#include #include #include #include #include #include #include #include #include #include #include "url.h" #include "fstring.h" #include "main.h" #define POST_CHAR 1 #define POST_CHAR_S "\001" /* Tcp port range */ #define LOWEST_PORT 0 #define HIGHEST_PORT 65535 #define uri_port_is_valid(port) \ (LOWEST_PORT <= (port) && (port) <= HIGHEST_PORT) struct _proto { unsigned char *name; int port; uintptr_t *unused; unsigned int need_slashes:1; unsigned int need_slash_after_host:1; unsigned int free_syntax:1; unsigned int need_ssl:1; }; static const char *html_url = "((?:href\\s*=\\s*)|(?:archive\\s*=\\s*)|(?:code\\s*=\\s*)|(?:codebase\\s*=\\s*)|(?:src\\s*=\\s*)|(?:cite\\s*=\\s*)" "|(:?background\\s*=\\s*)|(?:pluginspage\\s*=\\s*)|(?:pluginurl\\s*=\\s*)|(?:action\\s*=\\s*)|(?:dynsrc\\s*=\\s*)|(?:longdesc\\s*=\\s*)|(?:lowsrc\\s*=\\s*)|(?:usemap\\s*=\\s*))" "\\\"?([^>\"<]+)\\\"?"; static const char *text_url = "((?:mailto\\:|(?:news|(?:ht|f)tp(?:s?))\\://){1}[^>\"<]+)"; static short url_initialized = 0; static pcre_extra *text_re_extra; static pcre *text_re; static pcre_extra *html_re_extra; static pcre *html_re; static const struct _proto protocol_backends[] = { { "file", 0, NULL, 1, 0, 0, 0 }, { "ftp", 21, NULL, 1, 1, 0, 0 }, { "http", 80, NULL, 1, 1, 0, 0 }, { "https", 443, NULL, 1, 1, 0, 1 }, /* Keep these last! */ { NULL, 0, NULL, 0, 0, 1, 0 }, }; /* Table of "reserved" and "unsafe" characters. Those terms are rfc1738-speak, as such largely obsoleted by rfc2396 and later specs, but the general idea remains. A reserved character is the one that you can't decode without changing the meaning of the URL. For example, you can't decode "/foo/%2f/bar" into "/foo///bar" because the number and contents of path components is different. Non-reserved characters can be changed, so "/foo/%78/bar" is safe to change to "/foo/x/bar". The unsafe characters are loosely based on rfc1738, plus "$" and ",", as recommended by rfc2396, and minus "~", which is very frequently used (and sometimes unrecognized as %7E by broken servers). An unsafe character is the one that should be encoded when URLs are placed in foreign environments. E.g. space and newline are unsafe in HTTP contexts because HTTP uses them as separator and line terminator, so they must be encoded to %20 and %0A respectively. "*" is unsafe in shell context, etc. We determine whether a character is unsafe through static table lookup. This code assumes ASCII character set and 8-bit chars. */ enum { /* rfc1738 reserved chars + "$" and ",". */ urlchr_reserved = 1, /* rfc1738 unsafe chars, plus non-printables. */ urlchr_unsafe = 2 }; #define urlchr_test(c, mask) (urlchr_table[(unsigned char)(c)] & (mask)) #define URL_RESERVED_CHAR(c) urlchr_test(c, urlchr_reserved) #define URL_UNSAFE_CHAR(c) urlchr_test(c, urlchr_unsafe) /* Convert an ASCII hex digit to the corresponding number between 0 and 15. H should be a hexadecimal digit that satisfies isxdigit; otherwise, the result is undefined. */ #define XDIGIT_TO_NUM(h) ((h) < 'A' ? (h) - '0' : toupper (h) - 'A' + 10) #define X2DIGITS_TO_NUM(h1, h2) ((XDIGIT_TO_NUM (h1) << 4) + XDIGIT_TO_NUM (h2)) /* The reverse of the above: convert a number in the [0, 16) range to the ASCII representation of the corresponding hexadecimal digit. `+ 0' is there so you can't accidentally use it as an lvalue. */ #define XNUM_TO_DIGIT(x) ("0123456789ABCDEF"[x] + 0) #define XNUM_TO_digit(x) ("0123456789abcdef"[x] + 0) /* Shorthands for the table: */ #define R urlchr_reserved #define U urlchr_unsafe #define RU R|U static const unsigned char urlchr_table[256] = { U, U, U, U, U, U, U, U, /* NUL SOH STX ETX EOT ENQ ACK BEL */ U, U, U, U, U, U, U, U, /* BS HT LF VT FF CR SO SI */ U, U, U, U, U, U, U, U, /* DLE DC1 DC2 DC3 DC4 NAK SYN ETB */ U, U, U, U, U, U, U, U, /* CAN EM SUB ESC FS GS RS US */ U, 0, U, RU, R, U, R, 0, /* SP ! " # $ % & ' */ 0, 0, 0, R, R, 0, 0, R, /* ( ) * + , - . / */ 0, 0, 0, 0, 0, 0, 0, 0, /* 0 1 2 3 4 5 6 7 */ 0, 0, RU, R, U, R, U, R, /* 8 9 : ; < = > ? */ RU, 0, 0, 0, 0, 0, 0, 0, /* @ A B C D E F G */ 0, 0, 0, 0, 0, 0, 0, 0, /* H I J K L M N O */ 0, 0, 0, 0, 0, 0, 0, 0, /* P Q R S T U V W */ 0, 0, 0, RU, U, RU, U, 0, /* X Y Z [ \ ] ^ _ */ U, 0, 0, 0, 0, 0, 0, 0, /* ` a b c d e f g */ 0, 0, 0, 0, 0, 0, 0, 0, /* h i j k l m n o */ 0, 0, 0, 0, 0, 0, 0, 0, /* p q r s t u v w */ 0, 0, 0, U, U, U, 0, U, /* x y z { | } ~ DEL */ U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, U, }; #undef R #undef U #undef RU static inline int end_of_dir(unsigned char c) { return c == POST_CHAR || c == '#' || c == ';' || c == '?'; } static inline int is_uri_dir_sep(struct uri *uri, unsigned char pos) { return (pos == '/'); } static int check_uri_file(unsigned char *name) { static const unsigned char chars[] = POST_CHAR_S "#?"; return strcspn(name, chars); } static int url_init (void) { if (url_initialized == 0) { text_re = pcre_compile (text_url, PCRE_CASELESS, NULL, 0, NULL); if (text_re == NULL) { msg_info ("url_init: cannot init url parsing regexp"); return -1; } text_re_extra = pcre_study (text_re, 0, NULL); html_re = pcre_compile (html_url, PCRE_CASELESS, NULL, 0, NULL); if (html_re == NULL) { msg_info ("url_init: cannot init url parsing regexp"); return -1; } html_re_extra = pcre_study (html_re, 0, NULL); url_initialized = 1; } return 0; } enum protocol get_protocol(unsigned char *name, int namelen) { /* These are really enum protocol values but can take on negative * values and since 0 <= -1 for enum values it's better to use clean * integer type. */ int start, end; enum protocol protocol; unsigned char *pname; int pnamelen, minlen, compare; /* Almost dichotomic search is used here */ /* Starting at the HTTP entry which is the most common that will make * file and NNTP the next entries checked and amongst the third checks * are proxy and FTP. */ start = 0; end = PROTOCOL_UNKNOWN - 1; protocol = PROTOCOL_HTTP; while (start <= end) { pname = protocol_backends[protocol].name; pnamelen = strlen (pname); minlen = MIN (pnamelen, namelen); compare = strncasecmp (pname, name, minlen); if (compare == 0) { if (pnamelen == namelen) return protocol; /* If the current protocol name is longer than the * protocol name being searched for move @end else move * @start. */ compare = pnamelen > namelen ? 1 : -1; } if (compare > 0) end = protocol - 1; else start = protocol + 1; protocol = (start + end) / 2; } return PROTOCOL_UNKNOWN; } int get_protocol_port(enum protocol protocol) { return protocol_backends[protocol].port; } int get_protocol_need_slashes(enum protocol protocol) { return protocol_backends[protocol].need_slashes; } int get_protocol_need_slash_after_host(enum protocol protocol) { return protocol_backends[protocol].need_slash_after_host; } int get_protocol_free_syntax(enum protocol protocol) { return protocol_backends[protocol].free_syntax; } static int get_protocol_length(const unsigned char *url) { unsigned char *end = (unsigned char *) url; /* Seek the end of the protocol name if any. */ /* RFC1738: * scheme = 1*[ lowalpha | digit | "+" | "-" | "." ] * (but per its recommendations we accept "upalpha" too) */ while (isalnum(*end) || *end == '+' || *end == '-' || *end == '.') end++; /* Now we make something to support our "IP version in protocol scheme * name" hack and silently chop off the last digit if it's there. The * IETF's not gonna notice I hope or it'd be going after us hard. */ if (end != url && isdigit(end[-1])) end--; /* Also return 0 if there's no protocol name (@end == @url). */ return (*end == ':' || isdigit(*end)) ? end - url : 0; } /* URL-unescape the string S. This is done by transforming the sequences "%HH" to the character represented by the hexadecimal digits HH. If % is not followed by two hexadecimal digits, it is inserted literally. The transformation is done in place. If you need the original string intact, make a copy before calling this function. */ static void url_unescape (char *s) { char *t = s; /* t - tortoise */ char *h = s; /* h - hare */ for (; *h; h++, t++) { if (*h != '%') { copychar: *t = *h; } else { char c; /* Do nothing if '%' is not followed by two hex digits. */ if (!h[1] || !h[2] || !