aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/ankerl/unordered_dense.h
blob: 9ae108173e2cdee50328a164d21fbfe05068ea09 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
///////////////////////// ankerl::unordered_dense::{map, set} /////////////////////////

// A fast & densely stored hashmap and hashset based on robin-hood backward shift deletion.
// Version 1.0.2
// https://github.com/martinus/unordered_dense
//
// Licensed under the MIT License <http://opensource.org/licenses/MIT>.
// SPDX-License-Identifier: MIT
// Copyright (c) 2022 Martin Leitner-Ankerl <martin.ankerl@gmail.com>
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.

#ifndef ANKERL_UNORDERED_DENSE_H
#define ANKERL_UNORDERED_DENSE_H

// see https://semver.org/spec/v2.0.0.html
#define ANKERL_UNORDERED_DENSE_VERSION_MAJOR 1 // incompatible API changes
#define ANKERL_UNORDERED_DENSE_VERSION_MINOR 0 // add functionality in a backwards compatible manner
#define ANKERL_UNORDERED_DENSE_VERSION_PATCH 2 // backwards compatible bug fixes

#if __cplusplus < 201703L
#    error ankerl::unordered_dense requires C++17 or higher
#else

#    include <array>            // for array
#    include <cstdint>          // for uint64_t, uint32_t, uint8_t, UINT64_C
#    include <cstring>          // for size_t, memcpy, memset
#    include <functional>       // for equal_to, hash
#    include <initializer_list> // for initializer_list
#    include <iterator>         // for pair, distance
#    include <limits>           // for numeric_limits
#    include <memory>           // for allocator, allocator_traits, shared_ptr
#    include <stdexcept>        // for out_of_range
#    include <string>           // for basic_string
#    include <string_view>      // for basic_string_view, hash
#    include <tuple>            // for forward_as_tuple
#    include <type_traits>      // for enable_if_t, declval, conditional_t, ena...
#    include <utility>          // for forward, exchange, pair, as_const, piece...
#    include <vector>           // for vector

#    define ANKERL_UNORDERED_DENSE_PMR 0
#    if defined(__has_include)
#        if __has_include(<memory_resource>)
#            undef ANKERL_UNORDERED_DENSE_PMR
#            define ANKERL_UNORDERED_DENSE_PMR 1
#            include <memory_resource> // for polymorphic_allocator
#        endif
#    endif

#    if defined(_MSC_VER) && defined(_M_X64)
#        include <intrin.h>
#        pragma intrinsic(_umul128)
#    endif

#    if defined(__GNUC__) || defined(__INTEL_COMPILER) || defined(__clang__)
#        define ANKERL_UNORDERED_DENSE_LIKELY(x) __builtin_expect(x, 1)
#        define ANKERL_UNORDERED_DENSE_UNLIKELY(x) __builtin_expect(x, 0)
#    else
#        define ANKERL_UNORDERED_DENSE_LIKELY(x) (x)
#        define ANKERL_UNORDERED_DENSE_UNLIKELY(x) (x)
#    endif

namespace ankerl::unordered_dense {

// hash ///////////////////////////////////////////////////////////////////////

// This is a stripped-down implementation of wyhash: https://github.com/wangyi-fudan/wyhash
// No big-endian support (because different values on different machines don't matter),
// hardcodes seed and the secret, reformattes the code, and clang-tidy fixes.
namespace detail::wyhash {

static inline void mum(uint64_t* a, uint64_t* b) {
#    if defined(__SIZEOF_INT128__)
    __uint128_t r = *a;
    r *= *b;
    *a = static_cast<uint64_t>(r);
    *b = static_cast<uint64_t>(r >> 64U);
#    elif defined(_MSC_VER) && defined(_M_X64)
    *a = _umul128(*a, *b, b);
#    else
    uint64_t ha = *a >> 32U;
    uint64_t hb = *b >> 32U;
    uint64_t la = static_cast<uint32_t>(*a);
    uint64_t lb = static_cast<uint32_t>(*b);
    uint64_t hi{};
    uint64_t lo{};
    uint64_t rh = ha * hb;
    uint64_t rm0 = ha * lb;
    uint64_t rm1 = hb * la;
    uint64_t rl = la * lb;
    uint64_t t = rl + (rm0 << 32U);
    auto c = static_cast<uint64_t>(t < rl);
    lo = t + (rm1 << 32U);
    c += static_cast<uint64_t>(lo < t);
    hi = rh + (rm0 >> 32U) + (rm1 >> 32U) + c;
    *a = lo;
    *b = hi;
#    endif
}

// multiply and xor mix function, aka MUM
[[nodiscard]] static inline auto mix(uint64_t a, uint64_t b) -> uint64_t {
    mum(&a, &b);
    return a ^ b;
}

// read functions. WARNING: we don't care about endianness, so results are different on big endian!
[[nodiscard]] static inline auto r8(const uint8_t* p) -> uint64_t {
    uint64_t v{};
    std::memcpy(&v, p, 8);
    return v;
}

[[nodiscard]] static inline auto r4(const uint8_t* p) -> uint64_t {
    uint32_t v{};
    std::memcpy(&v, p, 4);
    return v;
}

// reads 1, 2, or 3 bytes
[[nodiscard]] static inline auto r3(const uint8_t* p, size_t k) -> uint64_t {
    return (static_cast<uint64_t>(p[0]) << 16U) | (static_cast<uint64_t>(p[k >> 1U]) << 8U) | p[k - 1];
}

