aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/hiredis/dict.c
blob: 0fbc1b4cfb9acee28ae642bfb8934829e64ed2f3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
/* Hash table implementation.
 *
 * This file implements in memory hash tables with insert/del/replace/find/
 * get-random-element operations. Hash tables will auto resize if needed
 * tables of power of two in size are used, collisions are handled by
 * chaining. See the source code for more information... :)
 *
 * Copyright (c) 2006-2010, Salvatore Sanfilippo <antirez at gmail dot com>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *   * Redistributions of source code must retain the above copyright notice,
 *     this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 *   * Neither the name of Redis nor the names of its contributors may be used
 *     to endorse or promote products derived from this software without
 *     specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include "fmacros.h"
#include <stdlib.h>
#include <assert.h>
#include <limits.h>
#include "dict.h"

/* -------------------------- private prototypes ---------------------------- */

static int _dictExpandIfNeeded(dict *ht);
static unsigned long _dictNextPower(unsigned long size);
static int _dictKeyIndex(dict *ht, const void *key);
static int _dictInit(dict *ht, dictType *type, void *privDataPtr);

/* -------------------------- hash functions -------------------------------- */

/* Generic hash function (a popular one from Bernstein).
 * I tested a few and this was the best. */
static unsigned int dictGenHashFunction(const unsigned char *buf, int len) {
    unsigned int hash = 5381;

    while (len--)
        hash = ((hash << 5) + hash) + (*buf++); /* hash * 33 + c */
    return hash;
}

/* ----------------------------- API implementation ------------------------- */

/* Reset an hashtable already initialized with ht_init().
 * NOTE: This function should only called by ht_destroy(). */
static void _dictReset(dict *ht) {
    ht->table = NULL;
    ht->size = 0;
    ht->sizemask = 0;
    ht->used = 0;
}

/* Create a new hash table */
static dict *dictCreate(dictType *type, void *privDataPtr) {
    dict *ht = malloc(sizeof(*ht));
    _dictInit(ht,type,privDataPtr);
    return ht;
}

/* Initialize the hash table */
static int _dictInit(dict *ht, dictType *type, void *privDataPtr) {
    _dictReset(ht);
    ht->type = type;
    ht->privdata = privDataPtr;
    return DICT_OK;
}

/* Expand or create the hashtable */
static int dictExpand(dict *ht, unsigned long size) {
    dict n; /* the new hashtable */
    unsigned long realsize = _dictNextPower(size), i;

    /* the size is invalid if it is smaller than the number of
     * elements already inside the hashtable */
    if (ht->used > size)
        return DICT_ERR;

    _dictInit(&n, ht->type, ht->privdata);
    n.size = realsize;
    n.sizemask = realsize-1;
    n.table = calloc(realsize,sizeof(dictEntry*));

    /* Copy all the elements from the old to the new table:
     * note that if the old hash table is empty ht->size is zero,
     * so dictExpand just creates an hash table. */
    n.used = ht->used;
    for (i = 0; i < ht->size && ht->used > 0; i++) {
        dictEntry *he, *nextHe;

        if (ht->table[i] == NULL) continue;

        /* For each hash entry on this slot... */
        he = ht->table[i];
        while(he) {
            unsigned int h;

            nextHe = he->next;
            /* Get the new element index */
            h = dictHashKey(ht, he->key) & n.sizemask;
            he->next = n.table[h];
            n.table[h] = he;
            ht->used--;
            /* Pass to the next element */
            he = nextHe;
        }
    }
    assert(ht->used == 0);
    free(ht->table);

    /* Remap the new hashtable in the old */
    *ht = n;
    return DICT_OK;
}

/* Add an element to the target hash table */
static int dictAdd(dict *ht, void *key, void *val) {
    int index;
    dictEntry *entry;

    /* Get the index of the new element, or -1 if
     * the element already exists. */
    if ((index = _dictKeyIndex(ht, key)) == -1)
        return DICT_ERR;

    /* Allocates the memory and stores key */
    entry = malloc(sizeof(*entry));
    entry->next = ht->table[index];
    ht->table[index] = entry;

    /* Set the hash entry fields. */
    dictSetHashKey(ht, entry, key);
    dictSetHashVal(ht, entry, val);
    ht->used++;
    return DICT_OK;
}

/* Add an element, discarding the old if the key already exists.
 * Return 1 if the key was added from scratch, 0 if there was already an
 * element with such key and dictReplace() just performed a value update
 * operation. */
static int dictReplace(dict *ht, void *key, void *val) {
    dictEntry *entry, auxentry;