(isxdigit (h[1]) && isxdigit (h[2]))) goto copychar; c = X2DIGITS_TO_NUM (h[1], h[2]); /* Don't unescape %00 because there is no way to insert it * into a C string without effectively truncating it. */ if (c == '\0') goto copychar; *t = c; h += 2; } } *t = '\0'; } /* The core of url_escape_* functions. Escapes the characters that match the provided mask in urlchr_table. If ALLOW_PASSTHROUGH is non-zero, a string with no unsafe chars will be returned unchanged. If ALLOW_PASSTHROUGH is zero, a freshly allocated string will be returned in all cases. */ static char * url_escape_1 (const char *s, unsigned char mask, int allow_passthrough) { const char *p1; char *p2, *newstr; int newlen; int addition = 0; for (p1 = s; *p1; p1++) if (urlchr_test (*p1, mask)) addition += 2; /* Two more characters (hex digits) */ if (!addition) return allow_passthrough ? (char *)s : strdup (s); newlen = (p1 - s) + addition; newstr = (char *) g_malloc (newlen + 1); p1 = s; p2 = newstr; while (*p1) { /* Quote the characters that match the test mask. */ if (urlchr_test (*p1, mask)) { unsigned char c = *p1++; *p2++ = '%'; *p2++ = XNUM_TO_DIGIT (c >> 4); *p2++ = XNUM_TO_DIGIT (c & 0xf); } else *p2++ = *p1++; } *p2 = '\0'; return newstr; } /* URL-escape the unsafe characters (see urlchr_table) in a given string, returning a freshly allocated string. */ char * url_escape (const char *s) { return url_escape_1 (s, urlchr_unsafe, 0); } /* URL-escape the unsafe characters (see urlchr_table) in a given string. If no characters are unsafe, S is returned. */ static char * url_escape_allow_passthrough (const char *s) { return url_escape_1 (s, urlchr_unsafe, 1); } /* Decide whether the char at position P needs to be encoded. (It is not enough to pass a single char *P because the function may need to inspect the surrounding context.) Return 1 if the char should be escaped as %XX, 0 otherwise. */ static inline int char_needs_escaping (const char *p) { if (*p == '%') { if (isxdigit (*(p + 1)) && isxdigit (*(p + 2))) return 0; else /* Garbled %.. sequence: encode `%'. */ return 1; } else if (URL_UNSAFE_CHAR (*p) && !URL_RESERVED_CHAR (*p)) return 1; else return 0; } /* Translate a %-escaped (but possibly non-conformant) input string S into a %-escaped (and conformant) output string. If no characters are encoded or decoded, return the same string S; otherwise, return a freshly allocated string with the new contents. After a URL has been run through this function, the protocols that use `%' as the quote character can use the resulting string as-is, while those that don't can use url_unescape to get to the intended data. This function is stable: once the input is transformed, further transformations of the result yield the same output. */ static char * reencode_escapes (const char *s) { const char *p1; char *newstr, *p2; int oldlen, newlen; int encode_count = 0; /* First pass: inspect the string to see if there's anything to do, and to calculate the new length. */ for (p1 = s; *p1; p1++) if (char_needs_escaping (p1)) ++encode_count; if (!encode_count) /* The string is good as it is. */ return (char *) s; /* C const model sucks. */ oldlen = p1 - s; /* Each encoding adds two characters (hex digits). */ newlen = oldlen + 2 * encode_count; newstr = g_malloc (newlen + 1); /* Second pass: copy the string to the destination address, encoding chars when needed. */ p1 = s; p2 = newstr; while (*p1) if (char_needs_escaping (p1)) { unsigned char c = *p1++; *p2++ = '%'; *p2++ = XNUM_TO_DIGIT (c >> 4); *p2++ = XNUM_TO_DIGIT (c & 0xf); } else { *p2++ = *p1++; } *p2 = '\0'; return newstr; } /* Unescape CHR in an otherwise escaped STR. Used to selectively escaping of certain characters, such as "/" and ":". Returns a count of unescaped chars. */ static void unescape_single_char (char *str, char chr) { const char c1 = XNUM_TO_DIGIT (chr >> 4); const char c2 = XNUM_TO_DIGIT (chr & 0xf); char *h = str; /* hare */ char *t = str; /* tortoise */ for (; *h; h++, t++) { if (h[0] == '%' && h[1] == c1 && h[2] == c2) { *t = chr; h += 2; } else { *t = *h; } } *t = '\0'; } /* Escape unsafe and reserved characters, except for the slash characters. */ static char * url_escape_dir (const char *dir) { char *newdir = url_escape_1 (dir, urlchr_unsafe | urlchr_reserved, 1); if (newdir == dir) return (char *)dir; unescape_single_char (newdir, '/'); return newdir; } /* Resolve "." and ".." elements of PATH by destructively modifying PATH and return non-zero if PATH has been modified, zero otherwise. The algorithm is in spirit similar to the one described in rfc1808, although implemented differently, in one pass. To recap, path elements containing only "." are removed, and ".." is taken to mean "back up one element". Single leading and trailing slashes are preserved. For example, "a/b/c/./../d/.." will yield "a/b/". More exhaustive test examples are provided below. If you change anything in this function, run test_path_simplify to make sure you haven't broken a test case. */ static int path_simplify (char *path) { char *h = path; /* hare */ char *t = path; /* tortoise */ char *beg = path; /* boundary for backing the tortoise */ char *end = path + strlen (path); while (h < end) { /* Hare should be at the beginning of a path element. */ if (h[0] == '.' && (h[1] == '/' || h[1] == '\0')) { /* Ignore "./". */ h += 2; } else if (h[0] == '.' && h[1] == '.' && (h[2] == '/' || h[2] == '\0')) { /* Handle "../" by retreating the tortoise by one path element -- but not past beggining. */ if (t > beg) { /* Move backwards until T hits the beginning of the previous path element or the beginning of path. */ for (--t; t > beg && t[-1] != '/'; t--); } else { /* If we're at the beginning, copy the "../" literally move the beginning so a later ".." doesn't remove it. */ beg = t + 3; goto regular; } h += 3; } else { regular: /* A regular path element. If H hasn't advanced past T, simply skip to the next path element. Otherwise, copy the path element until the next slash. */ if (t == h) { /* Skip the path element, including the slash. */ while (h < end && *h != '/') t++, h++; if (h < end) t++, h++; } else { /* Copy the path element, including the final slash. */ while (h < end && *h != '/') *t++ = *h++; if (h < end) *t++ = *h++; } } } if (t != h) *t = '\0'; return t != h; } enum uri_errno parse_uri(struct uri *uri, unsigned char *uristring) { unsigned char *prefix_end, *host_end; unsigned char *lbracket, *rbracket; int datalen, n, addrlen; unsigned char *frag_or_post, *user_end, *port_end; memset (uri, 0, sizeof (*uri)); /* Nothing to do for an empty url. */ if (!*uristring) return URI_ERRNO_EMPTY; uri->string = reencode_escapes (uristring); uri->protocollen = get_protocol_length (uristring); /* Invalid */ if (!uri->protocollen) return URI_ERRNO_INVALID_PROTOCOL; /* Figure out whether the protocol is known */ uri->protocol = get_protocol (struri(uri), uri->protocollen); prefix_end = struri (uri) + uri->protocollen; /* ':' */ /* Check if there's a digit after the protocol name. */ if (isdigit (*prefix_end)) { uri->ip_family = uristring[uri->protocollen] - '0'; prefix_end++; } if (*prefix_end != ':') return URI_ERRNO_INVALID_PROTOCOL; prefix_end++; /* Skip slashes */ if (prefix_end[0] == '/' && prefix_end[1] == '/') { if (prefix_end[2] == '/') return