[[nodiscard]] static inline auto hash(void const* key, size_t len) -> uint64_t {
    static constexpr auto secret = std::array{UINT64_C(0xa0761d6478bd642f),
                                              UINT64_C(0xe7037ed1a0b428db),
                                              UINT64_C(0x8ebc6af09c88c6e3),
                                              UINT64_C(0x589965cc75374cc3)};

    auto const* p = static_cast<uint8_t const*>(key);
    uint64_t seed = secret[0];
    uint64_t a{};
    uint64_t b{};
    if (ANKERL_UNORDERED_DENSE_LIKELY(len <= 16)) {
        if (ANKERL_UNORDERED_DENSE_LIKELY(len >= 4)) {
            a = (r4(p) << 32U) | r4(p + ((len >> 3U) << 2U));
            b = (r4(p + len - 4) << 32U) | r4(p + len - 4 - ((len >> 3U) << 2U));
        } else if (ANKERL_UNORDERED_DENSE_LIKELY(len > 0)) {
            a = r3(p, len);
            b = 0;
        } else {
            a = 0;
            b = 0;
        }
    } else {
        size_t i = len;
        if (ANKERL_UNORDERED_DENSE_UNLIKELY(i > 48)) {
            uint64_t see1 = seed;
            uint64_t see2 = seed;
            do {
                seed = mix(r8(p) ^ secret[1], r8(p + 8) ^ seed);
                see1 = mix(r8(p + 16) ^ secret[2], r8(p + 24) ^ see1);
                see2 = mix(r8(p + 32) ^ secret[3], r8(p + 40) ^ see2);
                p += 48;
                i -= 48;
            } while (ANKERL_UNORDERED_DENSE_LIKELY(i > 48));
            seed ^= see1 ^ see2;
        }
        while (ANKERL_UNORDERED_DENSE_UNLIKELY(i > 16)) {
            seed = mix(r8(p) ^ secret[1], r8(p + 8) ^ seed);
            i -= 16;
            p += 16;
        }
        a = r8(p + i - 16);
        b = r8(p + i - 8);
    }

    return mix(secret[1] ^ len, mix(a ^ secret[1], b ^ seed));
}

[[nodiscard]] static inline auto hash(uint64_t x) -> uint64_t {
    return detail::wyhash::mix(x, UINT64_C(0x9E3779B97F4A7C15));
}

} // namespace detail::wyhash

template <typename T, typename Enable = void>
struct hash : public std::hash<T> {
    using is_avalanching = void;
    auto operator()(T const& obj) const noexcept(noexcept(std::declval<std::hash<T>>().operator()(std::declval<T const&>())))
        -> size_t {
        return static_cast<size_t>(detail::wyhash::hash(std::hash<T>::operator()(obj)));
    }
};

template <typename CharT>
struct hash<std::basic_string<CharT>> {
    using is_avalanching = void;
    auto operator()(std::basic_string<CharT> const& str) const noexcept -> size_t {
        return static_cast<size_t>(detail::wyhash::hash(str.data(), sizeof(CharT) * str.size()));
    }
};

template <typename CharT>
struct hash<std::basic_string_view<CharT>> {
    using is_avalanching = void;
    auto operator()(std::basic_string_view<CharT> const& sv) const noexcept -> size_t {
        return static_cast<size_t>(detail::wyhash::hash(sv.data(), sizeof(CharT) * sv.size()));
    }
};

template <class T>
struct hash<T*> {
    using is_avalanching = void;
    auto operator()(T* ptr) const noexcept -> size_t {
        return static_cast<size_t>(detail::wyhash::hash(reinterpret_cast<uintptr_t>(ptr)));
    }
};

template <class T>
struct hash<std::unique_ptr<T>> {
    using is_avalanching = void;
    auto operator()(std::unique_ptr<T> const& ptr) const noexcept -> size_t {
        return static_cast<size_t>(detail::wyhash::hash(reinterpret_cast<uintptr_t>(ptr.get())));
    }
};

template <class T>
struct hash<std::shared_ptr<T>> {
    using is_avalanching = void;
    auto operator()(std::shared_ptr<T> const& ptr) const noexcept -> size_t {
        return static_cast<size_t>(detail::wyhash::hash(reinterpret_cast<uintptr_t>(ptr.get())));
    }
};

template <typename Enum>
struct hash<Enum, typename std::enable_if<std::is_enum<Enum>::value>::type> {
    using is_avalanching = void;
    auto operator()(Enum e) const noexcept -> size_t {
        using Underlying = typename std::underlying_type_t<Enum>;
        return static_cast<size_t>(detail::wyhash::hash(static_cast<Underlying>(e)));
    }
};

#    define ANKERL_UNORDERED_DENSE_HASH_STATICCAST(T)                                         \
        template <>                                                                           \
        struct hash<T> {                                                                      \
            using is_avalanching = void;                                                      \
            auto operator()(T const& obj) const noexcept -> size_t {                          \
                return static_cast<size_t>(detail::wyhash::hash(static_cast<uint64_t>(obj))); \
            }                                                                                 \
        }

#    if defined(__GNUC__) && !defined(__clang__)
#        pragma GCC diagnostic push
#        pragma GCC diagnostic ignored "-Wuseless-cast"
#    endif
// see https://en.cppreference.com/w/cpp/utility/hash
ANKERL_UNORDERED_DENSE_HASH_STATICCAST(bool);
ANKERL_UNORDERED_DENSE_HASH_STATICCAST(char);
ANKERL_UNORDERED_DENSE_HASH_STATICCAST(signed char);
ANKERL_UNORDERED_DENSE_HASH_STATICCAST(unsigned char);
#    if __cplusplus >= 202002L
ANKERL_UNORDERED_DENSE_HASH_STATICCAST(char8_t);
#    endif
ANKERL_UNORDERED_DENSE_HASH_STATICCAST(char16_t);
ANKERL_UNORDERED_DENSE_HASH_STATICCAST(char32_t);
ANKERL_UNORDERED_DENSE_HASH_STATICCAST(wchar_t);
ANKERL_UNORDERED_DENSE_HASH_STATICCAST(short);
ANKERL_UNORDERED_DENSE_HASH_STATICCAST(unsigned short);
ANKERL_UNORDERED_DENSE_HASH_STATICCAST(int);
ANKERL_UNORDERED_DENSE_HASH_STATICCAST(unsigned int);
ANKERL_UNORDERED_DENSE_HASH_STATICCAST(long);
ANKERL_UNORDERED_DENSE_HASH_STATICCAST(long long);
ANKERL_UNORDERED_DENSE_HASH_STATICCAST(unsigned long);
ANKERL_UNORDERED_DENSE_HASH_STATICCAST(unsigned long long);