    /* Try to add the element. If the key
     * does not exists dictAdd will succeed. */
    if (dictAdd(ht, key, val) == DICT_OK)
        return 1;
    /* It already exists, get the entry */
    entry = dictFind(ht, key);
    /* Free the old value and set the new one */
    /* Set the new value and free the old one. Note that it is important
     * to do that in this order, as the value may just be exactly the same
     * as the previous one. In this context, think to reference counting,
     * you want to increment (set), and then decrement (free), and not the
     * reverse. */
    if (entry) {
        auxentry = *entry;
        dictSetHashVal(ht, entry, val);
        dictFreeEntryVal(ht, &auxentry);
    }
    return 0;
}

/* Search and remove an element */
static int dictDelete(dict *ht, const void *key) {
    unsigned int h;
    dictEntry *de, *prevde;

    if (ht->size == 0)
        return DICT_ERR;
    h = dictHashKey(ht, key) & ht->sizemask;
    de = ht->table[h];

    prevde = NULL;
    while(de) {
        if (dictCompareHashKeys(ht,key,de->key)) {
            /* Unlink the element from the list */
            if (prevde)
                prevde->next = de->next;
            else
                ht->table[h] = de->next;

            dictFreeEntryKey(ht,de);
            dictFreeEntryVal(ht,de);
            free(de);
            ht->used--;
            return DICT_OK;
        }
        prevde = de;
        de = de->next;
    }
    return DICT_ERR; /* not found */
}

/* Destroy an entire hash table */
static int _dictClear(dict *ht) {
    unsigned long i;

    /* Free all the elements */
    for (i = 0; i < ht->size && ht->used > 0; i++) {
        dictEntry *he, *nextHe;

        if ((he = ht->table[i]) == NULL) continue;
        while(he) {
            nextHe = he->next;
            dictFreeEntryKey(ht, he);
            dictFreeEntryVal(ht, he);
            free(he);
            ht->used--;
            he = nextHe;
        }
    }
    /* Free the table and the allocated cache structure */
    free(ht->table);
    /* Re-initialize the table */
    _dictReset(ht);
    return DICT_OK; /* never fails */
}

/* Clear & Release the hash table */
static void dictRelease(dict *ht) {
    _dictClear(ht);
    free(ht);
}

static dictEntry *dictFind(dict *ht, const void *key) {
    dictEntry *he;
    unsigned int h;

    if (ht->size == 0) return NULL;
    h = dictHashKey(ht, key) & ht->sizemask;
    he = ht->table[h];
    while(he) {
        if (dictCompareHashKeys(ht, key, he->key))
            return he;
        he = he->next;
    }
    return NULL;
}

static dictIterator *dictGetIterator(dict *ht) {
    dictIterator *iter = malloc(sizeof(*iter));

    iter->ht = ht;
    iter->index = -1;
    iter->entry = NULL;
    iter->nextEntry = NULL;
    return iter;
}

static dictEntry *dictNext(dictIterator *iter) {
    while (1) {
        if (iter->entry == NULL) {
            iter->index++;
            if (iter->index >=
                    (signed)iter->ht->size) break;
            iter->entry = iter->ht->table[iter->index];
        } else {
            iter->entry = iter->nextEntry;
        }
        if (iter->entry) {
            /* We need to save the 'next' here, the iterator user
             * may delete the entry we are returning. */
            iter->nextEntry = iter->entry->next;
            return iter->entry;
        }
    }
    return NULL;
}

static void dictReleaseIterator(dictIterator *iter) {
    free(iter);
}

/* ------------------------- private functions ------------------------------ */

/* Expand the hash table if needed */
static int _dictExpandIfNeeded(dict *ht) {
    /* If the hash table is empty expand it to the initial size,
     * if the table is "full" dobule its size. */
    if (ht->size == 0)
        return dictExpand(ht, DICT_HT_INITIAL_SIZE);
    if (ht->used == ht->size)
        return dictExpand(ht, ht->size*2);
    return DICT_OK;
}

/* Our hash table capability is a power of two */
static unsigned long _dictNextPower(unsigned long size) {
    unsigned long i = DICT_HT_INITIAL_SIZE;

    if (size >= LONG_MAX) return LONG_MAX;
    while(1) {
        if (i >= size)
            return i;
        i *= 2;
    }
}

/* Returns the index of a free slot that can be populated with
 * an hash entry for the given 'key'.
 * If the key already exists, -1 is returned. */
static int _dictKeyIndex(dict *ht, const void *key) {
    unsigned int h;
    dictEntry *he;

    /* Expand the hashtable if needed */
    if (_dictExpandIfNeeded(ht) == DICT_ERR)
        return -1;
    /* Compute the key hash value */
    h = dictHashKey(ht, key) & ht->sizemask;
    /* Search if this slot does not already contain the given key */
    he = ht->table[h];
    while(he) {
        if (dictCompareHashKeys(ht, key, he->key))
            return -1;
        he = he->next;
    }
    return h;
}