URI_ERRNO_TOO_MANY_SLASHES; prefix_end += 2; } else { return URI_ERRNO_NO_SLASHES; } if (get_protocol_free_syntax (uri->protocol)) { uri->data = prefix_end; uri->datalen = strlen (prefix_end); return URI_ERRNO_OK; } else if (uri->protocol == PROTOCOL_FILE) { datalen = check_uri_file (prefix_end); frag_or_post = prefix_end + datalen; /* Extract the fragment part. */ if (datalen >= 0) { if (*frag_or_post == '#') { uri->fragment = frag_or_post + 1; uri->fragmentlen = strcspn(uri->fragment, POST_CHAR_S); frag_or_post = uri->fragment + uri->fragmentlen; } if (*frag_or_post == POST_CHAR) { uri->post = frag_or_post + 1; } } else { datalen = strlen(prefix_end); } uri->data = prefix_end; uri->datalen = datalen; return URI_ERRNO_OK; } /* Isolate host */ /* Get brackets enclosing IPv6 address */ lbracket = strchr (prefix_end, '['); if (lbracket) { rbracket = strchr (lbracket, ']'); /* [address] is handled only inside of hostname part (surprisingly). */ if (rbracket && rbracket < prefix_end + strcspn (prefix_end, "/")) uri->ipv6 = 1; else lbracket = rbracket = NULL; } else { rbracket = NULL; } /* Possibly skip auth part */ host_end = prefix_end + strcspn (prefix_end, "@"); if (prefix_end + strcspn (prefix_end, "/") > host_end && *host_end) { /* we have auth info here */ /* Allow '@' in the password component */ while (strcspn (host_end + 1, "@") < strcspn (host_end + 1, "/?")) host_end = host_end + 1 + strcspn (host_end + 1, "@"); user_end = strchr (prefix_end, ':'); if (!user_end || user_end > host_end) { uri->user = prefix_end; uri->userlen = host_end - prefix_end; } else { uri->user = prefix_end; uri->userlen = user_end - prefix_end; uri->password = user_end + 1; uri->passwordlen = host_end - user_end - 1; } prefix_end = host_end + 1; } if (uri->ipv6) host_end = rbracket + strcspn (rbracket, ":/?"); else host_end = prefix_end + strcspn (prefix_end, ":/?"); if (uri->ipv6) { addrlen = rbracket - lbracket - 1; uri->host = lbracket + 1; uri->hostlen = addrlen; } else { uri->host = prefix_end; uri->hostlen = host_end - prefix_end; /* Trim trailing '.'s */ if (uri->hostlen && uri->host[uri->hostlen - 1] == '.') return URI_ERRNO_TRAILING_DOTS; } if (*host_end == ':') { /* we have port here */ port_end = host_end + 1 + strcspn (host_end + 1, "/"); host_end++; uri->port = host_end; uri->portlen = port_end - host_end; if (uri->portlen == 0) return URI_ERRNO_NO_PORT_COLON; /* We only use 8 bits for portlen so better check */ if (uri->portlen != port_end - host_end) return URI_ERRNO_INVALID_PORT; /* test if port is number */ for (; host_end < port_end; host_end++) if (!isdigit (*host_end)) return URI_ERRNO_INVALID_PORT; /* Check valid port value, and let show an error message * about invalid url syntax. */ if (uri->port && uri->portlen) { errno = 0; n = strtol (uri->port, NULL, 10); if (errno || !uri_port_is_valid (n)) return URI_ERRNO_INVALID_PORT; } } if (*host_end == '/') { host_end++; } else if (get_protocol_need_slash_after_host (uri->protocol)) { /* The need for slash after the host component depends on the * need for a host component. -- The dangerous mind of Jonah */ if (!uri->hostlen) return URI_ERRNO_NO_HOST; return URI_ERRNO_NO_HOST_SLASH; } /* Look for #fragment or POST_CHAR */ prefix_end = host_end + strcspn (host_end, "#" POST_CHAR_S); uri->data = host_end; uri->datalen = prefix_end - host_end; if (*prefix_end == '#') { uri->fragment = prefix_end + 1; uri->fragmentlen = strcspn (uri->fragment, POST_CHAR_S); prefix_end = uri->fragment + uri->fragmentlen; } if (*prefix_end == POST_CHAR) { uri->post = prefix_end + 1; } convert_to_lowercase (uri->host, strlen (uri->host)); /* Decode %HH sequences in host name. This is important not so much to support %HH sequences in host names (which other browser don't), but to support binary characters (which will have been converted to %HH by