#    if defined(__GNUC__) && !defined(__clang__)
#        pragma GCC diagnostic pop
#    endif

namespace detail {

struct nonesuch {};

template <class Default, class AlwaysVoid, template <class...> class Op, class... Args>
struct detector {
    using value_t = std::false_type;
    using type = Default;
};

template <class Default, template <class...> class Op, class... Args>
struct detector<Default, std::void_t<Op<Args...>>, Op, Args...> {
    using value_t = std::true_type;
    using type = Op<Args...>;
};

template <template <class...> class Op, class... Args>
using is_detected = typename detail::detector<detail::nonesuch, void, Op, Args...>::value_t;

template <template <class...> class Op, class... Args>
constexpr bool is_detected_v = is_detected<Op, Args...>::value;

template <typename T>
using detect_avalanching = typename T::is_avalanching;

template <typename T>
using detect_is_transparent = typename T::is_transparent;

template <typename H, typename KE>
using is_transparent =
    std::enable_if_t<is_detected_v<detect_is_transparent, H> && is_detected_v<detect_is_transparent, KE>, bool>;

// This is it, the table. Doubles as map and set, and uses `void` for T when its used as a set.
template <class Key,
          class T, // when void, treat it as a set.
          class Hash,
          class KeyEqual,
          class Allocator>
class table {
    struct Bucket;
    using ValueContainer =
        typename std::vector<typename std::conditional_t<std::is_void_v<T>, Key, std::pair<Key, T>>, Allocator>;
    using BucketAlloc = typename std::allocator_traits<Allocator>::template rebind_alloc<Bucket>;
    using BucketAllocTraits = std::allocator_traits<BucketAlloc>;

    static constexpr uint32_t BUCKET_DIST_INC = 1U << 8U;                    // skip 1 byte fingerprint
    static constexpr uint32_t BUCKET_FINGERPRINT_MASK = BUCKET_DIST_INC - 1; // mask for 1 byte of fingerprint
    static constexpr uint8_t INITIAL_SHIFTS = 64 - 3;                        // 2^(64-m_shift) number of buckets
    static constexpr float DEFAULT_MAX_LOAD_FACTOR = 0.8F;

public:
    using key_type = Key;
    using mapped_type = T;
    using value_type = typename ValueContainer::value_type;
    using size_type = typename ValueContainer::size_type;
    using difference_type = typename ValueContainer::difference_type;
    using hasher = Hash;
    using key_equal = KeyEqual;
    using allocator_type = typename ValueContainer::allocator_type;
    using reference = typename ValueContainer::reference;
    using const_reference = typename ValueContainer::const_reference;
    using pointer = typename ValueContainer::pointer;
    using const_pointer = typename ValueContainer::const_pointer;
    using iterator = typename ValueContainer::iterator;
    using const_iterator = typename ValueContainer::const_iterator;

private:
    struct Bucket {
        uint32_t dist_and_fingerprint; // upper 3 byte: distance to original bucket. lower byte: fingerprint from hash
        uint32_t value_idx;            // index into the m_values vector.
    };
    static_assert(std::is_trivially_destructible_v<Bucket>, "assert there's no need to call destructor / std::destroy");
    static_assert(std::is_trivially_copyable_v<Bucket>, "assert we can just memset / memcpy");

    ValueContainer m_values{}; // Contains all the key-value pairs in one densely stored container. No holes.
    Bucket* m_buckets_start = nullptr;
    Bucket* m_buckets_end = nullptr;
    uint32_t m_max_bucket_capacity = 0;
    float m_max_load_factor = DEFAULT_MAX_LOAD_FACTOR;
    Hash m_hash{};
    KeyEqual m_equal{};
    uint8_t m_shifts = INITIAL_SHIFTS;

    [[nodiscard]] auto next(Bucket const* bucket) const -> Bucket const* {
        return ANKERL_UNORDERED_DENSE_UNLIKELY(bucket + 1 == m_buckets_end) ? m_buckets_start : bucket + 1;
    }

    [[nodiscard]] auto next(Bucket* bucket) -> Bucket* {
        return ANKERL_UNORDERED_DENSE_UNLIKELY(bucket + 1 == m_buckets_end) ? m_buckets_start : bucket + 1;
    }

    template <typename K>
    [[nodiscard]] constexpr auto mixed_hash(K const& key) const -> uint64_t {
        if constexpr (is_detected_v<detect_avalanching, Hash>) {
            return m_hash(key);
        } else {
            return wyhash::hash(m_hash(key));
        }
    }

    [[nodiscard]] constexpr auto dist_and_fingerprint_from_hash(uint64_t hash) const -> uint32_t {
        return BUCKET_DIST_INC | (hash & BUCKET_FINGERPRINT_MASK);
    }

    [[nodiscard]] constexpr auto bucket_from_hash(uint64_t hash) const -> Bucket const* {
        return m_buckets_start + (hash >> m_shifts);
    }

    [[nodiscard]] constexpr auto bucket_from_hash(uint64_t hash) -> Bucket* {
        return m_buckets_start + (hash >> m_shifts);
    }

