0x21, 0x32, 0x87, 0xf7}; rspamd_mac_t expected_mac = { 0xf2, 0xa7, 0xbd, 0xae, 0x53, 0x68, 0xfe, 0xd8, 0x4c, 0x92, 0xe8, 0x52, 0x35, 0x4d, 0x78, 0x7c}; unsigned char ciphertext[66]; memcpy(ciphertext, plaintext, sizeof(plaintext)); rspamd_mac_t mac; rspamd_cryptobox_encrypt_nm_inplace(ciphertext, sizeof(ciphertext), nonce, key, mac); CHECK(memcmp(ciphertext, expected_cipher, sizeof(expected_cipher)) == 0); CHECK(memcmp(mac, expected_mac, sizeof(expected_mac)) == 0); // Test decryption gboolean decrypt_ok = rspamd_cryptobox_decrypt_nm_inplace(ciphertext, sizeof(ciphertext), nonce, key, mac); CHECK(decrypt_ok == TRUE); CHECK(memcmp(ciphertext, plaintext, sizeof(plaintext)) == 0); } TEST_CASE("rspamd mac key derivation compatibility all_zeros") { // Test MAC key derivation process // Key: 32 zero bytes // Nonce: 24 zero bytes rspamd_nm_t key; memset(key, 0, sizeof(key)); rspamd_nonce_t nonce; memset(nonce, 0, sizeof(nonce)); // Expected values from C implementation unsigned char expected_subkey[64] = { 0xbc, 0xd0, 0x2a, 0x18, 0xbf, 0x3f, 0x01, 0xd1, 0x92, 0x92, 0xde, 0x30, 0xa7, 0xa8, 0xfd, 0xac, 0xa4, 0xb6, 0x5e, 0x50, 0xa6, 0x00, 0x2c, 0xc7, 0x2c, 0xd6, 0xd2, 0xf7, 0xc9, 0x1a, 0xc3, 0xd5, 0x72, 0x8f, 0x83, 0xe0, 0xaa, 0xd2, 0xbf, 0xcf, 0x9a, 0xbd, 0x2d, 0x2d, 0xb5, 0x8f, 0xae, 0xdd, 0x65, 0x01, 0x5d, 0xd8, 0x3f, 0xc0, 0x9b, 0x13, 0x1e, 0x27, 0x10, 0x43, 0x01, 0x9e, 0x8e, 0x0f}; unsigned char expected_mac_key[32] = { 0xbc, 0xd0, 0x2a, 0x18, 0xbf, 0x3f, 0x01, 0xd1, 0x92, 0x92, 0xde, 0x30, 0xa7, 0xa8, 0xfd, 0xac, 0xa4, 0xb6, 0x5e, 0x50, 0xa6, 0x00, 0x2c, 0xc7, 0x2c, 0xd6, 0xd2, 0xf7, 0xc9, 0x1a, 0xc3, 0xd5}; // Generate subkey using XChaCha20 (first 64 bytes of keystream) // This simulates the MAC key derivation process used in secretbox unsigned char subkey[64]; memset(subkey, 0, sizeof(subkey)); // Use libsodium's ChaCha20 directly to generate the subkey // This matches what happens inside the secretbox implementation crypto_stream_xchacha20(subkey, sizeof(subkey), nonce, key); // MAC key is first 32 bytes of subkey unsigned char mac_key[32]; memcpy(mac_key, subkey, 32); CHECK(memcmp(subkey, expected_subkey, sizeof(expected_subkey)) == 0); CHECK(memcmp(mac_key, expected_mac_key, sizeof(expected_mac_key)) == 0); } TEST_CASE("rspamd mac key derivation compatibility test_pattern") { // Test MAC key derivation process // Key: 0x01 repeated 32 times // Nonce: 0x01, 0x02, 0x03, ... 0x18 (24 bytes) rspamd_nm_t key; memset(key, 0x01, sizeof(key)); rspamd_nonce_t nonce = { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x20, 0x21, 0x22, 0x23, 0x24}; // Expected values from C implementation unsigned char expected_subkey[64] = { 0x47, 0xa6, 0xe3, 0xb5, 0x0f, 0xd4, 0x7f, 0x08, 0xb5, 0x35, 0x80, 0xfc, 0x93, 0x66, 0x1a, 0x7f, 0x9c, 0xf5, 0x8c, 0x93, 0xae, 0x4e, 0x3f, 0xcf, 0x86, 0xb7, 0xdf, 0x34, 0x48, 0x73, 0x33, 0xdb, 0x71, 0x31, 0x0f, 0xe1, 0xcc, 0xd9, 0x0c, 0x0a, 0x1a, 0x19, 0x54, 0x30, 0xdf, 0xe3, 0xda, 0xee, 0x70, 0x29, 0xd9, 0xae, 0xf6, 0x4d, 0x78, 0xe3, 0xe8, 0x43, 0x98, 0xea, 0xaa, 0xd8, 0x85, 0x79}; unsigned char expected_mac_key[32] = { 0x47, 0xa6, 0xe3, 0xb5, 0x0f, 0xd4, 0x7f, 0x08, 0xb5, 0x35, 0x80, 0xfc, 0x93, 0x66, 0x1a, 0x7f, 0x9c, 0xf5, 0x8c, 0x93, 0xae, 0x4e, 0x3f, 0xcf, 0x86, 0xb7, 0xdf, 0x34, 0x48, 0x73, 0x33, 0xdb}; // Generate subkey using XChaCha20 (first 64 bytes of keystream) // This simulates the MAC key derivation process used in secretbox unsigned char subkey[64]; memset(subkey, 0, sizeof(subkey)); // Use libsodium's ChaCha20 directly to generate the subkey // This matches what happens inside the secretbox implementation crypto_stream_xchacha20(subkey, sizeof(subkey), nonce, key); // MAC key is first 32 bytes of subkey unsigned char mac_key[32]; memcpy(mac_key, subkey, 32); CHECK(memcmp(subkey, expected_subkey, sizeof(expected_subkey)) == 0); CHECK(memcmp(mac_key, expected_mac_key, sizeof(expected_mac_key)) == 0); } } #endif