reencode_escapes). */ if (strchr (uri->host, '%')) { url_unescape (uri->host); } path_simplify (uri->data); return URI_ERRNO_OK; } unsigned char * normalize_uri(struct uri *uri, unsigned char *uristring) { unsigned char *parse_string = uristring; unsigned char *src, *dest, *path; int need_slash = 0; int parse = (uri == NULL); struct uri uri_struct; if (!uri) uri = &uri_struct; /* * We need to get the real (proxied) URI but lowercase relevant URI * parts along the way. */ if (parse && parse_uri (uri, parse_string) != URI_ERRNO_OK) return uristring; /* This is a maybe not the right place but both join_urls() and * get_translated_uri() through translate_url() calls this * function and then it already works on and modifies an * allocated copy. */ convert_to_lowercase (uri->string, uri->protocollen); if (uri->hostlen) convert_to_lowercase (uri->host, uri->hostlen); parse = 1; parse_string = uri->data; if (get_protocol_free_syntax (uri->protocol)) return uristring; if (uri->protocol != PROTOCOL_UNKNOWN) need_slash = get_protocol_need_slash_after_host (uri->protocol); /* We want to start at the first slash to also reduce URIs like * http://host//index.html to http://host/index.html */ path = uri->data - need_slash; dest = src = path; /* This loop mangles the URI string by removing directory elevators and * other cruft. Example: /.././etc////..//usr/ -> /usr/ */ while (*dest) { /* If the following pieces are the LAST parts of URL, we remove * them as well. See RFC 1808 for details. */ if (end_of_dir (src[0])) { /* URL data contains no more path. */ memmove (dest, src, strlen(src) + 1); break; } if (!is_uri_dir_sep (uri, src[0])) { /* This is to reduce indentation */ } else if (src[1] == '.') { if (!src[2]) { /* /. - skip the dot */ *dest++ = *src; *dest = 0; break; } else if (is_uri_dir_sep (uri, src[2])) { /* /./ - strip that.. */ src += 2; continue; } else if (src[2] == '.' && (is_uri_dir_sep (uri, src[3]) || !src[3])) { /* /../ or /.. - skip it and preceding element. */ /* First back out the last incrementation of * @dest (dest++) to get the position that was * last asigned to. */ if (dest > path) dest--; /* @dest might be pointing to a dir separator * so we decrement before any testing. */ while (dest > path) { dest--; if (is_uri_dir_sep (uri, *dest)) break; } if (!src[3]) { /* /.. - add ending slash and stop */ *dest++ = *src; *dest = 0; break; } src += 3; continue; } } else if (is_uri_dir_sep (uri, src[1])) { /* // - ignore first '/'. */ src += 1; continue; } /* We don't want to access memory past the NUL char. */ *dest = *src++; if (*dest) dest++; } return uristring; } void url_parse_text (struct worker_task *task, GByteArray *content) { int ovec[30]; int pos = 0, rc; char *url_str = NULL; struct uri *new; if (url_init () == 0) { while ((rc = pcre_exec (text_re, text_re_extra, (const char *)content->data, content->len, pos, 0, ovec, sizeof (ovec) / sizeof (ovec[0])) >= 0)) { if (rc > 0) { pos = ovec[1]; pcre_get_substring ((const char *)content->data, ovec, rc, 1, (const char **)&url_str); if (url_str != NULL) { new = g_malloc (sizeof (struct uri)); if (new != NULL) { parse_uri (new, url_str); normalize_uri (new, url_str); TAILQ_INSERT_TAIL (&task->urls, new, next); } } } } } } void url_parse_html (struct worker_task *task, GByteArray *content) { int ovec[30]; int pos = 0, rc; char *url_str = NULL; struct uri *new; if (url_init () == 0) { while ((rc = pcre_exec (html_re, html_re_extra, (const char *)content->data, content->len, pos, 0, ovec, sizeof (ovec) / sizeof (ovec[0])) >= 0)) { if (rc > 0) { pos = ovec[1]; pcre_get_substring ((const char *)content->data, ovec, rc, 3, (const char **)&url_str); if (url_str != NULL) { new = g_malloc (sizeof (struct uri)); if (new != NULL) { parse_uri (new, url_str); normalize_uri (new, url_str); TAILQ_INSERT_TAIL (&task->urls, new, next); } } } } } }