    [[nodiscard]] static constexpr auto get_key(value_type const& vt) -> key_type const& {
        if constexpr (std::is_void_v<T>) {
            return vt;
        } else {
            return vt.first;
        }
    }

    template <typename K>
    [[nodiscard]] auto next_while_less(K const& key) -> std::pair<uint32_t, Bucket*> {
        auto const& pair = std::as_const(*this).next_while_less(key);
        return {pair.first, const_cast<Bucket*>(pair.second)}; // NOLINT(cppcoreguidelines-pro-type-const-cast)
    }

    template <typename K>
    [[nodiscard]] auto next_while_less(K const& key) const -> std::pair<uint32_t, Bucket const*> {
        auto hash = mixed_hash(key);
        auto dist_and_fingerprint = dist_and_fingerprint_from_hash(hash);
        auto const* bucket = bucket_from_hash(hash);

        while (dist_and_fingerprint < bucket->dist_and_fingerprint) {
            dist_and_fingerprint += BUCKET_DIST_INC;
            bucket = next(bucket);
        }
        return {dist_and_fingerprint, bucket};
    }

    void place_and_shift_up(Bucket bucket, Bucket* place) {
        while (0 != place->dist_and_fingerprint) {
            bucket = std::exchange(*place, bucket);
            bucket.dist_and_fingerprint += BUCKET_DIST_INC;
            place = next(place);
        }
        *place = bucket;
    }

    [[nodiscard]] static constexpr auto calc_num_buckets(uint8_t shifts) -> uint64_t {
        return UINT64_C(1) << (64U - shifts);
    }

    [[nodiscard]] constexpr auto calc_shifts_for_size(size_t s) const -> uint8_t {
        auto shifts = INITIAL_SHIFTS;
        while (shifts > 0 && static_cast<uint64_t>(calc_num_buckets(shifts) * max_load_factor()) < s) {
            --shifts;
        }
        return shifts;
    }

    // assumes m_values has data, m_buckets_start=m_buckets_end=nullptr, m_shifts is INITIAL_SHIFTS
    void copy_buckets(table const& other) {
        if (!empty()) {
            m_shifts = other.m_shifts;
            allocate_buckets_from_shift();
            std::memcpy(m_buckets_start, other.m_buckets_start, sizeof(Bucket) * bucket_count());
        }
    }

    /**
     * True when no element can be added any more without increasing the size
     */
    [[nodiscard]] auto is_full() const -> bool {
        return size() >= m_max_bucket_capacity;
    }

    void deallocate_buckets() {
        auto bucket_alloc = BucketAlloc(m_values.get_allocator());
        BucketAllocTraits::deallocate(bucket_alloc, m_buckets_start, bucket_count());
        m_buckets_start = nullptr;
        m_buckets_end = nullptr;
        m_max_bucket_capacity = 0;
    }

    void allocate_buckets_from_shift() {
        auto bucket_alloc = BucketAlloc(m_values.get_allocator());
        auto num_buckets = calc_num_buckets(m_shifts);
        m_buckets_start = BucketAllocTraits::allocate(bucket_alloc, num_buckets);
        m_buckets_end = m_buckets_start + num_buckets;
        m_max_bucket_capacity = static_cast<uint64_t>(num_buckets * max_load_factor());
    }

    void clear_buckets() {
        if (m_buckets_start != nullptr) {
            std::memset(m_buckets_start, 0, sizeof(Bucket) * bucket_count());
        }
    }

    void clear_and_fill_buckets_from_values() {
        clear_buckets();
        for (uint32_t value_idx = 0, end_idx = static_cast<uint32_t>(m_values.size()); value_idx < end_idx; ++value_idx) {
            auto const& key = get_key(m_values[value_idx]);
            auto [dist_and_fingerprint, bucket] = next_while_less(key);

            // we know for certain that key has not yet been inserted, so no need to check it.
            place_and_shift_up({dist_and_fingerprint, value_idx}, bucket);
        }
    }

    void increase_size() {
        --m_shifts;
        deallocate_buckets();
        allocate_buckets_from_shift();
        clear_and_fill_buckets_from_values();
    }

    void do_erase(Bucket* bucket) {
        auto const value_idx_to_remove = bucket->value_idx;

        // shift down until either empty or an element with correct spot is found
        auto* next_bucket = next(bucket);
        while (next_bucket->dist_and_fingerprint >= BUCKET_DIST_INC * 2) {
            *bucket = {next_bucket->dist_and_fingerprint - BUCKET_DIST_INC, next_bucket->value_idx};
            bucket = std::exchange(next_bucket, next(next_bucket));
        }
        *bucket = {};

        // update m_values
        if (value_idx_to_remove != m_values.size() - 1) {
            // no luck, we'll have to replace the value with the last one and update the index accordingly
            auto& val = m_values[value_idx_to_remove];
            val = std::move(m_values.back());

