1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
|
/*
* This code is based on Ted Krovetz's ChaCha implementation; details below.
*
* Note that I've ripped out all of the code that wasn't suitable for doing
* block-oriented operation, all (residual) support for 128-bit ChaCha keys,
* all (partial) support for counter values over 32 bits, the ability to xor
* the stream with a plaintext, and so on.
*
* Future versions of this might remove bigendian conversions too. DO NOT use
* this code for your stream cipher: go back to the original source. (I got
* this copy from SUPERCOP).
*/
/* Chacha implementation for 16-byte vectors by Ted Krovetz (ted@krovetz.net).
* Assumes 32-bit int, 64-bit long long. Public domain. Modified: 2012.07.26.
* Chacha is an improvement on the stream cipher Salsa, described at
* http://cr.yp.to/papers.html#chacha
*/
#include <string.h>
#include <assert.h>
#include "ottery-internal.h"
/* Architecture-neutral way to specify 16-byte vector of ints */
typedef unsigned vec __attribute__ ((vector_size (16)));
/* This implementation is designed for Neon, SSE and AltiVec machines. The
* following specify how to do certain vector operations efficiently on
* each architecture, using intrinsics.
* This implementation supports parallel processing of multiple blocks,
* including potentially using general-purpose registers.
*/
#if __ARM_NEON__
#include <arm_neon.h>
#define GPR_TOO 1
#define VBPI 2
#define ONE (vec)vsetq_lane_u32(1,vdupq_n_u32(0),0)
#define NONCE(ctr,p) (vec)vcombine_u32(vcreate_u32(ctr),vcreate_u32(*(uint64_t *)p))
#define ROTV1(x) (vec)vextq_u32((uint32x4_t)x,(uint32x4_t)x,1)
#define ROTV2(x) (vec)vextq_u32((uint32x4_t)x,(uint32x4_t)x,2)
#define ROTV3(x) (vec)vextq_u32((uint32x4_t)x,(uint32x4_t)x,3)
#define ROTW16(x) (vec)vrev32q_u16((uint16x8_t)x)
#if __clang__
#define ROTW7(x) (x << ((vec){ 7, 7, 7, 7})) ^ (x >> ((vec){25,25,25,25}))
#define ROTW8(x) (x << ((vec){ 8, 8, 8, 8})) ^ (x >> ((vec){24,24,24,24}))
#define ROTW12(x) (x << ((vec){12,12,12,12})) ^ (x >> ((vec){20,20,20,20}))
#else
#define ROTW7(x) (vec)vsriq_n_u32(vshlq_n_u32((uint32x4_t)x,7),(uint32x4_t)x,25)
#define ROTW8(x) (vec)vsriq_n_u32(vshlq_n_u32((uint32x4_t)x,8),(uint32x4_t)x,24)
#define ROTW12(x) (vec)vsriq_n_u32(vshlq_n_u32((uint32x4_t)x,12),(uint32x4_t)x,20)
#endif
#elif __ALTIVEC__
#include <altivec.h>
#define GPR_TOO 1
#define VBPI 3
#define ONE ((vec){1,0,0,0})
#define NONCE(ctr,p) vec_sro(*(vec *)p, (vector char)(vec){0,0,0,8*8})+((vec){((ctr)&0xffffffff), (ctr)>>32, 0, 0})
#error "Don't use this code till it can be tested on altivec"
#define REVW_BE(x) __builtin_bswap32(x)
#define REVV_BE(x) vec_perm(x,x,(vector char){3,2,1,0,7,6,5,4,11,10,9,8,15,14,13,12})
#define ROTV1(x) vec_perm(x,x,(vector char){4,5,6,7,8,9,10,11,12,13,14,15,0,1,2,3})
#define ROTV2(x) vec_perm(x,x,(vector char){8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,7})