            // update the values_idx of the moved entry. No need to play the info game, just look until we find the values_idx
            auto mh = mixed_hash(get_key(val));
            bucket = bucket_from_hash(mh);

            auto const values_idx_back = static_cast<uint32_t>(m_values.size() - 1);
            while (values_idx_back != bucket->value_idx) {
                bucket = next(bucket);
            }
            bucket->value_idx = value_idx_to_remove;
        }
        m_values.pop_back();
    }

    template <typename K>
    auto do_erase_key(K&& key) -> size_t {
        if (empty()) {
            return 0;
        }

        auto [dist_and_fingerprint, bucket] = next_while_less(key);

        while (dist_and_fingerprint == bucket->dist_and_fingerprint && !m_equal(key, get_key(m_values[bucket->value_idx]))) {
            dist_and_fingerprint += BUCKET_DIST_INC;
            bucket = next(bucket);
        }

        if (dist_and_fingerprint != bucket->dist_and_fingerprint) {
            return 0;
        }
        do_erase(bucket);
        return 1;
    }

    template <class K, class M>
    auto do_insert_or_assign(K&& key, M&& mapped) -> std::pair<iterator, bool> {
        auto it_isinserted = try_emplace(std::forward<K>(key), std::forward<M>(mapped));
        if (!it_isinserted.second) {
            it_isinserted.first->second = std::forward<M>(mapped);
        }
        return it_isinserted;
    }

    template <typename K, typename... Args>
    auto do_try_emplace(K&& key, Args&&... args) -> std::pair<iterator, bool> {
        if (is_full()) {
            increase_size();
        }

        auto hash = mixed_hash(key);
        auto dist_and_fingerprint = dist_and_fingerprint_from_hash(hash);
        auto* bucket = bucket_from_hash(hash);

        while (dist_and_fingerprint <= bucket->dist_and_fingerprint) {
            if (dist_and_fingerprint == bucket->dist_and_fingerprint && m_equal(key, m_values[bucket->value_idx].first)) {
                return {begin() + bucket->value_idx, false};
            }
            dist_and_fingerprint += BUCKET_DIST_INC;
            bucket = next(bucket);
        }

        // emplace the new value. If that throws an exception, no harm done; index is still in a valid state
        m_values.emplace_back(std::piecewise_construct,
                              std::forward_as_tuple(std::forward<K>(key)),
                              std::forward_as_tuple(std::forward<Args>(args)...));

        // place element and shift up until we find an empty spot
        uint32_t value_idx = static_cast<uint32_t>(m_values.size()) - 1;
        place_and_shift_up({dist_and_fingerprint, value_idx}, bucket);
        return {begin() + value_idx, true};
    }

    template <typename K>
    auto do_find(K const& key) -> iterator {
        if (empty()) {
            return end();
        }

        auto mh = mixed_hash(key);
        auto dist_and_fingerprint = dist_and_fingerprint_from_hash(mh);
        auto const* bucket = bucket_from_hash(mh);

        // unrolled loop. *Always* check a few directly, then enter the loop. This is faster.
        if (dist_and_fingerprint == bucket->dist_and_fingerprint && m_equal(key, get_key(m_values[bucket->value_idx]))) {
            return begin() + bucket->value_idx;
        }
        dist_and_fingerprint += BUCKET_DIST_INC;
        bucket = next(bucket);

        if (dist_and_fingerprint == bucket->dist_and_fingerprint && m_equal(key, get_key(m_values[bucket->value_idx]))) {
            return begin() + bucket->value_idx;
        }
        dist_and_fingerprint += BUCKET_DIST_INC;
        bucket = next(bucket);

        do {
            if (dist_and_fingerprint == bucket->dist_and_fingerprint && m_equal(key, get_key(m_values[bucket->value_idx]))) {
                return begin() + bucket->value_idx;
            }
            dist_and_fingerprint += BUCKET_DIST_INC;
            bucket = next(bucket);
        } while (dist_and_fingerprint <= bucket->dist_and_fingerprint);
        return end();
    }

    template <typename K>
    auto do_find(K const& key) const -> const_iterator {
        return const_cast<table*>(this)->do_find(key); // NOLINT(cppcoreguidelines-pro-type-const-cast)
    }

public:
    table()
        : table(0) {}

    explicit table(size_t /*bucket_count*/,
                   Hash const& hash = Hash(),
                   KeyEqual const& equal = KeyEqual(),
                   Allocator const& alloc = Allocator())
        : m_values(alloc)
        , m_hash(hash)
        , m_equal(equal) {}

    table(size_t bucket_count, Allocator const& alloc)
        : table(bucket_count, Hash(), KeyEqual(), alloc) {}

    table(size_t bucket_count, Hash const& hash, Allocator const& alloc)
        : table(bucket_count, hash, KeyEqual(), alloc) {}

    explicit table(Allocator const& alloc)
        : table(0, Hash(), KeyEqual(), alloc) {}

    template <class InputIt>
    table(InputIt first,
          InputIt last,
          size_type bucket_count = 0,
          Hash const& hash = Hash(),
          KeyEqual const& equal = KeyEqual(),
          Allocator const& alloc = Allocator())
        : table(bucket_count, hash, equal, alloc) {
        insert(first, last);
    }

    template <class InputIt>
    table(InputIt first, InputIt last, size_type bucket_count, Allocator const& alloc)
        : table(first, last, bucket_count, Hash(), KeyEqual(), alloc) {}

    template <class InputIt>
    table(InputIt first, InputIt last, size_type bucket_count, Hash const& hash, Allocator const& alloc)
        : table(first, last, bucket_count, hash, KeyEqual(), alloc) {}

    table(table const& other)
        : table(other, other.m_values.get_allocator()) {}

    table(table const& other, Allocator const& alloc)
        : m_values(other.m_values, alloc)
        , m_max_load_factor(other.m_max_load_factor)
        , m_hash(other.m_hash)
        , m_equal(other.m_equal) {
        copy_buckets(other);
    }

    table(table&& other) noexcept
        : table(std::move(other), other.m_values.get_allocator()) {}

    table(table&& other, Allocator const& alloc) noexcept
        : m_values(std::move(other.m_values), alloc)
        , m_buckets_start(std::exchange(other.m_buckets_start, nullptr))
        , m_buckets_end(std::exchange(other.m_buckets_end, nullptr))
        , m_max_bucket_capacity(std::exchange(other.m_max_bucket_capacity, 0))
        , m_max_load_factor(std::exchange(other.m_max_load_factor, DEFAULT_MAX_LOAD_FACTOR))
        , m_hash(std::exchange(other.m_hash, {}))
        , m_equal(std::exchange(other.m_equal, {}))
        , m_shifts(std::exchange(other.m_shifts, INITIAL_SHIFTS)) {
        other.m_values.clear();
    }

    table(std::initializer_list<value_type> ilist,
          size_t bucket_count = 0,
          Hash const& hash = Hash(),
          KeyEqual const& equal = KeyEqual(),
          Allocator const& alloc = Allocator())
        : table(bucket_count, hash, equal, alloc) {
        insert(ilist);
    }

    table(std::initializer_list<value_type> ilist, size_type bucket_count, const Allocator& alloc)
        : table(ilist, bucket_count, Hash(), KeyEqual(), alloc) {}

    table(std::initializer_list<value_type> init, size_type bucket_count, Hash const& hash, Allocator const& alloc)
        : table(init, bucket_count, hash, KeyEqual(), alloc) {}

    ~table() {
        auto bucket_alloc = BucketAlloc(m_values.get_allocator());
        BucketAllocTraits::deallocate(bucket_alloc, m_buckets_start, bucket_count());
    }

    auto operator=(table const& other) -> table& {
        if (&other != this) {
            deallocate_buckets(); // deallocate before m_values is set (might have another allocator)
            m_values = other.m_values;
            m_max_load_factor = other.m_max_load_factor;
            m_hash = other.m_hash;
            m_equal = other.m_equal;
            m_shifts = INITIAL_SHIFTS;
            copy_buckets(other);
        }
        return *this;
    }

    auto operator=(table&& other) noexcept(
        noexcept(std::is_nothrow_move_assignable_v<ValueContainer>&& std::is_nothrow_move_assignable_v<Hash>&&
                     std::is_nothrow_move_assignable_v<KeyEqual>)) -> table& {
        if (&other != this) {
            deallocate_buckets(); // deallocate before m_values is set (might have another allocator)
            m_values = std::move(other.m_values);
            m_buckets_start = std::exchange(other.m_buckets_start, nullptr);
            m_buckets_end = std::exchange(other.m_buckets_end, nullptr);
            m_max_bucket_capacity = std::exchange(other.m_max_bucket_capacity, 0);
            m_max_load_factor = std::exchange(other.m_max_load_factor, DEFAULT_MAX_LOAD_FACTOR);
            m_hash = std::exchange(other.m_hash, {});
            m_equal = std::exchange(other.m_equal, {});
            m_shifts = std::exchange(other.m_shifts, INITIAL_SHIFTS);
            other.m_values.clear();
        }
        return *this;
    }

    auto operator=(std::initializer_list<value_type> ilist) -> table& {
        clear();
        insert(ilist);
        return *this;
    }

    auto get_allocator() const noexcept -> allocator_type {
        return m_values.get_allocator();
    }

    // iterators //////////////////////////////////////////////////////////////

    auto begin() noexcept -> iterator {
        return m_values.begin();
    }

    auto begin() const noexcept -> const_iterator {
        return m_values.begin();
    }

    auto cbegin() const noexcept -> const_iterator {
        return m_values.cbegin();
    }

    auto end() noexcept -> iterator {
        return m_values.end();
    }

    auto cend() const noexcept -> const_iterator {
        return m_values.cend();
    }

    auto end() const noexcept -> const_iterator {
        return m_values.end();
    }

    // capacity ///////////////////////////////////////////////////////////////

    [[nodiscard]] auto empty() const noexcept -> bool {
        return m_values.empty();
    }

    [[nodiscard]] auto size() const noexcept -> size_t {
        return m_values.size();
    }

    [[nodiscard]] auto max_size() const noexcept -> size_t {
        return std::numeric_limits<uint32_t>::max();
    }

    // modifiers //////////////////////////////////////////////////////////////

    void clear() {
        m_values.clear();
        clear_buckets();
    }

    auto insert(value_type const& value) -> std::pair<iterator, bool> {
        return emplace(value);
    }

    auto insert(value_type&& value) -> std::pair<iterator, bool> {
        return emplace(std::move(value));
    }

    template <class P, std::enable_if_t<std::is_constructible_v<value_type, P&&>, bool> = true>
    auto insert(P&& value) -> std::pair<iterator, bool> {
        return emplace(std::forward<P>(value));
    }

    auto insert(const_iterator /*hint*/, value_type const& value) -> iterator {
        return insert(value).first;
    }

    auto insert(const_iterator /*hint*/, value_type&& value) -> iterator {
        return insert(std::move(value)).first;
    }

    template <class P, std::enable_if_t<std::is_constructible_v<value_type, P&&>, bool> = true>
    auto insert(const_iterator /*hint*/, P&& value) -> iterator {
        return insert(std::forward<P>(value)).first;
    }

    template <class InputIt>
    void insert(InputIt first, InputIt last) {
        while (first != last) {
            insert(*first);
            ++first;
        }
    }

    void insert(std::initializer_list<value_type> ilist) {
        insert(ilist.begin(), ilist.end());
    }

    template <class M, typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true>
    auto insert_or_assign(Key const& key, M&& mapped) -> std::pair<iterator, bool> {
        return do_insert_or_assign(key, std::forward<M>(mapped));
    }

    template <class M, typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true>
    auto insert_or_assign(Key&& key, M&& mapped) -> std::pair<iterator, bool> {
        return do_insert_or_assign(std::move(key), std::forward<M>(mapped));
    }

    template <class M, typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true>
    auto insert_or_assign(const_iterator /*hint*/, Key const& key, M&& mapped) -> iterator {
        return do_insert_or_assign(key, std::forward<M>(mapped)).first;
    }

    template <class M, typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true>
    auto insert_or_assign(const_iterator /*hint*/, Key&& key, M&& mapped) -> iterator {
        return do_insert_or_assign(std::move(key), std::forward<M>(mapped)).first;
    }

    template <class... Args>
    auto emplace(Args&&... args) -> std::pair<iterator, bool> {
        if (is_full()) {
            increase_size();
        }