#define ROTV3(x) vec_perm(x,x,(vector char){12,13,14,15,0,1,2,3,4,5,6,7,8,9,10,11})
#define ROTW7(x) vec_rl(x,vec_splat_u32(7))
#define ROTW8(x) vec_rl(x,vec_splat_u32(8))
#define ROTW12(x) vec_rl(x,vec_splat_u32(12))
#define ROTW16(x) vec_rl(x,vec_splat_u32(-16)) /* trick to get 16 */
#elif __SSE2__
#include <emmintrin.h>
#define GPR_TOO 0
#if __clang__
#define VBPI 4
#else
#define VBPI 3
#endif
#define ONE (vec)_mm_set_epi32(0,0,0,1)
#define NONCE(ctr,p) (vec)(_mm_slli_si128(_mm_loadl_epi64((__m128i *)(p)),8)+_mm_set_epi64x(0,ctr))
#define ROTV1(x) (vec)_mm_shuffle_epi32((__m128i)x,_MM_SHUFFLE(0,3,2,1))
#define ROTV2(x) (vec)_mm_shuffle_epi32((__m128i)x,_MM_SHUFFLE(1,0,3,2))
#define ROTV3(x) (vec)_mm_shuffle_epi32((__m128i)x,_MM_SHUFFLE(2,1,0,3))
#define ROTW7(x) (vec)(_mm_slli_epi32((__m128i)x, 7) ^ _mm_srli_epi32((__m128i)x,25))
#define ROTW12(x) (vec)(_mm_slli_epi32((__m128i)x,12) ^ _mm_srli_epi32((__m128i)x,20))
#if __SSSE3__
#include <tmmintrin.h>
#define ROTW8(x) (vec)_mm_shuffle_epi8((__m128i)x,_mm_set_epi8(14,13,12,15,10,9,8,11,6,5,4,7,2,1,0,3))
#define ROTW16(x) (vec)_mm_shuffle_epi8((__m128i)x,_mm_set_epi8(13,12,15,14,9,8,11,10,5,4,7,6,1,0,3,2))
#else
#define ROTW8(x) (vec)(_mm_slli_epi32((__m128i)x, 8) ^ _mm_srli_epi32((__m128i)x,24))
#define ROTW16(x) (vec)(_mm_slli_epi32((__m128i)x,16) ^ _mm_srli_epi32((__m128i)x,16))
#endif
#else
#error -- Implementation supports only machines with neon, altivec or SSE2
#endif
#ifndef REVV_BE
#define REVV_BE(x) (x)
#endif
#ifndef REVW_BE
#define REVW_BE(x) (x)
#endif
#define BPI (VBPI + GPR_TOO) /* Blocks computed per loop iteration */
#define DQROUND_VECTORS(a,b,c,d) \
a += b; d ^= a; d = ROTW16(d); \
c += d; b ^= c; b = ROTW12(b); \
a += b; d ^= a; d = ROTW8(d); \
c += d; b ^= c; b = ROTW7(b); \
b = ROTV1(b); c = ROTV2(c); d = ROTV3(d); \
a += b; d ^= a; d = ROTW16(d); \
c += d; b ^= c; b = ROTW12(b); \
a += b; d ^= a; d = ROTW8(d); \
c += d; b ^= c; b = ROTW7(b); \
b = ROTV3(b); c = ROTV2(c); d = ROTV1(d);
#define QROUND_WORDS(a,b,c,d) \
a = a+b; d ^= a; d = d<<16 | d>>16; \
c = c+d; b ^= c; b = b<<12 | b>>20; \
a = a+b; d ^= a; d = d<< 8 | d>>24; \
c = c+d; b ^= c; b = b<< 7 | b>>25;
#define WRITE(op, d, v0, v1, v2, v3) \
*(vec *)(op + d + 0) = REVV_BE(v0); \
*(vec *)(op + d + 4) = REVV_BE(v1); \
*(vec *)(op + d + 8) = REVV_BE(v2); \
*(vec *)(op + d + 12) = REVV_BE(v3);
struct chacha_state_krovetz {
__attribute__ ((aligned (16))) uint8_t key[32];
__attribute__ ((aligned (16))) uint8_t nonce[8];
};
#define LOOP_ITERATIONS 4
static inline int
ottery_blocks_chacha_krovetz(
const int chacha_rounds,
uint8_t *out,
uint32_t block_idx,
struct chacha_state_krovetz *st)
__attribute__((always_inline));
/** Generates 64 * BPI * LOOP_ITERATIONS bytes of output using the key and
* nonce in st and the counter in block_idx, and store them in out.