        // first emplace_back the object so it is constructed. If the key is already there, pop it.
        auto& val = m_values.emplace_back(std::forward<Args>(args)...);
        auto hash = mixed_hash(get_key(val));
        auto dist_and_fingerprint = dist_and_fingerprint_from_hash(hash);
        auto* bucket = bucket_from_hash(hash);

        while (dist_and_fingerprint <= bucket->dist_and_fingerprint) {
            if (dist_and_fingerprint == bucket->dist_and_fingerprint &&
                m_equal(get_key(val), get_key(m_values[bucket->value_idx]))) {
                m_values.pop_back(); // value was already there, so get rid of it
                return {begin() + bucket->value_idx, false};
            }
            dist_and_fingerprint += BUCKET_DIST_INC;
            bucket = next(bucket);
        }

        // value is new, place the bucket and shift up until we find an empty spot
        uint32_t value_idx = static_cast<uint32_t>(m_values.size()) - 1;
        place_and_shift_up({dist_and_fingerprint, value_idx}, bucket);

        return {begin() + value_idx, true};
    }

    template <class... Args>
    auto emplace_hint(const_iterator /*hint*/, Args&&... args) -> iterator {
        return emplace(std::forward<Args>(args)...).first;
    }

    template <class... Args, typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true>
    auto try_emplace(Key const& key, Args&&... args) -> std::pair<iterator, bool> {
        return do_try_emplace(key, std::forward<Args>(args)...);
    }

    template <class... Args, typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true>
    auto try_emplace(Key&& key, Args&&... args) -> std::pair<iterator, bool> {
        return do_try_emplace(std::move(key), std::forward<Args>(args)...);
    }

    template <class... Args, typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true>
    auto try_emplace(const_iterator /*hint*/, Key const& key, Args&&... args) -> iterator {
        return do_try_emplace(key, std::forward<Args>(args)...).first;
    }

    template <class... Args, typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true>
    auto try_emplace(const_iterator /*hint*/, Key&& key, Args&&... args) -> iterator {
        return do_try_emplace(std::move(key), std::forward<Args>(args)...).first;
    }

    auto erase(iterator it) -> iterator {
        auto hash = mixed_hash(get_key(*it));
        auto* bucket = bucket_from_hash(hash);

        auto const value_idx_to_remove = static_cast<uint32_t>(it - cbegin());
        while (bucket->value_idx != value_idx_to_remove) {
            bucket = next(bucket);
        }

        do_erase(bucket);
        return begin() + value_idx_to_remove;
    }

    auto erase(const_iterator it) -> iterator {
        return erase(begin() + (it - cbegin()));
    }

    auto erase(const_iterator first, const_iterator last) -> iterator {
        auto const idx_first = first - cbegin();
        auto const idx_last = last - cbegin();
        auto const first_to_last = std::distance(first, last);
        auto const last_to_end = std::distance(last, cend());

        // remove elements from left to right which moves elements from the end back
        auto const mid = idx_first + std::min(first_to_last, last_to_end);
        auto idx = idx_first;
        while (idx != mid) {
            erase(begin() + idx);
            ++idx;
        }

        // all elements from the right are moved, now remove the last element until all done
        idx = idx_last;
        while (idx != mid) {
            --idx;
            erase(begin() + idx);
        }

        return begin() + idx_first;
    }

    auto erase(Key const& key) -> size_t {
        return do_erase_key(key);
    }

    template <class K, class H = Hash, class KE = KeyEqual, is_transparent<H, KE> = true>
    auto erase(K&& key) -> size_t {
        return do_erase_key(std::forward<K>(key));
    }

    void swap(table& other) noexcept(noexcept(std::is_nothrow_swappable_v<ValueContainer>&& std::is_nothrow_swappable_v<Hash>&&
                                                  std::is_nothrow_swappable_v<KeyEqual>)) {
        using std::swap;
        swap(other, *this);
    }

    // lookup /////////////////////////////////////////////////////////////////

    template <typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true>
    auto at(key_type const& key) -> Q& {
        if (auto it = find(key); end() != it) {
            return it->second;
        }
        throw std::out_of_range("ankerl::unordered_dense::map::at(): key not found");
    } // LCOV_EXCL_LINE is this a gcov/lcov bug? this method is fully tested.

    template <typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true>
    auto at(key_type const& key) const -> Q const& {
        return const_cast<table*>(this)->at(key); // NOLINT(cppcoreguidelines-pro-type-const-cast)
    }

    template <typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true>
    auto operator[](Key const& key) -> Q& {
        return try_emplace(key).first->second;
    }

    template <typename Q = T, std::enable_if_t<!std::is_void_v<Q>, bool> = true>
    auto operator[](Key&& key) -> Q& {
        return try_emplace(std::move(key)).first->second;
    }

    auto count(Key const& key) const -> size_t {
        return find(key) == end() ? 0 : 1;
    }

    template <class K, class H = Hash, class KE = KeyEqual, is_transparent<H, KE> = true>
    auto count(K const& key) const -> size_t {
        return find(key) == end() ? 0 : 1;
    }

    auto find(Key const& key) -> iterator {
        return do_find(key);
    }

    auto find(Key const& key) const -> const_iterator {
        return do_find(key);
    }

    template <class K, class H = Hash, class KE = KeyEqual, is_transparent<H, KE> = true>
    auto find(K const& key) -> iterator {
        return do_find(key);
    }

    template <class K, class H = Hash, class KE = KeyEqual, is_transparent<H, KE> = true>
    auto find(K const& key) const -> const_iterator {
        return do_find(key);
    }

    auto contains(Key const& key) const -> size_t {
        return find(key) != end();
    }

    template <class K, class H = Hash, class KE = KeyEqual, is_transparent<H, KE> = true>
    auto contains(K const& key) const -> size_t {
        return find(key) != end();
    }

    auto equal_range(Key const& key) -> std::pair<iterator, iterator> {
        auto it = do_find(key);
        return {it, it == end() ? end() : it + 1};
    }

    auto equal_range(const Key& key) const -> std::pair<const_iterator, const_iterator> {
        auto it = do_find(key);
        return {it, it == end() ? end() : it + 1};
    }

    template <class K, class H = Hash, class KE = KeyEqual, is_transparent<H, KE> = true>
    auto equal_range(K const& key) -> std::pair<iterator, iterator> {
        auto it = do_find(key);
        return {it, it == end() ? end() : it + 1};
    }

    template <class K, class H = Hash, class KE = KeyEqual, is_transparent<H, KE> = true>
    auto equal_range(K const& key) const -> std::pair<const_iterator, const_iterator> {
        auto it = do_find(key);
        return {it, it == end() ? end() : it + 1};
    }

    // bucket interface ///////////////////////////////////////////////////////

    auto bucket_count() const noexcept -> size_t { // NOLINT(modernize-use-nodiscard)
        return m_buckets_end - m_buckets_start;
    }

    auto max_bucket_count() const noexcept -> size_t { // NOLINT(modernize-use-nodiscard)
        return std::numeric_limits<uint32_t>::max();
    }

    // hash policy ////////////////////////////////////////////////////////////

    [[nodiscard]] auto load_factor() const -> float {
        return bucket_count() ? static_cast<float>(size()) / bucket_count() : 0.0F;
    }

    [[nodiscard]] auto max_load_factor() const -> float {
        return m_max_load_factor;
    }

    void max_load_factor(float ml) {
        m_max_load_factor = ml;
        m_max_bucket_capacity = static_cast<uint32_t>(bucket_count() * max_load_factor());
    }

    void rehash(size_t count) {
        auto shifts = calc_shifts_for_size(std::max(count, size()));
        if (shifts != m_shifts) {
            m_shifts = shifts;
            deallocate_buckets();
            m_values.shrink_to_fit();
            allocate_buckets_from_shift();
            clear_and_fill_buckets_from_values();
        }
    }

    void reserve(size_t capa) {
        auto shifts = calc_shifts_for_size(std::max(capa, size()));
        if (shifts < m_shifts) {
            m_shifts = shifts;
            deallocate_buckets();
            allocate_buckets_from_shift();
            clear_and_fill_buckets_from_values();
        }
    }

    // observers //////////////////////////////////////////////////////////////

    auto hash_function() const -> hasher {
        return m_hash;
    }

    auto key_eq() const -> key_equal {
        return m_equal;
    }

    // non-member functions ///////////////////////////////////////////////////

    friend auto operator==(table const& a, table const& b) -> bool {
        if (&a == &b) {
            return true;
        }
        if (a.size() != b.size()) {
            return false;
        }
        for (auto const& b_entry : b) {
            auto it = a.find(get_key(b_entry));
            if constexpr (std::is_void_v<T>) {
                // set: only check that the key is here
                if (a.end() == it) {
                    return false;
                }
            } else {
                // map: check that key is here, then also check that value is the same
                if (a.end() == it || !(b_entry.second == it->second)) {
                    return false;
                }
            }
        }
        return true;
    }

    friend auto operator!=(table const& a, table const& b) -> bool {
        return !(a == b);
    }
};

} // namespace detail

template <class Key,
          class T,
          class Hash = hash<Key>,
          class KeyEqual = std::equal_to<Key>,
          class Allocator = std::allocator<std::pair<Key, T>>>
using map = detail::table<Key, T, Hash, KeyEqual, Allocator>;

template <class Key, class Hash = hash<Key>, class KeyEqual = std::equal_to<Key>, class Allocator = std::allocator<Key>>
using set = detail::table<Key, void, Hash, KeyEqual, Allocator>;

#    if ANKERL_UNORDERED_DENSE_PMR

namespace pmr {

template <class Key, class T, class Hash = hash<Key>, class KeyEqual = std::equal_to<Key>>
using map = detail::table<Key, T, Hash, KeyEqual, std::pmr::polymorphic_allocator<std::pair<Key, T>>>;

template <class Key, class Hash = hash<Key>, class KeyEqual = std::equal_to<Key>>
using set = detail::table<Key, void, Hash, KeyEqual, std::pmr::polymorphic_allocator<Key>>;

} // namespace pmr

#    endif

// deduction guides ///////////////////////////////////////////////////////////

// deduction guides for alias templates are only possible since C++20
// see https://en.cppreference.com/w/cpp/language/class_template_argument_deduction

} // namespace ankerl::unordered_dense

// std extensions /////////////////////////////////////////////////////////////

namespace std { // NOLINT(cert-dcl58-cpp)

template <class Key, class T, class Hash, class KeyEqual, class Allocator, class Pred>
auto erase_if(ankerl::unordered_dense::detail::table<Key, T, Hash, KeyEqual, Allocator>& map, Pred pred) -> size_t {
    // going back to front because erase() invalidates the end iterator
    auto const old_size = map.size();
    auto idx = old_size;
    while (idx) {
        --idx;
        auto it = map.begin() + idx;
        if (pred(*it)) {
            map.erase(it);
        }
    }

    return map.size() - old_size;
}

} // namespace std

#endif
#endif