*/
static inline int
ottery_blocks_chacha_krovetz(
const int chacha_rounds,
uint8_t *out,
uint32_t block_idx,
struct chacha_state_krovetz *st)
/* Assumes all pointers are aligned properly for vector reads */
{
const unsigned char *k = st->key;
const unsigned char *n = st->nonce;
unsigned i, j, *op=(unsigned *)out, *kp, *np;
__attribute__ ((aligned (16))) unsigned chacha_const[] =
{0x61707865,0x3320646E,0x79622D32,0x6B206574};
#if ( __ARM_NEON__ || __SSE2__)
kp = (unsigned *)k;
np = (unsigned *)n;
#else
__attribute__ ((aligned (16))) unsigned key[8], nonce[2];
((vec *)key)[0] = REVV_BE(((vec *)k)[0]);
((vec *)key)[1] = REVV_BE(((vec *)k)[1]);
nonce[0] = REVW_BE(((unsigned *)n)[0]);
nonce[1] = REVW_BE(((unsigned *)n)[1]);
kp = (unsigned *)key;
np = (unsigned *)nonce;
#endif
vec s0 = *(vec *)chacha_const;
vec s1 = ((vec *)kp)[0];
vec s2 = ((vec *)kp)[1];
vec s3 = NONCE(block_idx, np);
for (j = 0; j < LOOP_ITERATIONS; ++j) {
vec v0,v1,v2,v3,v4,v5,v6,v7;
v4 = v0 = s0; v5 = v1 = s1; v6 = v2 = s2; v3 = s3;
v7 = v3 + ONE;
#if VBPI > 2
vec v8,v9,v10,v11;
v8 = v4; v9 = v5; v10 = v6;
v11 = v7 + ONE;
#endif
#if VBPI > 3
vec v12,v13,v14,v15;
v12 = v8; v13 = v9; v14 = v10;
v15 = v11 + ONE;
#endif
#if GPR_TOO
register unsigned x0, x1, x2, x3, x4, x5, x6, x7, x8,
x9, x10, x11, x12, x13, x14, x15;
x0 = chacha_const[0]; x1 = chacha_const[1];
x2 = chacha_const[2]; x3 = chacha_const[3];
x4 = kp[0]; x5 = kp[1]; x6 = kp[2]; x7 = kp[3];
x8 = kp[4]; x9 = kp[5]; x10 = kp[6]; x11 = kp[7];
const uint64_t x_ctr = block_idx + BPI*iters+(BPI-1);
x12 = x_ctr & 0xffffffff; x13 = x_ctr>>32; x14 = np[0]; x15 = np[1];
#endif
for (i = chacha_rounds/2; i; i--) {
DQROUND_VECTORS(v0,v1,v2,v3)
DQROUND_VECTORS(v4,v5,v6,v7)
#if VBPI > 2
DQROUND_VECTORS(v8,v9,v10,v11)
#endif
#if VBPI > 3
DQROUND_VECTORS(v12,v13,v14,v15)
#endif
#if GPR_TOO
QROUND_WORDS( x0, x4, x8,x12)
QROUND_WORDS( x1, x5, x9,x13)
QROUND_WORDS( x2, x6,x10,x14)
QROUND_WORDS( x3, x7,x11,x15)
QROUND_WORDS( x0, x5,x10,x15)
QROUND_WORDS( x1, x6,x11,x12)
QROUND_WORDS( x2, x7, x8,x13)
QROUND_WORDS( x3, x4, x9,x14)
#endif
}
WRITE(op, 0, v0+s0, v1+s1, v2+s2, v3+s3)
s3 += ONE;
WRITE(op, 16, v4+s0, v5+s1, v6+s2, v7+s3)
s3 += ONE;
#if VBPI > 2
WRITE(op, 32, v8+s0, v9+s1, v10+s2, v11+s3)
s3 += ONE;
#endif
#if VBPI > 3
WRITE(op, 48, v12+s0, v13+s1, v14+s2, v15+s3)
s3 += ONE;
#endif
op += VBPI*16;
#if GPR_TOO
op[0] = REVW_BE((x0 + chacha_const[0]));
op[1] = REVW_BE((x1 + chacha_const[1]));
op[2] = REVW_BE((x2 + chacha_const[2]));
op[3] = REVW_BE((x3 + chacha_const[3]));
op[4] = REVW_BE((x4 + kp[0]));
op[5] = REVW_BE((x5 + kp[1]));
op[6] = REVW_BE((x6 + kp[2]));
op[7] = REVW_BE((x7 + kp[3]));
op[8] = REVW_BE((x8 + kp[4]));
op[9] = REVW_BE((x9 + kp[5]));
op[10] = REVW_BE((x10 + kp[6]));
op[11] = REVW_BE((x11 + kp[7]));
op[12] = REVW_BE((x12 + (x_ctr & 0xffffffff)));
op[13] = REVW_BE((x13 + (x_ctr >> 32)));
op[14] = REVW_BE((x14 + np[0]));
op[15] = REVW_BE((x15 + np[1]));
s3 += ONE;
op += 16;
#endif
}
return 0;
}
#define STATE_LEN (sizeof(struct chacha_state_krovetz))
#define STATE_BYTES 40
#define IDX_STEP (BPI * LOOP_ITERATIONS)
#define OUTPUT_LEN (IDX_STEP * 64)
static void
chacha_krovetz_state_setup(void *state, const uint8_t *bytes)
{
struct chacha_state_krovetz *st = state;
memcpy(st->key, bytes, 32);
memcpy(st->nonce, bytes+32, 8);
}
static void
chacha8_krovetz_generate(void *state, uint8_t *output, uint32_t idx)
{
struct chacha_state_krovetz *st = state;
ottery_blocks_chacha_krovetz(8, output, idx * IDX_STEP, st);
}
static void
chacha12_krovetz_generate(void *state, uint8_t *output, uint32_t idx)
{
struct chacha_state_krovetz *st = state;
ottery_blocks_chacha_krovetz(12, output, idx * IDX_STEP, st);
}
static void
chacha20_krovetz_generate(void *state, uint8_t *output, uint32_t idx)
{
struct chacha_state_krovetz *st = state;
ottery_blocks_chacha_krovetz(20, output, idx * IDX_STEP, st);
}
#ifdef __SSSE3__
#define NEED_CPUCAP OTTERY_CPUCAP_SSSE3|OTTERY_CPUCAP_SIMD
#define FLAV "-SSSE3"
#else
#define NEED_CPUCAP OTTERY_CPUCAP_SIMD
#define FLAV "-DEFAULT"
#endif
#define PRF_CHACHA(r) { \
"CHACHA" #r, \
"CHACHA" #r "-SIMD", \
"CHACHA" #r "-SIMD" FLAV, \
STATE_LEN, \
STATE_BYTES, \
OUTPUT_LEN, \
NEED_CPUCAP, \
chacha_krovetz_state_setup, \
chacha ## r ## _krovetz_generate \
}
#if defined OTTERY_BUILDING_SIMD1
const struct ottery_prf ottery_prf_chacha8_krovetz_1_ = PRF_CHACHA(8);
const struct ottery_prf ottery_prf_chacha12_krovetz_1_ = PRF_CHACHA(12);
const struct ottery_prf ottery_prf_chacha20_krovetz_1_ = PRF_CHACHA(20);
#elif defined OTTERY_BUILDING_SIMD2
const struct ottery_prf ottery_prf_chacha8_krovetz_2_ = PRF_CHACHA(8);
const struct ottery_prf ottery_prf_chacha12_krovetz_2_ = PRF_CHACHA(12);
const struct ottery_prf ottery_prf_chacha20_krovetz_2_ = PRF_CHACHA(20);
#else
#error "Which PRF symbols am I supposed to define?"
#endif
|